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This paper is concerned with the sliding mode control for uncertain stochastic neutral systems with
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(LMIs), a sufficient condition is derived to ensure the global stochastic stability of the stochastic
system in the sliding mode for all admissible uncertainties. The synthesized sliding mode controller
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1. Introduction

Time delay occurs due to the finite capabilities of information processing and data transmission
among various parts of the system. The phenomena of time delay are often encountered
in various relevant systems, such as HIV infection with drug therapy, aircraft stabilization,
chemical engineering systems, inferred grinding model, manual control, neural network,
nuclear reactor, population dynamic model, rolling mill, ship stabilization, and systems with
lossless transmission lines. It is well known that time delay factors always lead to poor
performance. Hence, problems of stability analysis and stabilization of dynamical systemswith
time delays in the state variables and/or control inputs have received considerable interest for
more than three decades [1–6].

In practice, systems are almost always innately “noisy”. Therefore, in order to model a
system realistically, a degree of randomness must be incorporated into the model. Thus, a class
of stochastic systems has received great attention in the past decade [7]. On the other hand, it
has been shown that a lot of practical systems can be modeled by using functional differential
equations of the neutral type [8, 9]. However, the mathematical model always contains some
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uncertain elements. Therefore, uncertain systems have been extensively studied in the past
years [10–12].

To cope with the problem of stability of uncertain stochastic neutral delay systems, most
of the research focused on the retarded functional differential equations and it also seems that
few results are available on the variable structure control.

Sliding mode control (SMC) is a particular type of variable structure control. It provides
an effective alternative to deal with the nonlinear dynamic systems. The main feature of
SMC is its easy realization, control of independent motion, insensitivity to variation in plant
parameters or external perturbations, and wide variety of operational models [13–15].

The purpose of this paper lies in the design of SMC for a class of uncertain stochastic
neutral delay systems. A switching surface, which makes it easy to guarantee the stability of
the uncertain stochastic neutral delay systems in the sliding mode, is first proposed. By means
of linear matrix inequalities (LMIs), a sufficient condition is given such that the stochastic
dynamics in the specified switching surface is globally stochastically stable. And then, based
on this switching surface, a synthesized SMC law is derived to guarantee the existence of
the composite sliding motion. Finally, a numerical example is illustrated to demonstrate the
validity of the proposed SMC.

2. Problem formulation

Consider the following neutral stochastic system with uncertainties and multiple delays:

d
[
Ex(t) − Cx(t − τ)] = [(A + ΔA(t)

)
x(t) +

(
Ad + ΔAd(t)

)
x(t − h(t)) + Bu(t)]dt

+
[
ΔE(t)x(t) + ΔEd(t)x(t − h(t))

]
dw(t),

x(t) = φ(t), t ∈ [−H, 0],
(2.1)

where x(t) ∈ R
n is the state, u(t) ∈ R

m is the control input, τ is the constant delay, h(t) is the

time-varying differentiable bounded delay satisfying 0 ≤ h(t) ≤ hM,
Δ
h(t)≤ hD < 1,w(t) is anm-

dimensional Brownian motion,H = max{τ, hM}. It is assumed that φ(t) is the initial condition
which is continuous, t ∈ [−H, 0]. In system (2.1), E ∈ R

n×n, C ∈ R
n×n, A ∈ R

n×n, Ad ∈ R
n×n,

B ∈ R
n×m are known real constant matrices. ΔA(t), ΔAd(t), ΔE(t), and ΔEd(t) represent the

structured uncertainties in (2.1), which are assumed to be of the forms

ΔA(t) =MF1(t)NA, ΔAd(t) =MF2(t)NAd
,

[
ΔE(t),ΔEd(t)

]
=MF3(t)

[
NE,NEd

]
,

(2.2)

M, NA, NAd
, NE, and NEd are some given constant matrices, Fl(t) (l = 1, 2, 3) are unknown

real time-varying matrices which have the following structure:
Fl(t) = blockdiag{δl1(t)Irl1 , . . . , δlk(t)Irlk , Fl1(t), . . . , Fls(t)}, δli ∈ R, |δli | ≤ 1, 1 ≤ i ≤ k, and

F�
lj
Flj ≤ I, 1 ≤ j ≤ s.

We define the sets Δl as

Δl =
{
F�
l (t)Fl(t) ≤ I, FlNl =NlFl, ∀Nl ∈ Σl

}
, (2.3)
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where Σl = {Nl = blockdiag[Nl1 , . . . ,Nlk , nl1Ifl1 , . . . , nlsIfls ]},Nli are invertible for 1 ≤ i ≤ k, and
nlj ∈ R, nlj /= 0 for 1 ≤ j ≤ s.

The following useful lemmas will be used to derive the desired LMI-based stability
criteria.

Lemma 2.1 (see [1]). The LMI [ S11 S12
∗ S22

] < 0, with S11 = S�
11, S22 = S�

22, is equivalent to

S22 < 0, S11 − S12S
−1
22S

�
12 < 0. (2.4)

Lemma 2.2 (see [11]). Let D, E, Fl be real matrices of appropriate dimensions and Fl ∈ Δl. Then for
any block-structured matrixNl ∈ Σl,

DFlE +
(
DFlE

)� ≤ D
(
NlN

�
l

)
D� + E�

(
NlN

�
l

)−1
E. (2.5)

Lemma 2.3 (see [11]). Let A, D, E, Fl, and P be real matrices of appropriate dimensions with P =
P� > 0 and Fl ∈ Δl. Then for any block-structured matrixNl ∈ Σl satisfying P−1 −D(NlN

�
l
)D� > 0,

one has

(
A +DFlE

)�
P
(
A +DFlE

) ≤ A�
(
P−1 −DNlN

�
l D

�
)−1

A + E�
(
NlN

�
l

)−1
E. (2.6)

Lemma 2.4 (see [11]). For any z, y ∈ R
n and for any symmetric positive-definite matrix X ∈ R

n×n,

−2z�y ≤ z�X−1z + y�Xy. (2.7)

Definition 2.5 (see [14]). The nominal stochastic time-delay system of form (2.1) with u(t) = 0
is said to be mean-square asymptotically stable if

lim
t→∞

E|x(t)|2 = 0. (2.8)

Definition 2.6 (see [14]). The uncertain time delay system of the form (2.1) is robustly mean
square stabilized if the nominal system is mean-square asymptotically stable for all admissible
uncertainties.

In order to simplify the treatment of the problem, the operator I : C([−τ, 0],Rn)→R
n is

defined to be

I
(
xt
)
= Ex(t) − Cx(t − τ). (2.9)

The stability of the operator I is defined as follows.

Definition 2.7 (see [9]). The operator I is said to be stable if the zero solution of the
homogeneous difference equation

I
(
xt
)
= 0, t ≥ 0,

X0 = ϕ ∈ {ψ ∈ C[−τ, 0] : Iψ = 0}
(2.10)

is uniformly asymptotically stable.
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If rank(E) = m < n, then it is easy to find that there exist nonsingular constant matrices
K and S, such that

KES−1 =

(
E1 0
0 0

)

, KCS−1 =

(
C1 0
0 C2

)

, (2.11)

where E1 is anm ×m nonsingular matrix, C1 and C2 arem ×m and (n −m) × (n −m) constant
matrices, respectively.

Lemma 2.8 (see [9]). The operator I is stable if ‖E−1
1 C1‖ < 1 and |C2|/= 0, where E1, C1, and C2 are

defined as in (2.11) and ‖·‖ is any matrix norm.

3. Switching surface and controller design

In this work, we choose the switching function as follows:

S(t) = D
[
Ex(t) − Cx(t − τ)] + σ(t), (3.1)

where the auxiliary variable σ(t) satisfies the following:

dσ = −D[(A + BK)x(t) +Adx(t − h(t))
]
dt −D[ΔEx(t) + ΔEdx(t − h(t))

]
dw(t), (3.2)

where D ∈ R
m×n and K ∈ R

m×n are constant matrices. The matrix K is chosen such that the
matrix A + BK is Hurwitz, and the matrix D is to be designed later so that DB is nonsingular.
As long as the system operates in the sliding mode, it satisfies the equations S(t) = 0 and
Δ
S (t) = 0 [13].

Therefore, the equivalent control ueq(t) in the sliding manifold is given by

ueq = −(DB)−1D[(ΔA(t) − BK)x(t) + ΔAd(t)x(t − h(t))
]
. (3.3)

Substituting (3.3) into system (2.1), the following equivalent sliding mode dynamics can be
obtained:

d
[
Ex(t) − Cx(t − τ)] =

[(
A + BK + ΔA(t) − B(DB)−1DΔA(t)

)
x(t)

+
(
Ad + ΔAd(t) − B(DB)−1DΔAd

)
x(t − h(t))

]
dt

+
[
ΔEx(t) + ΔEdx(t − h(t))

]
dw(t).

(3.4)

Now, we proceed to the first task which is to analyze the robustly stochastic stability of the
sliding motion described by (3.4), and derive a sufficient condition by means of the linear
matrix inequality method.



D. Chen and W. Zhang 5

4. Robust stabilization in the mean square sense

Theorem 4.1. Consider the equivalent sliding mode dynamics (3.4). If the operator I is stable and there
exist symmetric positive-definite matrices X, Q1, Q2, T1, T2, T3, T4, T5, and T6 satisfying the following
LMIs:

Π =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Π11 Π12 Π13 E�XB E�XM E�XM 0 0 0

∗ Π22 −C�XAd 0 0 0 C�XB C�XM C�XM
∗ ∗ Π33 0 0 0 0 0 0

∗ ∗ ∗ −B
�XB
2

0 0 0 0 0

∗ ∗ ∗ ∗ −T1 0 0 0 0
∗ ∗ ∗ ∗ ∗ −T2 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −B
�XB
2

0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −T3 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 −T4

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

< 0, (4.1)

where Π11 = E�X(A + BK) + (A + BK)�XE + Q1 + Q2 +N�
A(T1 + T3 + T5)NA +N�

ET6NE, Π12 =
−(A + BK)�XC,Π13 = E�XAd+N�

Ed
T4NEd ,Π22 = −Q1+N�

AT2NA,Π33 = −(1−hD)Q1+N�
Ad
(T1+

T3 + T5)NAd
+N�

Ed
T4NEd ,

[
−X XM
∗ −T6

]

< 0, (4.2)

⎡

⎣−
X

2
XM

∗ −T5

⎤

⎦ < 0, (4.3)

then the uncertain time delay system of the form (2.1) with the switching surface (3.1) is robustly
stochastically stable and sliding mode matrix D = B�X. In the above LMIs, T takes the form ofNlN

T
l

forNl ∈ Σl.

Proof. Choose a Lyapunov functional candidate V (x(t), t) as

V
(
xt
)
=
(
Ixt
)�(t)P

(
Ixt
)
+
∫ t

t−τ
x�(s)Q1x(s)ds +

∫ t

t−h(t)
x�(s)Q2x(s)ds. (4.4)

Then, the averaged derivative is given by the following expression:

LV
(
xt
)
= 2
[
Ex(t) − Cx(t − τ)]�X[(A + BK + ΔA(t) − B(DB)−1DΔA(t)

)
x(t)

+
(
Ad + ΔAd(t) − B(DB)−1DΔAd(t)

)
x(t − h(t))]

+
[
ΔE(t)x(t) + ΔEd(t)x(t − h(t))

]�
P
[
ΔE(t)x(t) + ΔEd(t)x(t − h(t))

]

+ x�(t)Q1x(t) − x�(t − τ)Q1x(t − τ) + x�(t)Q2x(t)

− (1− Δ
h (t))x�(t − h(t))Q2x(t − h(t)).

(4.5)
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Using Lemma 2.1, inequality (4.2) is equivalent to

X−1 −MT−1
6 M� > 0. (4.6)

Hence, it follows from Lemma 2.3 that
[
ΔE(t)x(t) + ΔEd(t)x(t − h(t))

]�
X
[
ΔE(t)x(t) + ΔEd(t)x(t − h(t))

]

=
{
MF3(t)

[
NEx(t) +NEdx(t − h(t))

]}�
X
{
MF3(t)

[
NEx(t) +NEdx(t − h(t))

]}

≤ [NEx(t) +NEdx(t − h(t))
]�
T6
[
NEx(t) +NEdx(t − h(t))

]

= x�(t)N�
ET6NEx(t) + x�(t)N�

ET6NEdx(t − h(t)) + x�(t − h(t))N�
Ed
T6NEx(t)

+ x�(t − h(t))N�
Ed
T6NEdx(t − h(t)).

(4.7)

Note that D = B�X, and it follows form Lemma 2.4 that

− 2x�(t)E�XB(DB)−1DΔA(t)x(t) ≤ x�[E�XB
(
B�XB

)−1
B�XE + ΔA�(t)XΔA(t)

]
x(t),

− 2x�(t)E�XB(DB)−1DΔAd(t)x(t − h(t))
≤ x�E�XB

(
B�XB

)−1
B�XEx(t) + x�(t − h(t))ΔA�

d(t)XΔAd(t)x(t − h(t)),
2x�(t − τ)C�XB(DB)−1DΔA(t)x(t)

≤ x�(t − τ)C�XB(B�XB)
−1
B�XCx(t − τ) + x�(t)ΔA�(t)XΔA(t)x(t),

2x�(t − τ)C�XB(DB)−1DΔAd(t)x(t − h(t))
≤ x�(t − τ)C�XB

(
B�XB

)−1
B�XCx(t − τ) + x�(t − h(t))ΔA�

d(t)XΔAd(t)x(t − h(t)).
(4.8)

Substituting (4.7) and (4.8) into (4.5), we obtain

LV (x(t)) ≤ X�(t)ΞX(t), (4.9)

where Ξ = Ξ1+M1F1(t)N1+N�
1F1(t)M�

1 +M1F2(t)N2+N�
2F2(t)M�

1 +M2F1(t)N1+N�
1F1(t)M�

2 +
M2F2(t)N2 +N�

2F2(t)M�
2 , X = [x�(t), x�(t − τ), x�(t − h(t))]�,

Ξ1 =

⎡

⎢⎢
⎣

Ξ11 −(A + BK)�XC E�XAd +N�
Ed
T6NEd

∗ Ξ22 −C�XAd

∗ ∗ Ξ33

⎤

⎥⎥
⎦ ,

Ξ11 = E�X(A + BK) + (A + BK)�XE +N�
ET6NE + 2ΔA�(t)XΔA(t) +Q1 +Q2

+ 2E�XB
(
B�XB

)−1
B�XE,

Ξ22 = −Q1 + 2C�XB
(
B�XB

)−1
B�XC,

Ξ33 = −(1 − hD
)
Q2 + 2ΔA�

d(t)XΔAd(t) +N�
Ed
T6NEd,

M1 =

⎡

⎣
E�XM

0
0

⎤

⎦ , M2 =

⎡

⎣
0

−C�XM
0

⎤

⎦ , N1 =
[
NA 0 0

]
, N2 =

[
0 0 NAd

]
.

(4.10)
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Using Lemmas 2.1 and 2.2, we have

Ξ ≤ Ξ′

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Ξ′
11 Π12 Π13 E�XB E�XM E�XM 0 0 0 0 0

∗ Π22 −C�XAd 0 0 0 C�XB C�XM C�XM 0 0

∗ ∗ Ξ′
33 0 0 0 0 0 0 0 0

∗ ∗ ∗ −B
�XB
2

0 0 0 0 0 0 0

∗ ∗ ∗ ∗ −T1 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ −T2 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −B
�XB
2

0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −T3 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −T4 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −X
2

0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 −X
2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

+M3F(t)N3 +N�
3F

�
(t)MT

3 ,

Ξ′
11 = E

�X(A + BK) + (A + BK)�XE +Q1 +Q2 +N�
A

(
T1 + T3

)
NA +N�

ET6NE,

Ξ′
33 = −(1 − hD

)
Q1 +NAd

(
T2 + T4

)
NAd

+N�
Ed
T6NEd,

M3 =

[
NA 0 0 0 0 0 0 0 0 0 0

0 0 NAd
0 0 0 0 0 0 0 0

]�
, F(t) =

[
F�
1 (t) 0

0 F�
2 (t)

]

,

N3 =

⎡

⎣
0 0 0 0 0 0 0 0 0 M�X 0

0 0 0 0 0 0 0 0 0 0 M�X

⎤

⎦ .

(4.11)

With Lemma 2.1, we can see that Ξ′ < 0 is equivalent to LMIs (4.1)–(4.3).
According to Itô’s formula, system (2.1) is robustly stochastically stable. This completes

the proof.

5. Sliding mode control

We now design an SMC law such that the reachability of the specified switching surface is
ensured.

Theorem 5.1. Consider the uncertain stochastic time delay system (2.1). Suppose that the switching
function is given as (3.1) with D = B�X, where X is the solution of LMIs (4.1)–(4.3). Then the
reachability of the sliding surface s(t) = 0 can be guaranteed by the following SMC law:

u(t) = Kx(t) − ρ(t)sgn(s(t)), (5.1)
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where the switching gain ρ(t) is given as

ρ(t) = λ +
∥∥(DB)−1DM

∥∥ × (∥∥NAx(t)
∥∥ +
∥∥NAd

x(t − h(t))∥∥) (5.2)

with λ > 0.

Proof. A Lyapunov functional candidate V (t) is defined as

V (t) =
1
2
S�(t)(DB)−1S(t). (5.3)

Hence we have
Δ
V (t) = S�(t)(DB)−1

Δ
S (t)

= S�(t)(DB)−1D
[
ΔA(t)x(t) + ΔAd(t)x(t − h(t)) − Bρ(t) sgn (s(t))

]

≤ ∥∥S(t)∥∥∥∥(DB)−1DM∥∥ × (∥∥NAx(t)
∥∥ +
∥∥NAd

x(t − h(t))∥∥) − ρ(t)∥∥S(t)∥∥

≤ −λ∥∥S(t)∥∥ < 0 for
∥∥S(t)

∥∥/= 0.

(5.4)

This completes the proof.

6. An illustrative example

Consider neutral stochastic systems (2.1) with

A =

[
2.3 1.2
2 3.4

]

, B =

[
1 0
0 1

]

, C =

[
0.1 0.3
0 0.1

]

,

M =

[
0.2 0
0.3 −0.01

]

, E = I, Ad =

[
0.5 0
0.2 0.3

]

,

NA =

[
0.1 0
0.1 0.2

]

, NAd
=

[
−0.1 0
0.3 0.3

]

, NE =

[
0.4 0

−0.01 0.4

]

,

NEd =

[
0.21 0
0.1 −0.1

]

, h(t) = 0.1 sin t.

(6.1)

We select matrix K = [ −11.3000 −1.2000
−2.0000 −12.4000 ]. Using Matlab LMI control toolbox to solve the LMIs

(4.1)–(4.3), we obtain the following:

X =

[
0.1752 −0.0038
−0.0038 0.1985

]

, Q1 =

[
1.1255 −0.0186
−0.0186 1.2138

]

, Q2 =

[
1.0613 −0.0605
−0.0605 1.2145

]

,

T1 =

[
1.1670 0.0001
0.0001 1.1623

]

, T2 =

[
1.1661 −0.0007
−0.0007 1.1652

]

, T3 =

[
1.1670 0.0001
0.0001 1.1623

]

,

T4 =

[
1.1647 0.0025
0.0025 1.1700

]

, T5 =

[
1.1670 0.0001
0.0001 1.1623

]

, T6 =

[
1.1580 −0.0046
−0.0046 1.1705

]

.

(6.2)
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7. Conclusions

In this paper, we have investigated the sliding mode control problem for uncertain stochastic
neutral systems with multiple delays. The stability criteria are expressed by means of LMIs,
which can be readily tested by some standard numerical packages. Therefore, the developed
result is practical.
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