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In this article, the heat transfer characteristics of natural convection about a vertical permeable flat
surface embedded in a saturated porous medium are studied by taking into account the thermal
radiation effect. The plate is assumed to have a power-law temperature distribution. Similarity
variables are employed in order to transform the governing partial differential equations into a
nonlinear ordinary differential equation. Both Adomian decomposition method (ADM) and He’s
variational iteration method (VIM) coupled with Padé approximation technique are implemented
to solve the reduced system. Comparisons with previously published works are performed, and
excellent agreement between the results is obtained.
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1. Introduction

Heat transfer from different geometrics embedded in porous media has many engineering
and geophysical applications such as geothermal reservoirs, drying of porous solids, thermal
insulation, enhanced oil recovery, packed-bed catalytic reactors, cooling of nuclear reactors,
and underground energy transport [1]. Nakayama and Koyama [2] studied free convection
over a vertical flat plate embedded in a thermally stratified porous medium by exploiting
the similarity transformation procedure. Cheng and Minkowycz [3] studied the steady free
convection about a vertical plate embedded in a porous media using the boundary layer
assumptions and Darcy model by the similarity method. Cheng [4] extended the work by
studying the effect of lateral mass flux with prescribed temperature and velocity as power
law on the vertical surface. Other investigators [5–8] studied some similar porous medium
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cases using Darcy and Boussinesq approximations with different power-law velocity and
temperature variations at the boundaries.

Meanwhile, the boundary layer equations for free-convective flow through a porous
medium constitute a nonlinear problem. The theory of nonlinear differential equations is
quite elaborate and their solutions are of practical relevance in the engineering sciences.
Several numerical approaches have been developed in the last few decades (e.g., finite
differences, spectral method, shooting method, etc.) to tackle this problem. More recently,
the ideas of classical analytical methods have experienced a revival in connection with
the proposition of novel hybrid numerical-analytical schemes for nonlinear differential
equations. Among such trends are Adomian decomposition method (ADM) [9–12] and He’s
variational iteration method (VIM) [13–16] coupled with Padé approximation method [17]
especially when dealing with boundary value problems [18]. These techniques, over the last
few years, have proved themselves as a powerful tool and a potential alternative to traditional
numerical techniques in various applications in science and engineering. This seminumerical
approach is also extremely useful in the validation of purely numerical schemes.

The aim of the present work is to construct a nonperturbative solution for natural
convection boundary layer flow through a porous medium on an unbound domain in the
presence of radiation using both ADM and VIM coupled with Padé approximation technique.
The chief merit of the methods is that they are capable of greatly reducing the size of
computation work while still maintaining accuracy of the numerical solution. However, VIM
gives successive approximations of high accuracy of the solution and VIM does not require
specific treatments as in ADM for nonlinear terms. Both numerical and graphical results are
presented and discussed quantitatively with respect to various parameters embedded in the
problem.

2. Mathematical formulation

We consider the steady two-dimensional flow of an incompressible viscous fluid induced by
a heated vertical plate embedded in a homogeneous porous medium of uniform ambient
temperature T∞. The fluid is assumed to be Newtonian, and a constant fluid suction or
blowing is imposed at the plate surface. Under Darcy and Boussinesq approximations, the
governing boundary layer equations for this problem can be written as [5, 6]

∂u

∂x
+
∂v

∂y
= 0, (2.1)

∂u

∂y
=
gKβ

υ

∂T

∂y
, (2.2)

ρcp

(
u
∂T

∂x
+ v

∂T

∂y

)
= k

∂2T

∂y2
−
∂qr
∂y

. (2.3)

Here, u, v are the velocity components along x, y coordinates, ρ the fluid density, T the
temperature of the fluid, cp specific heat at constant pressure, k the thermal conductivity,
υ kinematic viscosity, g the gravitational acceleration, K permeability of the porous medium,
and β thermal expansion coefficient. It is also assumed that the temperature distribution of
the plate is governed by the power law Tw(x) = T∞+Axλ, where A is a constant > 0 for heated
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plate. Using Roseland approximation [7, 19], we takethe radiative heat flux as

qr = −
4σ
3γ

∂T4

∂y
, (2.4)

where σ is the Stefan-Boltzmann constant and γ the mean absorption coefficient. Assume that
the temperature differences within the flow are sufficiently small such that T4 may expressed
as a linear function of temperature

T4 ≈ 4T3
∞T − 3T4

∞. (2.5)

The boundary conditions are given by

T(x, 0) = Tw(x), v(x, 0) = V (x),

T(x,∞) = T∞, u(x,∞) = 0.
(2.6)

We introduced the following similarity variables and parameters [5, 8]:

Ψ = αRaxF(η), Rax =
gKβ

(
Tw − T∞

)
x

υα
, T = T∞ +Axλθ(η),

N =
16σT3

∞
3γk

, η =
(
y

x

)
Ra1/2

x , α =
k

ρcp
, θ =

T − T∞
Tw − T∞

,
(2.7)

where Rax is the modified local Rayleigh number. The continuity equation (2.1) is satisfied
by the stream function Ψ(x, y) defined by

u =
∂Ψ
∂y

=
(
α

x

)
RaxF

′(η), v = −∂Ψ
∂x

= −
(
α

2x

)
Ra1/2

x

[
(λ + 1)F + (λ − 1)F ′

]
, (2.8)

and (2.2) and (2.3) become

F ′′ = θ′, θ′′ +
λ + 1

2(N + 1)
Fθ′ − λ

N + 1
F ′θ = 0, (2.9)

where the primes denote differentiation with respect to η, N is the Radiation parameter, and
λ is the temperature exponent. In view of (2.7), the boundary conditions (2.6) transform into

θ(0) = 1, θ(∞) = 0, F(0) = m, F ′(∞) = 0. (2.10)

The suction or injection speed at the plate surface becomes

v(x, 0) = −
(
α

2x

)
Ra1/2

x (λ + 1)F(0), (2.11)
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wherem = F(0) is the suction or injection parameter according tom > 0 orm < 0, respectively.
The entrainment velocity of the fluid is given by

v(x,∞) = −
(
α

2x

)
Ra1/2

x (λ + 1)F(∞). (2.12)

Equation (2.9) together with the boundary conditions (2.10) can be easily reduced to give

F ′′′ +
λ + 1

2(N + 1)
F ′′F − λ

N + 1
F ′

2 = 0, (2.13)

with

F ′(0) = 1, F(0) = m, F ′(∞) = 0, (2.14)

since it is very obvious from (2.9) and (2.10) that F ′ = θ (i.e., the vertical velocity and the
temperature profiles are identical). The local surface heat flux can be expressed as a function
of the local Rayleigh and Nusselt numbers as

NuxRa
−1/2
x = −θ′(0). (2.15)

3. Adomian decomposition method

In order to explicitly construct approximate nonperturbative solutions of the problem
described by (2.13) and (2.14), Adomian decomposition method well addressed in [9–11]
is employed and implemented in Maple (a symbolic algebra package). We rewrite (2.13) in
the form

LηF =
λ

(N + 1)
(Fη)

2 − (λ + 1)
2(N + 1)

FFηη, (3.1)

where the subscript η represents differentiation with respect to η and the differential operator
employs the first three derivatives in the form Lη = d3/dη3. The inverse operator L−1

η is
considered a threefold integral operator defined by

L−1
η =

∫η
0

∫η
0

∫η
0
(·)dηdηdη. (3.2)

Applying L−1
η to both sides of (3.1), using the boundary conditions in (2.14), we obtain

F(η) = m + η + b
η2

2
+ a1L

−1
η (F2

η) − a2L
−1
η (FFηη), (3.3)
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where a1 = λ/(N + 1), a2 = (λ + 1)/2(N + 1), and b = F ′′(0) is to be determined from the
boundary condition at infinity in (2.14). As usual in Adomian decomposition method, the
solution of (3.3) is approximated as an infinite series

F(η) =
∞∑
j=0

Fj, (3.4)

and the nonlinear terms are decomposed as

F2
η =

∞∑
j=0

Hj, FFηη =
∞∑
j=0

Gj, (3.5)

where Hj , Gj , are polynomials (called Adomian polynomials) given by

Hj =
1
j!

dj

dSj

⎡
⎣
(
∞∑
i=0

FηiS
i

)2
⎤
⎦
S=0

,

Gj =
1
j!

dj

dSj

[(
∞∑
i=0

FiS
i

)(
∞∑
i=0

FηηiS
i

)]
S=0

.

(3.6)

Thus, we can identify

F0 = m + η, F1 =
bη2

2
+ a1L

−1
η (H0) − a2L

−1
η (G0),

Fj+1 = a1L
−1
η (Hj) − a2L

−1
η (Gj), for j ≥ 1.

(3.7)

Using Maple, we obtained a few terms approximation to the solution as

F1 =
1
2
bη2 +

(1/6)λη3

N + 1
,

F2 =

(
1

60
λ2

(N + 1)2
− 1

60
(1 + λ)λ

(2N + 2)(N + 1)

)
η5

+

(
1

12
λb

N + 1
− (1 + λ)((1/24)(mλ/(N + 1)) + (1/24)b)

2N + 2

)
η4 − 1

6
(1 + λ)mbη3

2N + 2
(3.8)
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and so on. Substituting (3.7) into (3.4), we obtain

F(η) = m + η +
1
2
bη2 − 1

12

(
bm + bmλ − 2λ

)
η3

N + 1

+
1
96

1

(N + 1)2

((
− 2bN − 2b + 6bλN + 6bλ + bm2 + 2bm2λ − 2mλ + bm2λ2 − 2mλ2)η4)

+
1

480
1

(N + 1)2

((
− 2b2N − 2b2 + 6b2λN + 6b2λ − 2bmλ − 5bmλ2 + 4λ2 + 3bm − 4λ

)
η5)

+ O
(
η6),

(3.9)

where other terms up to O(η13) were derived. Let WL =
∑L

j=0Fj represent the decomposition
series partial sum obtained, then F(η) = limL→∞(Wl).

4. He’s variational iteration method

In 1978, Inokuti et al. [20] proposed a general Lagrange multiplier method to solve
nonlinear problems, which was first proposed to solve problems in quantum mechanics. The
modified method, or variational iteration method (VIM) proposed by He [13–16], has been
shown to solve effectively, easily, and accurately a large class of nonlinear problems with
approximations converging rapidly to accurate solutions. To illustrate the basic idea of the
method, we consider the general nonlinear system

L[F(η)] +N[F(η)] = g(η), (4.1)

where L is a linear operator, N is a nonlinear operator, and g(η) is a given continuous function.
The basic character of the method is to construct a correction functional for the system, which
reads

Fn+1(η) = Fn(η) +
∫η

0
B(s)

[
LFn(s) +NF̃n(s) − g(s)

]
ds, (4.2)

where B is a Lagrange multiplier which can be identified optimally via variational theory,
Fn is the nth approximate solution, and F̃n denotes a restricted variation (i.e., δF̃n = 0).
This technique provides a sequence of functions which converges to the exact solution of
the problem. The initial values F(0), F ′(0), and F ′′(0) are usually used for selecting the
zeroth approximation F0. Consequently, the exact solution may be obtained by using F(η) =
limn→∞Fn.

In what follows, we will apply the VIM for the problem in (2.13) to illustrate the
strength of the method. The correction functional for (2.13) reads

Fn+1(η) = Fn(η) +
∫η

0
B(s)

[
F ′′′n +

λ + 1
2(N + 1)

F̃ ′′nF̃n −
λ

N + 1
F̃ ′2n

]
ds. (4.3)
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Making the above correction functional stationary with respect to Fn yields the stationary
conditions (Euler equations)

∂3B

∂s3
= 0, 1 +

∂2B

∂s2

∣∣∣∣
s=η

= 0,
∂B

∂s

∣∣∣∣
s=η

= 0, B(s)|s=η = 0. (4.4)

Solving the above equations results in B = −(1/2)(s − η)2, and (4.3) then becomes

Fn+1(η) = Fn(η) −
1
2

∫η
0
(s − η)2

[
F ′′′n (s) +

λ + 1
2(N + 1)

F ′′n(s)Fn(s) −
λ

N + 1
F ′2n (s)

]
ds. (4.5)

We select the initial value F0(η) = m + η + (1/2)bη2 by using the conditions in (2.14), where
b = F ′′(0) is to be determined from the boundary condition at infinity in (2.14). Using (4.5),
we obtain the next successive approximation as

F1(η) =
(
− 1

120
(1 + λ)b2

2N + 2
+

1
60

λb2

N + 1

)
η5 +

(
− 1

24
(1 + λ)b
2N + 2

+
1

12
λb

N + 1

)
η4

+
(
− 1

6
(1 + λ)bm

2N + 2
+

1
6

λ

N + 1

)
η3 +

1
2
bη2 + η +m

(4.6)

and after few iterations, we obtain

F(η) = m + η +
1
2
bη2 − 1

12

(
bm + bmλ − 2λ

)
η3

N + 1

+
1
96

1

(N + 1)2

((
− 2bN − 2b + 6bλN + 6bλ + bm2 + 2bm2λ − 2mλ + bm2λ2 − 2mλ2)η4)

+
1

480
1

(N + 1)2

((
− 2b2N − 2b2 + 6b2λN + 6b2λ − 2bmλ − 5bmλ2 + 4λ2 + 3bm − 4λ

)
η5)

+ O
(
η6)

(4.7)

and F(η) = limn→∞Fn.

5. Padé approximation technique

It is now well known that Padé approximants [17] have the advantage of manipulating the
polynomial approximation into rational functions of polynomials. By this manipulation we
gain more information about the mathematical behavior of the solution. In addition, power
series is not useful for large values of η. Boyd [18] and others have formally shown that power
series in isolation are not useful to handle boundary value problems. This can be attributed
to the possibility that the radius of convergence may not be sufficiently large to contain the
boundaries of the domain. It is therefore essential to combine the series solution, obtained by
the ADM and VIM or any series solution methods, with the Padé approximants to provide
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Table 1: Comparison of the values of F ′′(0) with previous results for N = 0, λ = 1.

m Postelnicu et al. [6] Ali [5] Present results (Padé [3/3]) Present results (Padé [6/6])
−1.0 −0.6180 −0.61803 −0.61728 −0.61803
−0.8 −0.6770 −0.67703 −0.67516 −0.67703
−0.6 −0.7440 — −0.74412 −0.74404
−0.4 −0.8198 −0.81980 −0.82101 −0.81982
−0.2 −0.9050 — −0.90513 −0.90499
0.0 −1.0000 −1.00000 −0.99998 −1.00000
0.2 −1.1049 — −1.10524 −1.10497
0.4 −1.2198 — −1.22781 −1.21976
0.6 −1.3440 — −1.34462 −1.34390
0.8 −1.4770 — −1.47789 −1.47701
1.0 −1.6180 −1.61803 −1.62351 −1.61803

Table 2: Numerical values of F ′′(0) for N > 0 using Padé approximants [6/6].

N λ m F ′′(0)
1.0 1.0 1.0 −0.999822
2.0 1.0 1.0 −0.767530
3.0 1.0 1.0 −0.640354
4.0 1.0 1.0 −0.593069
5.0 1.0 1.0 −0.528624
1.0 1.0 0.0 −0.707100
1.0 1.0 0.5 −0.843048
1.0 1.0 −0.5 −0.593084
1.0 1.0 −1.0 −0.500004

an effective tool to handle boundary value problems on an infinite or semi-infinite domain.
Recall that the Padé approximants can be easily evaluated by using built-in function in a
symbolic computational package such as Maple. The essential behavior of the solution will
be addressed by using several diagonal Padé approximants of different degrees. Furthermore,
the undetermined value of b = F ′′(0) is calculated from the boundary condition at infinity in
(2.14). The difficulty at infinity is overcome by employing the diagonal Padé approximants
[10, 11, 18] that approximate F ′(η) using W ′

L(η). For instance, the series is transformed into
diagonal Padé approximants as follows:

W ′
L[M,M](η) =

∑M
i=0hiη

i

∑M
i=0giη

i
, (5.1)

where P = 2(M + 1) is the order of the series required for each approximant. In the Maple
environment, the simultaneous evaluation of limη→∞W

′
L[M/M](η) = 0 for M = 2, 3, 4, . . . in

(3.9) gives the numerical results for b = F ′′(0) as shown in Tables 1 and 2.
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Figure 1: Vertical velocity or temperature profiles for λ = 1; m = 1; N = 1 (solid line), N = 2 (circles),
N = 3 (plus signs).

6. Numerical results and discussion

The governing equation (2.13) subject to the boundary conditions (2.14) is solved using both
ADM and VIM together with Padé technique as described in Sections 3–5. Solutions are
obtained for the plate temperature with uniform lateral mass flux (λ = 1) controlled by the
suction/injection parameter m and radiation parameter N as shown in Tables 1 and 2 and
Figures 1 and 2.

The results presented in Table 1 are in good agreement with those given by Postelnicu
et al. [6] and Ali [5] who solved numerically the case of permeable surface without
considering the thermal radiation effect. In Table 2, we observed that the local surface heat
flux rate decreases with increasing values of radiation parameter. Figures 1 and 2 confirm
the exponential decay velocity F ′(η) or temperature θ(η) profiles across the boundary layers
[5–8]. As mentioned earlier, suction corresponds to m > 0, injection to m < 0, and m = 0
to impermeable plate. Therefore, it is clear from Figure 1 that suction reduces the boundary
layer thickness sharply as seen for m = 1 while injection increases it as for m = −1; however,
the surface heat flow is always positive regardless of the sign of m where the heat is directed
from the plate to the porous medium. Figure 2 shows that the fluid velocity and temperature
increase as the radiation parameter N increases. This can be explained by the fact that the
effect of radiation N is to increase the rate of energy transport to the fluid and accordingly to
increase the fluid temperature.

7. Conclusions

We employed both ADM and VIM to compute a nonperturbative solution for thermal
radiation effect on natural convection boundary layer flow past a vertical plate embedded
in a saturated porous medium. The results demonstrate the reliability and the efficiency
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Figure 2: Vertical velocity or temperature profiles for N = 1; λ = 1; m = 1 (solid line), m = 0 (circles),
m = −1 (plus signs).

of both methods in an unbounded domain. The two methods are powerful and efficient in
obtaining approximations of higher accuracy and closed-form solutions if existing. However,
He’s variational iteration method gives several successive approximations through using
the iteration of the correction functional and Adomian decomposition method provides the
components of the exact solution that will be added to get the series solution. Moreover,
the VIM requires the evaluation of the Lagrangian multiplier whereas ADM requires the
evaluation of the Adomian polynomials that mostly require tedious algebraic calculations.
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[6] A. Postelnicu, T. Groşan, and I. Pop, “Free convection boundary-layer over a vertical permeable flat
plate in a porous medium with internal heat generation,” International Communications in Heat and
Mass Transfer, vol. 27, no. 5, pp. 729–738, 2000.

[7] O. D. Makinde, “Free convection flow with thermal radiation and mass transfer past a moving vertical
porous plate,” International Communications in Heat and Mass Transfer, vol. 32, no. 10, pp. 1411–1419,
2005.
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