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This paper focuses on the suboptimization of a class of multivariable discrete-time bilinear systems
consisting of interconnected bilinear subsystems with respect to a linear quadratic optimal regula-
tion criterion which involves the use of state weighting terms only. Conditions which ensure the
controllability of the overall system are given as a previous requirement for optimization. Three
transformations of variables are made on the system equations in order to implement the scheme
on an equivalent linear system. This leads to an equivalent representation of the used quadratic
performance index that involves the appearance of quadratic weighting terms related to both trans-
formed input and state variables. In this way, a Riccati-matrix sequence, allowing the synthesis of a
standard feedback control law, is obtained. Finally, the proposed control scheme is tested on realistic
examples.
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1. Introduction

Dynamic bilinear systems have received great attention by researchers in the last decades, from
the classical works of Anderson and Moore [1], Feldbaum [2], Tarn [3], or Tarn et al. [4], to the
recent works of Al-Baiyat [5], Kotta et al. [6] or Garrido et al. [7]. They form a transitional class
between the linear and the general nonlinear systems. The importance of such systems is well-
known in diverse areas in which bilinear systems appear naturally for a variety of dynamic
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processes such as those taking place in electrical systems [8], industrial processes [9], power
plants [10], chemical processes [11], nuclear fusion [12], biomedical applications [13], informa-
tion management [14], mechanical systems [15], and aerospace and avionics [16]. which can
not be satisfactorily modeled under the assumption of linearity. On the other hand, the design
of controllers for bilinear systems has been an area of major research during the recent years.
This growing interest in practical applications requires the development of suitable algorithms
for control problems associated with bilinear systems. Many of the results obtained rely on the
optimization theory with an appropriate performance index, as it is the case of the proposed
control scheme.

Well-known works as Goka et al. [17] and Tarn et al. [18] stated the controllability con-
ditions for standard classes of discrete bilinear systems. In the first paper, an equivalent system
description was derived with the equivalent input being dependent on the products of the state
and the original input. Since the equivalent feed-forward loop is of a linear nature, the analysis
becomes greatly simplified. In the second paper, the uniform controllability of such systems
using bounded input was studied. On the other hand, it is well known that the systems are
often interconnected and, in many cases, several dynamic subsystems can be distinguished
for analysis purposes. This sometimes takes place in computer communication, transportation
networks, control and power stations, and so on. There exists important literature dealing with
both the associate multivariable and the large-scale problems [19–25]. For instance, standard
adaptive control techniques were applied in [26] to compensate the undesirable deviations
of the process parameters from their nominal values, being the overall process modeled as a
bilinear system prior to the application of the adaptive scheme.

This paper reports suboptimal optimization techniques which are applied to bilinear
models. Such models can be considered as direct extensions to the linear continuous intercon-
nected systems stated by the work of Ramakrishna and Viswanadham [27]. A class of invariant
discrete-time multivariable bilinear systems with interconnection subsystems is studied. First,
the system is shown to be equivalently described by the linear feed-forward multivariable
structure with multiplicative inputs including a deterministic disturbance vector. Also, other
interpretations are stated. As a previous requirement for optimization, controllability results
for the overall systems performance are given by extending those ones given in [17, 18, 27–31].
This is achieved through the above equivalent linear system with the use of centralized control
methods. A central coordinator is supposed to be available for the local controllers to supply
information to each control station from the remaining ones. That control technique is applied
to the optimization of the aforementioned system class. The used performance index involves
state-weighting terms only. An explicit solution of Riccati type (which is unusual for such an
optimization criterion) is found out as the suboptimal solution by using manipulations on the
input/state variables of the problem statement [1, 32]. The importance of this strategy arises
from problems where constrains on the input rather than input weights are introduced in the
optimization criterion, what leads to a feedback-type control law.

The paper is organized as follows. In Section 2, the problem statement for the class of the
interconnected invariant discrete-time bilinear systems is given. Also, controllability necessary
conditions obtained by the decomposition techniques are studied. Section 3 is devoted to the
development of suboptimal strategies for the regulation criterion, which involves quadratic
terms of the state variables. Three transformations of variables are used to turn the loss function
into another one, which involves state and input quadratic terms leading to a Riccati-type sub-
optimal solution. The control strategies may be considered as extensions of those ones used in
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[1, 29] or [25], for the linear continuous problem. The formulation is accomplished from a cen-
tralized viewpoint. In Section 4, two simulated examples are presented. The first one consists
of a simulated numerical example; and the second one consists of a real regulation problem of
two amplidynes acting on a DC-motor. In the second example, it is not necessary to consider
constant current or voltage as it is usual in DC-motor control, with their product—namely, the
electric par—a bilinear term describing the resulting dynamical system. Finally, conclusions
end the paper. Appendix A is related to the meaning explanation of certain equivalent inter-
pretations of the overall system structure. Appendix B concerns with the development of the
transformations of variables involved in the redefinition of the performance index. By conve-
nience, equations and results from the appendices are sometimes invoked in the main body of
the paper order not to repeat mathematical material.

2. On the system structure and its controllability properties

2.1. Controllability of a class of bilinear systems

In [17], the following typical class of bilinear systems was considered:

x(k + 1) = [A + u(k)B]x(k) + Cu(k); k = 0, 1, 2, . . . , x(·) ∈ Rn; u(·) ∈ R. (2.1)

Equation (2.1) can equivalently be described, if rank (B,C) = 1 and then rank (B) = 1 if C and
h are both nonzero, with B = ChT (C, h being unique n-vectors within a scalar factor), by the
linear feed-forward system with multiplicative input:

x(k + 1) = Ax(k) + Cν(k); ν(k) ≡

⎧
⎨

⎩

u(k)hTx(k); if C = 0,

u(k)
[
hTx(k) + 1

]
; if C /= 0

(2.2)

with k = 0, 1, 2, . . . ; and where x(k) and u(k) are the state and the control at time k, respectively;
and A and B are real constant coefficient matrices of compatible dimensions.

Note that for arbitrary ranks of B or (B,C) in (2.1), the decomposition B =
∑p

i=1eib
T
i can

be used, with ei and bTi being, respectively, the ith unity vector (i.e., the ith component is unity
and the remaining ones are zero) and the ith row vector of B. The controllability of the bilinear
system was related in that paper to that of the linear system (2.2) as follows.

Theorem 2.1 (summary of results in [17]). For the equivalent systems (2.1)-(2.2), the following
controllability results hold.

(i) If the bilinear system (2.1) is controllable, then the pair (A,C) in (2.2) is controllable.

(ii) If (AT, h) is not controllable, then the homogeneous bilinear system is not controllable.

(iii) If (A,C) and (AT, h) are both controllable pairs and if hTC, hTA−1C /= 0, then the homoge-
nous bilinear system is controllable in Rn outside the origin.

(iv) The inhomogeneous bilinear system is not controllable in Rn if

(a) rank [controllability matrix of (AT, h)] = rank [controllability matrix of (AT, h);1]; (1 ≡
n-vector with every element being unity),
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(b)
∑n

i=1ai = 1, with a(·) being the elements of the last row of the A-matrix in the canonical
state-space representation of system (2.2).

(v) The inhomogeneous bilinear system is controllable in Rn, if (A,C) is a controllable pair, hTC,
hTA−1C /= 0, and at least one of the conditions (iv-a) or (iv-b) is not fulfilled.

Although these results are restricted to a special class of discrete bilinear systems, many natu-
ral discrete bilinear systems [10, 15, 33–35] do satisfy these assumptions. More general controllability
conditions for bilinear systems can be found in [18, 36].

Remark 2.2. More general results were derived in [30] for the case in which A−1 does not
exist. Such a paper studies the controllability conditions for three cases of violation of
the conditions given in [37] (namely, (A,C) and (AT, h) are controllable pairs and k0 =
g.c.d{i/hTAi−1C /= 0, 0 < i ≤ n2} = 1) (g.c.d denotes the greatest common divisor). Such cases
include the following:

(a) rank �(A,C) = n, rank Ω(hT ,A) < n;

(b) rank �(A,C) < n, rank Ω(hT ,A) = n; and

(c) rank �(A;C) < n, rank Ω(hT ,A) < n,with �(A,C) ≡ [C,AC, . . . , An−1C] and Ω(hT ,A) ≡
[h,ATh, . . . , A(n−1)Th]T .

2.2. Models for a class of bilinear systems with interconnected subsystems

In this paper, the following multivariable invariant discrete-time structure of bilinear systems
(Si) of homogeneous type is considered

Si : xi(k + 1) =
[
Ai + ui(k)Bi

]
xi(k) +Dizi(k), (2.3)

yi(k) = Cixi(k); i ∈ I; I = {1, 2, . . . , p}; k = 0, 1, 2, . . . (2.4)

with the interconnection bilinear subsystems (Hi), which include linear and bilinear coupling
terms, given by

Hi : zi(k + 1) =
[
Mi + ui(k)Pi

]
zi(k) +

p∑

j=1

[
Lij + ui(k)Mij

]
yj(k); i ∈ I; k = 0, 1, 2, . . . , (2.5)

where xi(k) ∈ Rni, zi(k) ∈ Rai , yi(k) ∈ Rri , ui(k) ∈ R are, respectively, the state vector of the
Si-subsystems, the state vectors of the interaction Hi-subsystems, the corresponding output
and input vectors at time k, and the different coefficient matrices of appropriate dimensions
(see Figure 1).

The linear continuous models of [27] for Figure 1 are more general than those ones above
since additional measurements from the interconnection subsystems are used to generate the
inputs to the plant. Structures of this type arise from practical systems such as countercurrent
heat exchangers having weak nonlinearities modeled as bilinear.

Now, the extended state vector of the overall system is defined as

x(k) ≡
[
xT

1 (k), x
T
2 (k), . . . , x

T
p (k)

] T ∈ Rn+a, where xi(k) ≡
[
xTi (k), z

iT(k)
] T ∈ Rni+ai , (2.6)
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Figure 1: The class of multivariable discrete invariant-time bilinear subsystems with the interaction bilinear
subsystems.

all i ∈ I with n ≡
∑p

j=1nj, a ≡
∑p

j=1aj, and the extended output vector is defined as y(k) ≡
[yT1 (k), y

T
2 (k), . . . , y

T
p (k)]

T ∈ Rr, with r ≡
∑p

j=1rj . Thus, the following multivariable structure,
equivalent to (2.3)–(2.5), is deduced:

x(k + 1) = Ax(k) +
p∑

i=1

ui(k)Bi x(k); k = 0, 1, 2, 3, . . . , (2.7)

y(k) = Cx(k); k = 0, 1, 2, 3, . . . , (2.8)

where the matrices of parameters have the following structures:

A =
[
A

T

1 , A
T

2 , . . . , A
T

p

]T
; Ai =

[
Ai1, Ai2, . . . , Aii, . . . , Aip

]

Aii =

[
Ai Di

LiiCi Mi

]

Aij =

[
0 0

LijCj 0

]

(for j /= i)

Bi =
[
0
i − 1
︸︷︷︸, . . ., 0, B̃ T

i , 0
p − 1
︸︷︷︸, . . . , 0

] T
; B̃i =

[
B̃i1, B̃i2, . . . , B̃ip

]

B̃ii =

[
Bi 0

MiiCi Pi

]

B̃ij =

[
0 0

MijCj 0

]

(for j /= i)

C =
[
C
T

1 , C
T

2 , . . . , C
T

p

]
; Ci =

[
0
i − 1
︸︷︷︸, . . . , 0, Ci, 0, 0

p − 1
︸︷︷︸, . . . , 0

]

(2.9)

for all j, i ∈ I.

Remark 2.3. In general, the number of subsystems S(·) and the number of interaction subsys-
tems H(·) are not equal. Thus, assume that p1 and p2 (p1 /= p2) are, respectively, the number
of subsystems St, t ∈ I1 = {1, 2, 3, . . . , p1}, and the number of subsystems Hs, s ∈ I2 =
{1, 2, . . . , p2}. Then, an extended state vector ξ(·) can be obtained similarly, if p = max(p1 p2)
and I = I1UI2.

Taking into account the dimensions and the structural zeros of the Bi-matrices, they can
be decomposed into a sum of dyads as

Bi =
ni+ai∑

j=1

ej+li−1b
T

j+li−1(i); for all i ∈ I, (2.10)



6 Mathematical Problems in Engineering

where ej is the unity jth vector, b
T

j (i) is the jth vector of the Bi-matrix, i ∈ I, and the lower sub-

scripts 1j , all j ∈ I, are related to the first nonstructural zero rows of the Bi-matrix. If they have
additional (nonstructural) rows being zero, the corresponding e(·)-vectors can be neglected in
(2.10). From (2.7), it is clear that the rows of the Bi-matrices have the following structures:

b
T

j (i) ≡

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ (i−1) block
︷ ︸︸ ︷
0, . . . , 0 , e T

j−li+1Bi,

(p−i) blocks
︷ ︸︸ ︷
0, . . . , 0

]

; if 1i ≤ j < 1i + ni,

[ (i−1)blocks
︷ ︸︸ ︷

e Tj−li−ni+1Mi1C1, 0, . . . , e Tj−li.ni+1Mi(i−1)Ci−1, 0, e Tj−li−ni+1Pi,

(p−1)blocks
︷ ︸︸ ︷

e Tj−li−ni+1Mi(i+1)Ci+1, 0, . . . , e Tj−li−ni+1MipCi, 0

]

; if li + nii ≤ j < 1i + ni + ai,

(2.11)

for all i ∈ I. Then one deduces from (2.11) that

b
T

j+1i−1(i)x ≡

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

bTj (i)xi(k); if 1 ≤ j ≤ ni,

pTj−ni(i)zi(k) +
p∑

l=1

mT
j−ni+1yl(k); if ni + 1 ≤ j ≤ ni + ai,

0; if ni + ai + 1 ≤ j ≤ n + a,

(2.12)

with k = 0, 1, 2, 3, . . ., when bTj (i), p
T
j (i), m

T
j (i, 1) denote, respectively, the jth vector row of the

matrices Bi, Pi, and Mi, for all I, 1 ∈ I. From (2.7) through (2.12) one obtains

x(k + 1) = Ax(k) +
p∑

i=1

ni+ae∑

j=1

ej+li−1νji(k); k = 0, 1, 2, . . . , (2.13)

where the sequences of scalars νji(k) are defined by

νji(k) ≡

⎧
⎪⎪⎨

⎪⎪⎩

ui(k)bTj (i)xi(k); if 1 ≤ j ≤ ni,

ui(k)
[

pTj−ni(i)zi(k) +
p∑

l=1

mT
j−ni(i, l)y1(k)

]

; if ni + 1 ≤ j ≤ ni + ai,
(2.14)

for all i ∈ I, k = 0, 1, 2, . . . , are considered as equivalent (primary) inputs for the equivalent
linear systems (2.13) to be determined prior to the generation of the u(·)(·)-sequence in the
design implementation.

2.3. Obtaining the ui(k)-sequences from the γji(k)-sequences

Equations (2.13) and (2.14) constitute a feed-forward linear equivalent system with multiplica-
tive inputs. But the p ui(k)-inputs cannot, in general, be determined from the (n+a) > p equiv-
alent νji(k)-inputs. Then, it is necessary to take a set of p variables between the last ones, which
will be optimized independently. Let us call νji(k), all i ∈ I. Thus, let us define the sets

Ni =N−
i UN

+
i , N−

i =
{

1, 2, . . . , ni
}
, N+

i =
{
ni + 1, ni + 2, . . . , ni + ai

}
, all i ∈ I, (2.15)
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such that for the kth current sampling instant,

bTji (i)xi(k) /= 0, if xi(k) /= 0, if ji ∈N−
i ,

pTji−ni(i)zi(k) +
p∑

l=1

mT
ji−ni(i, l)yi(k) /= 0, if ji ∈N+

i ,
(2.16)

and k = 0, 1, 2, . . . .
Then from (2.14), one has the auxiliary inputs

νji(k) ≡

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
bTji (i)xi(k)

]−i
bTj (i)xi(k)νji(k); j ∈N−

i ; i ∈ I,
[

pTji−ni(i)zi(k) +
p∑

l=1

mT
ji−ni(i, l)y1(k)

]−1

×
[

pTj−ni(i)zi(k) +
p∑

l=1

mT
j−ni(i, l)y1(k)νji(k)

]

, j ∈N+
i ; i ∈ I; k = 0, 1, 2, 3, . . . ,

(2.17)

with the real inputs for the nonsaturated case being

ui(k) ≡

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
bTji (i)xi(k)

]−1
νji(k); if ji ∈Ni, if there exists some ji ∈N−

i

such that bTji (i)xi(k) /= 0,
[

pTji−ni(i)zi(k)

+
p∑

l=1

mT
ji−ni(i, l)yi(k)

]−1

νji(k); if ji ∈Ni, if there exists some ji ∈N+
i

such that pTji−ni(i)zi(k) +
p∑

l=1

mT
ji−ni(i, l)y1(k) /= 0,

0; if bTji (i)xi(k) = 0 for all ji ∈N−
i

and also pTji−ni(i)zi(k) +
p∑

l=1

mT
ji−ni(i, l)y1(k) = 0

for all ji ∈N+
i , all i ∈ I; k = 0, 1, 2, 3, . . . .

(2.18)

Remark 2.4. Note that the minimum energy control (i.e., ui(·) = 0, some i ∈ I) has been chosen
when the system becomes insensitive to the corresponding control component. In fact, any
arbitrary control could be applied.

Remark 2.5. Since there are (n + a) equivalent inputs, deals with an over determined problem
when the p < n + a inputs are solved from them. Their solution cannot generally be satisfied
exactly, and there exist many possible ways of defining the “best” approximate solution if there
are p < s ≤ n+a equivalent nonzero inputs. Also, note that the decomposition of the Bi-matrices
(here, into a sum of dyads, as shown in (2.10)) is not unique. Then, the least-squares technique
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(which is known to give the best approximation) can be considered by taking into account the
overall control term in (2.13) instead of the control itself. Namely,

ui(k) ≡

⎧
⎪⎪⎨

⎪⎪⎩

ν Ti (k)Bix(k)

xT(k)B
T

i Bix(k)
; if Bix(k) /= 0,

0, otherwise,

all i ∈ I; k = 0, 1, 2, 3, . . . , (2.19)

where

νi(k) ≡

⎡

⎢
⎢
⎣

∑i−1
j=1(nj+aj) zeros
︷ ︸︸ ︷
0, . . . , 0, νli(k), . . . , νni,i(k), νni+1,i(k), . . . , νni+ai,i(k),

∑p

j=i+1(nj+aj) zeros
︷ ︸︸ ︷
0, . . . , 0

⎤

⎥
⎥
⎦

T

∈ Rn+a,

all i ∈ I; k = 0, 1, 2, 3, . . . .
(2.20)

Note that in general, the (k) vector has only nonzero components. Equation (2.19) can
be rewritten as

ui(k) ≡

⎡

⎣
ni+ai∑

j=1

{

bTj (i)xi(k)δj(i) +
[

pTj−ni0(i)zi(k) +
p∑

l=1

mT
j−ni(i, l)y1(k)

]

δj(i)

}2
⎤

⎦

−1

×

⎡

⎣
ni+ai∑

j=1

νji(k)

{

bTj (i)xi(k)δj(i) +
[

pTj−ni(i)zi(k) +
p∑

l=1

mT
j−ni(i, l)y1(k)

]

δj(i)

}⎤

⎦ ,

(2.21)

where δ(i) ≡ 1 − δj(i),with δj(i) = 1 if 1 ≤ j ≤ n and 0, if ni + 1 ≤ j ≤ ni + ai all i ∈ I; k =
0, 1, 2, . . . .

2.4. Two alternative interpretation schemes of the equivalent linear system

Equation (2.18) leads to the following equivalences to the linear system (2.13):

x(k + 1) = Ax(k) +
p∑

i=1

cj+li−1(k)νji(k) (2.22)

= Ax(k) +
p∑

i=1

ej+li−1νji(k) + ξ(k), (2.23)

where the (n + a)-vectors c(·)(·) and ξ(·) are defined in Appendix A.
Equations (2.22)-(2.23) provide two alternative interpretations of (2.13). Representation

(2.22) involves an extended state-dependent control vector, while (2.23) includes a known de-
terministic input-dependent vector. These equivalent representations will lead to two different
suboptimal control designs in the next section.
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2.5. Controllability of the bilinear system with interconnections

The controllability outside the origin of the bilinear system (2.3)–(2.5) can be studied by split-
ting the problem as follows:

(i) controllability of the feed-forward linear system,

(ii) capability of the u(·)(·)-sequences of actually acting upon the equivalent ν(·)(·)-
sequences.

The following result on controllability conditions is useful as a previous requirement
for optimization.

Theorem 2.6 (controllability of the bilinear system involving interconnections). Controllability
of the bilinear system (2.3)–(2.5) is ensured on an interval [k′, k′′] ∩ R+, k′′ = k′ + max1≤i≤p(ni + ai),
if the following set of conditions holds.

(i) The controllability grammian of the overall system is positive definite in [k′, k′′].

(ii) max[rank (
∑p

l=1Ms1C1)] ≥ max[rank (LijCj)] with 1 ≤ s ≤ p, 1 ≤ i ≤ p and 1 ≤ j ≤ p.

(iii) All the pairs of block diagram, [(AT
i ,M

T
i ), B̃i], i ∈ I, are nonsingular.

(iv) (b∗Tji (i)C
∗
i (k) /= 0, b∗Tji (i) diagram (A−1

i ,M
−1
i )C∗i (k) /= 0, all i ∈ I, all k′ ≤ k ≤ k′′, where

C∗(·) and b
∗
(·) are, respectively, the subvectors of the matrices C(·) and B(·) in (2.3)-(2.4) asso-

ciated with each subsystem S(·).

Sketch of the proof

Since the pair [A + B(·)G(·), B(·)] is controllable for all arbitrary matrix G(·) if the pair [A,B(·)] is
controllable [29, 38], then the controllability of the pair [Ad, B(·)] implies the controllability of
the pair [Ad+A◦, B(·)], if there exists aG(·)-matrix such thatA◦ = B(·)G(·) withA◦ = A−Ad,Ad =
block diagram ((A1,M1), (A2,M2), . . . , (Ap,Mp)). For the equality above relating A◦, B(·), and
G(·) to hold, the Rouché-Fröbenius theorem implies that condition (ii) must be fulfilled ac-
cording to (2.9) and (2.11). Also, since controllability grammian of [Ad, B(·)] on [k′, k′′] ≡ block
diagram controllability grammian [[block diagram (A1,M1), B̃1],[block diagram (A2,M2), B̃2],
. . ., [block diagram (Ap,Mp), B̃p]], which is positive if proposition (i) holds. This proves suf-
ficiency of (i)-(ii) versus controllability of the equivalent feed-forward system. Propositions
(iii)-(iv) ensure from Theorem 2.1 that controllability of the equivalent linear system implies
controllability of the system (2.3)-(2.4) by allowing the determination of the scalars ui(·) from
νji(·), i ∈ I, in order to drive each subsystem Si from an arbitrary initial point to a predefined
final state.

Remark 2.7. (2.5.1) If condition (iv) is such that the matrices A−1
i and M−1

i , some i ∈ I, the same
extensions referenced in Theorem 2.1(iii) are applicable (namely, see Remark 2.2).

(2.5.2) Theorem 2.6(iv) ensures the existence of an admissible control sequence which
leads to the system outside the hyperplane of b∗

T

li+ji−1(i)xi(k) /= 0 of insensitivity of the subsys-
tem Si to the ui(·)-control [17, 28]. A weak additive signal can be added to the right-hand side
of (2.3) at the kth sample in case of the failure of condition (iv) in Theorem 2.6 at the next step.
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3. Optimization techniques

In this section, a regulation criterion which involves quadratic weighting terms in the state
variables is given [1, 39]. The loss function used is

JN =
1
2

N∑

k=0

xT(k)Q(k)x(k); Q(·) = Q
T
(·) ≥ 0 ; N <∞, (3.1)

where “≥ 0” denotes positive semidefiniteness. The reason of choosing a finite-time horizon N
is then seen from a practical context viewpoint.

In the sequel, the various inverse matrices which take place are assumed to exist. Because
of their structures, this hypothesis is not strong.

3.1. Centralized control

The overall system comprises subsystems, which are interconnected, and the implementation
design must deal with the interactions that exist. Centralized control techniques are used for
optimization. In the centralized approach, contrarily to the decentralized case [19, 27, 40], a
central coordinator exists to take into account the interactions; namely, the coordinator is sup-
posed to be available to the local controller to supply information to each control station from
the remaining ones.

The philosophy involved is to define transformed state and input variables, which al-
lows the redefinition of the loss function including quadratic terms of the redefined state and
input variables. The idea of using transformations of variables was first pointed out in [1]
for the linear continuous case. Its major interest appears in the case of constrained input se-
quences because, despite this fact, a recursive Riccati expression can be found leading to the
optimal feedback solution. Thus, three transformations of variables are made on the equivalent
feed-forward linear system of (2.22) (subsequently (2.23) will be invoked) to redefine the state
vector equation of standard type (see (B.2) in Appendix B); that is,

f(k + 1) = A
(3)
(k) f(k) + C(3)(k)ν(3)(k); k = 0, 1, 2, . . . . (3.2)

On the other hand, such transformations are applied to the loss function (3.1) to obtain a stan-
dard performance index on a given planning horizon

JN =
1
2

N∑

k=0

[
fT(k)Q

(3)
(k)f(k) + ν(3)

T

(k)R
(3)
(k)ν(3)(k)

]
; N <∞. (3.3)

The necessary manipulation on the (2.22)–(3.1) to derive the (3.2)-(3.3) is detailed in
Appendix B.

Now, since (3.3) is a quadratic criterion of standard type (i.e., it involves quadratic terms
in both the input and the state variables), a Riccati-matrix sequence may be found, which leads
to the optimal solution. The main optimization results are now summarized.
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Theorem 3.1 (optimization of the system equivalent inputs). Assume that Theorem 2.6 holds.
Then, the optimal equivalent input sequence for the equivalent feed-forward linear system with respect
to the loss function (3.1) is given by the following expression:

ν∗ji(k) = ν
∗(3)
ji

(k + 1) −
[
CT
i (k)Q(k + 1)Ci(k)

]−1
CT
i (k)Q(k + 1)Ax(k)

− e Tji R
(3)−1

(k + 1)W
(2)T

(k + 1)Ax(k) ; i ∈ I; k = 0, 1, 2, . . . ,N,

(3.4)

where the optimal equivalent redefined input sequence is

ν
(3)∗
ji

(k + 1) = −eTji
[
R

(3)
(k + 1) + C(3)T (k + 1)P(k + 2)C(3)(k + 1)

]−1

× C(3)T (k + 1)P(k + 2)A
(3)
(k + 1)Ax(k); k = 0, 1, 2, . . . ,N

(3.5)

with P(·) being the recursive Riccati matrices; that is,

P(k) = Q
(3)
(k) +A

(3)
(k)P(k + 1)

×
{
I − C(3)(k)

[
R

(3)
(k) + C(3)(k)P(k + 1)C(3)(k)

]−1
C(3)(k)P(k + 1)

}
A

(3)
(k);

P(N) = Q
(3)
(N); k = 0, 1, . . . ,N.

(3.6)

Outline of the proof

It is obvious by direct substitution while dealing with the aforementioned optimization strate-
gies [1, 29, 38] applied to the feed-forward linear equivalent system of (2.22).

Corollary 3.2 (generation of the optimal input sequences). Under the same hypotheses as in
Theorem 3.1, consider the sequences of scalars

ui(k) ≡

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
bTji (i)xi(k)

]−1
ν∗ji(k); all j ∈Ni, if ji ∈N−

i ,
[

pTji−ni(i)zi(k)

+
p∑

l=1

mT
ji−ni(i, l)y1(k)

]−1

ν∗ji(k); all j ∈Ni, if ji ∈N+
i ,

0; if bTji (i)xi(k) = 0,

pTji−ni(i)zi(k) +
p∑

l=1

mT
ji−ni(i, l)y1(k) = 0

∀j ∈Ni; k = 0, 1, 2, . . . ,N
(3.7)

with ν∗ji(k), k = 0, 1, 2, . . . being the jith component of the optimal equivalent inputs obtained from
Theorem 3.1.



12 Mathematical Problems in Engineering

Then, the following propositions hold.

(a) The optimal input sequence with respect to the loss function (3.1) is u∗i (k) = ui(k), k =
0, 1, 2, . . . if the interval (−∞,∞) ⊂ R is allowed as input definition domain, all i ∈ I.

(b) If |ui(k)| ≤M <∞, all i ∈ I, then the optimal input sequence with respect to the loss function
(3.1) is u∗i = sat[ui(k)], all i ∈ I, k = 0, 1, 2, . . . ; where the saturation function is defined by

sat
[
g(x)

]
≡

⎧
⎨

⎩

M sgn
[
g(x)

]
; if

∣
∣g(x)

∣
∣ > M,

g(x); otherwise.
(3.8)

Proof. It follows from Theorem 3.1 and the fact that, from (3.7), propositions (a)-(b) in
Corollary 3.2 imply that u(·)(·) belongs to the boundary of its definition domain (and vice
versa), and the fact that the optimal Hamiltonian function associated with the loss function
(3.1) is a strictly convex function of the equivalent input sequence ν(·)(·).

Remark 3.3. (3.1.1) Note that the equivalent and the true input sequences are obtained in a
centralized way because of the coupling between the different Si through the states of the
remaining Sj, i, j ∈ I.

(3.1.2) Also, note that (2.7) can be rewritten as

x(k + 1) = Ax(k) +
p∑

j=1

Hj(k)uj(k) ; k = 0, 1, 2, . . . , (3.9)

where

Hi(k) ≡ Bix(k); all i ∈ I ; k = 0, 1, 2, . . . . (3.10)

By applying optimization techniques to (3.9), one could obtain, at first, an optimal u(·)(·)-
sequence. But this would be nonsense because the Riccati-matrix sequence would be depen-
dent on the future measurements of the state vector.

(3.1.3) Due to the structure of the c(·)-vectors which are state-dependent (see (A.1)) and
so unknown in advance, both the optimal equivalent and the true inputs cannot be determined
through Riccati-matrix sequence from the results in Theorem 3.1 and Corollary 3.2.

Suboptimal schemes are now presented which are alternative to the optimal one of
Theorem 3.1.

3.2. Centralized suboptimal schemes

3.2.1. Centralized suboptimal modified scheme 1

It consists of the following variations on the optimal scheme from Theorem 3.1 and Corollary
3.2:

(i) to use finite (sufficient small for the problem coherence) time-sliding optimization
horizons. Namely, the time horizon for optimization is one-step advanced when the
input is determined at each step. Only the first input associated with each optimiza-
tion horizon is in fact applied;

(ii) to approximate the C(·)(·)-vectors by their values by using each current value at the
first sample of each optimization horizon; that is, C(t) = C(k), all k ≤ t ≤ k +N; k =
0, 1, 2, . . . .
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3.2.2. Centralized suboptimal modified scheme 2

It is based on the application of (2.23) and (A.2) in Appendix A, by implementing the optimiza-
tion scheme while neglecting the dependence of ξ(·) on the ν(3)(·) (·)-optimal equivalent input se-
quence. This leads to a suboptimal Riccati-matrix sequence, which does not depend on the state
vector, and thus, implementable. The presence of the deterministic disturbance ξ(·) obliges
to use an additional vector (denoted by ρ(·)) in the optimization procedure in Theorem 3.1
in order to maintain a Riccati-type solution. The costate associated with the Hamiltonian of
the loss function (3.1) verifies the so-called “modified Riccati transformation” [26]; namely,
η(t) (costate) ≡ P(t)f(t)−ρ(t). Thus, by taking into account that now f(k) ≡ Ax(k−1)+ξ(k−1),
one finds out the following result instead of Theorem 3.1. See Appendix B for particular math-
ematical details.

Theorem 3.4 (optimization of the equivalent inputs for the system representation including a
deterministic disturbance). Under the same assumptions as in Theorem 3.1, it follows that the opti-
mal equivalent input sequence for the equivalent feed-forward linear representation involving a deter-
ministic disturbance with respect to the loss function (3.1) is given by

ν∗ji(k) = ν
(3)∗
ji

(k + 1) −
[
eTjiQ(k + 1)eji

]−1
eTjiQ(k + 1)

− e Tji R
(3)−1

(k + 1)W
(2)T

(k + 1)
[
Ax(k) + ξ(k)

]
; all i ∈ I; k = 0, 1, 2, . . . ,

(3.11)

where the optimal equivalent redefined input sequence is

ν
∗(3)
ji

(k) = eTji
[
R

(3)
(k) + C(3)T (k)P(k + 1)C(3)(k)

]−1
C(3)T (k)

×
[
ρ(k+1)−P(k+1)

{
A(3)(k)

[
Ax(k − 1)+ξ(k−1)

]
+ξ(k)

}]
; all i ∈ I; k = 1, 2, 3, . . . .

(3.12)

The recursive Riccati-matrix sequence is now given by

P(k) = Q
(3)
(k) +A

(3)
(k)

×
{
P(k+1)−P(k+1)C(3)(k)

[
R

(3)
(k)+C(3)T(k)P(k+1)C(3)(k)

]−1
C(3)(k)P(k+1)

}
A

(3)
(k);

P(N) = Q
(3)
(N); k = 0, 1, 2, . . . ,N,

(3.13)

ρ(k + 1) =
{
I +

[
Q

(3)
(k) − P(k)

]
A

(3)−1
(k)R

(3)−1
(k)C

(3)
(k)C

(3)T
(k)A

(3)−T
(k)

}

−A
(3)−T

(k)
{
ρ(k) +

[
P(k) −Q

(3)
(k)

]
A

(3)−1
(k)ξ(k)

}
;

ρ(N) = 0; k = 0, 1, 2, . . . ,N.

(3.14)

Proof (outline). It follows immediately from applying the three transformations of variables
of Appendix B to (2.23) and (A.2), and from the fact that f(k) ≡ Ax (k − 1) + ξ(k − 1), or
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equivalently

f(k + 1) = A
(3)
(k)f(k) + C(3)(k)ν(3)(k) + ξ(k); k = 0, 1, 2, . . . , (3.15)

and the fact that the C(3)(·) vectors are now

C(3)(k) = C(3) ≡
[
Aej1+l1−1, Aej2+l2−1, . . . , Aejp+lp−1

]
with k = 0, 1, 2, 3, . . . . (3.16)

Remark 3.5. (3.2.1) Note that Corollary 3.2 also applies here to obtain the optimal system input
sequence under constraints (see (3.7) and (3.8)).

(3.2.2) The ρ(·)-vector (related to the deterministic disturbance in the modified Riccati
transformation is dependent on the ν(3)(·)-sequence. To solve such a dependence, the ρ(k + 1)-
vector of (3.14) can be decomposed into

ρ(k + 1) = m(k)ρ(k) +M(k)ξ(k); k = 0, 1, 2, . . . , (3.17)

being M(·),M(·) ∈ R(n+a)x(n+a) matrices defined by

M(k) =
[
I +

[
Q

(3)
(k) − P(k)

]
A

(3)−1

(k)R
(3)−1

(k)C(3)(k)C(3)T (k)A
(3)−T

(k)
]−1; k = 0, 1, 2, 3, . . . ,

M(k) =
[
I +

[
Q

(3)
(k) − P(k)

]
A

(3)−1

(k)R
(3)−1

(k)C(3)(k)C(3)T (k)A
(3)−T

(k)
]−1

×A
(3)−T

(k)
[
P(k) −Q

(3)
(k)

]
A

(3)−1

(k); k = 0, 1, 2, 3, . . . .
(3.18)

Thus, the following result yields.

Corollary 3.6 (useful implementability result for obtaining the optimal equivalent input). If the
same assumptions from Theorem 3.4 are fulfilled, then the optimal equivalent input for the system inter-
pretation including a deterministic disturbance with respect to the loss function (3.1) can be rewritten
as follows (see (3.11)):

ν∗ji(k) =
{

1 + eTji
{ [

R
(3)
(k + 1) + C(3)T (k + 1)P(k + 2)C(3)(k + 1)

]−1
C(3)T (k+1)P(k+2)A

(3)
(k+1)

+ R
(3)−1

(k + 1)W
(2)
(k + 1)F(k+1) +

[
eTjiQ(k+1)eji

]−1}
ejiQ(k+1)F(k+1)

}−1

×
{
eTji
[
R

(3)
(k + 1) + C(3)T (k + 1)P(k + 2)C(3)(k + 1)

]−1
C(3)T (k + 1)

×
{[
M(k+1)−P(k+2)

]
ξ(k+1)+M(k+1)ρ(k+1)−P(k+2)A

(3)
(k+1)Ax(k)

}

−
[
eTjiQ(k + 1)eji

]−1
eTjiQ(k + 1)Ax(k)

− eTji R
(3)−1

(k + 1)W
(2)T

(k)Ax(k)
}

; all i ∈ I; k = 0, 1, 2, 3, . . . ,

(3.19)
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where the matrix F(·) ∈ R(n+a)×p is partitioned as

F(k) ≡
[
F1(k), F2(k), . . . , Fp(k)

]
; k = 0, 1, 2, 3, . . . . (3.20)

So that each vector Fi(k) ∈ Rn+a

Fi(k) ≡
p∑

i=1

ni+ai∑

j=1,j /= i

{

bTji−ni(i)xi(k)δji +

[

pTji−ni(i)zi(k) +
p∑

l=1

mT
ji−ni(i, l)y1(k)

]

δji

}−1

×
{

bTj−ni(i)xi(k)δji+

[

pTj−ni(i)zi(k)+
p∑

l=1

mT
j−ni(i, l)y1(k)

]

δji

}

; all i ∈ I, k = 0, 1, 2, . . . .

(3.21)

Proof (outline). Equation (3.19) can be obtained after direct calculations if (3.17) and (3.18) are
substituted into (3.11) while taking Remark 3.5 into account.

3.3. Considerations about implementation

The following remarks must be pointed out.

(1) The system implementation scheme, which has been reported in the paper, has ap-
peared to be suboptimal twice. First of all, the optimization scheme is dependent on
the state/input vectors (some estimates must be made) according to the two alter-
native interpretations of the feed-forward linear system (2.13). This fact is due to the
nature of the decomposition methods which have been applied and also due to the
over determination problem one must deal with when the system inputs are gener-
ated from the associate equivalent ones. The performance degradation (i.e., the op-
timality losses being inherent to the applied suboptimization procedures) could be
studied through direct calculations. However, the hypotheses that have been taken
into account allow the system implementation.

(2) In summary, the steps that the designer ought to follow in the implementation envi-
ronment are as follows:

(a) to set up a finite-time sliding optimization horizon, [k, k +N], 1 ≤ N < ∞, inte-
gers,

(b) to test the system controllability according to Theorem 2.6 and/or Corollary 3.2,
(c) to estimate the state vector (suboptimal modified scheme 1 of Section 3.2.1)

and the equivalent deterministic disturbance (suboptimal modified scheme 2 of
Section 3.2.2) on the optimization horizon [k, k + N]. To do that, the estimated
system is chosen from (3.2) as

f̂k+1 = ̂
A

(3)

1,k+1
̂
fk + Ĉ

(3)
1,kν

(3)
k−1,

f̂k+j =
̂
A

(3)

1,k+j f̂k+j−1 + Ĉ
(3)
k+j−1ν

(3)
k+j−1; j ∈ [2,N],

(3.22)
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and the equivalent input estimates become

ν̂
(3)
k
[k] = ν̂(3)

k−1[k − 1] = ν(3)
k−1, (3.23)

ν̂
(3)
k+j[k] = ν̂

(3)
k+j[k − 1]; all integer k /= j, j ∈ [1,N], (3.24)

ν̂
(3)
k+j[k] = 0; if k = j, (3.25)

(d) to compute the Riccati matrix from (3.6) or (3.13), respectively, and the system
matrices from (B.6) and (B.8) of Appendix B, or (B.8) and (3.16), respectively.

(e) to generate the suboptimal input sequence ν∗ji(k), all i ∈ I, k = 0, 1, 2, . . . from (3.4)
or (3.11), respectively.

(f) to obtain the suboptimal input sequence u∗i (k), all i ∈ I, k = 0, 1, 2, 3, . . . ,N, by
applying Corollary 3.2. One must have only input controls as inputs to the sys-
tem; namely, p inputs.

Remark 3.7. (3.3.1) Note that in (3.22)–(3.25), the following system representation is assumed
to be

fk+1 = A
(3)
k fk + C

(3)
k
ν
(3)
k

; k = 0, 1, 2, . . . (3.26)

instead of (3.2), and the subscript “1” in the matrices is related to the suboptimal modified
scheme 1. Similar expressions can be derived for the alternative interpretation scheme (3.15)
of Section 3.2.2.

(3.3.2) Also, note that such “fictitious” states must be estimated in order to later reupdate
the input sequence. In fact, only the ν(3)(k−1) equivalent input is applied in each optimization
horizon.

(3.3.3) The usual asymptotic stability tests via Lyapunov’s theorem (which is applied to
linear time-invariant optimal systems with respect to quadratic criteria) are not applicable
here because the system under study is neither invariant nor linear. Besides, standard sta-
bility proofs for optimal regulators cannot be applied to the optimal scheme, which has been
obtained because of its nonimplementability. The suboptimal modified schemes can lead to
instability (or at least stability can not be proved) when N → ∞ . But this fact does not af-
fect the system stability in the current context of this paper since a finite-time sliding for the
optimization horizon is used.

In particular, these circumstances make the implementation of a decentralized design
quite difficult because some links of the equivalent feed-forward system (2.13) are cut off.
However, stability can be ensured if A is a Hurwitz’s matrix and u(·) is a bounded sequence,
if a saturation type rule is applied when computing the optimal redefined equivalent inputs
ν
(3)
(·) (·) in the various schemes.
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Table 1: Matrix entries of the simulated system structure.

A1 ≡
[

1 − 0.1557T 0
0 1 − 0.1800T

]

; B1 ≡
[

0 0
−0.0189T 0

]

; D1 ≡
[

0 0 0 (−0.0557 + 0.0043T)T (−0.0557 + 0.0043T)T
0 0 0 0 0

]

M1 ≡
[

1 − 100.0000T 0
13.3333T 1 − 85.8333T

]

; P1 ≡
[

0 (80.0000 − 8000.0000T)T
0 1066.6640T

]

; L11 ≡
[

0 0
(−0.0062 + 0.5322T)T 0

]

M2 ≡

⎡

⎢
⎣

1 − 28.6145T 1950.3287T 35.7332T
1.9554T 1 − 231.1652T −4.1281T
0.0260T −0.0056T 1 + 0.1706T

⎤

⎥
⎦; L21 ≡

⎡

⎢
⎣

(35.7322 − 4536.9199T)T 0
(−4.1281 + 512.0844T)T 0
(−0.0056 + 0.0575T)T 0

⎤

⎥
⎦

M3 ≡
[

1 − 2.0000T 0
6.8570T 1 − 75.2380T

]

; L21 ≡
[

0 0
(−6.9022 + 44.5212T)T 0

]

4. Numerical simulation

4.1. Example 1

This first example implemented deals with the following ninth-order discrete model:

S1 : x1(k + 1) ≡
[
A1(T) + u1(k)B1(T)

]
x1(k) +D1(T)z1(k) ; u1 ∈ R,

y1(k) ≡ x1(k); x1(·) ∈ R2x1,

H1 : z1(k + 1) ≡
[
M1(T) + u1(k)P1(T)

]
z1(k) + L11(T)x1(k); z1(·) ∈ R2x1,

H2 : z2(k + 1) ≡M2(T)z2(k) + L21(T)x1(k); z2(·) ∈ R3x1,

H3 : z3(k + 1) ≡M3(T)z3(k) + L31(T)x1(k); z3(·) ∈ R2x1,

(4.1)

all k ≥ 0, k ∈ z. Table 1 displays the entries of the constant discrete matrices related to the
composite homogeneous bilinear structures S1, Hi, i = 1, 2, 3, in (4.1). The simulations have
been performed with the centralized suboptimal modified scheme 1, including free control
type (namely, without saturation) only according to Corollary 3.2.

The steady state of the signal trajectory under no control leads to the following parame-
ters: y∗1,st = 21.8, y∗2,st = 238.63,u∗st = 400, N∗

st = 57 samples. The system performance is studied
as a function of the optimization horizon, N. Also, the plant settings are: Initial conditions,
x1(0) = [20.0, 250.0]T , z1(0) = [0.0, 0.0]T , z2(0) = [0.0, 0.0, 0.0]T , and z3(0) = [0.0, 0.0]T ; sam-
pling period T = 0.03 seconds and working horizon WH = 150 samples.

The obtained results are shown in Table 2 where the deviations (percent) are related
to the normal operation signals (i.e., y∗1,st, y

∗
2,st and u∗st) and the CCT is the average time the

computer needs to perform a computation iteration of the optimization horizon.
Exhaustive simulations about variations of the optimization horizon have shown that

the discrete control improves the system response from a better transient characteristic point
of view. However, there exist deviations of the steady-state signal tracking related to the no-
control operation mode signals. Also, the experiments become time-consuming and memory-
storage expensive as the optimization horizon does increase. For instance, some of the
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Figure 2

simulated examples have been plotted in Figure 2, consisting of the two components of the
plant output and the waveform of the control input to the system (see Table 2 for the defini-
tions of the involved signals related to the optimization horizon sizes).
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Table 2: Typical results of the discretely controlled plant without saturation as a function of the optimiza-
tion horizon.

Steady-state response
First component Second component Steady-state

y1,st y2,st control response

Wave-
form
plot

Optimizaton
horizon N
(samples)

Steady-state
response Nst
(samples)

Value Percent
deviation Value Percent

deviation Ust
Percent

deviation
Const

function JN
CCT

(seconds)

—– 1 47 22.51 + 3.26 237.51 − 0.47 405.38 + 1.35 15392.76 1.132
..... 2 35 22.33 + 2.43 238.15 − 0.2 400.43 + 0.12 12468.19 1.121
- - - 3 32 22.14 + 1.56 237.32 − 0.55 403.61 + 0.92 10319.78 0.991
xxx 4 28 21.87 + 0.32 236.49 − 0.9 398.27 − 0.43 14215.84 1.001
none 5 32 22.05 + 1.15 238.01 − 0.26 399.15 − 0.21 13854.21 0.997
none 6 33 21.14 − 3.03 238.18 − 0.19 382.54 − 4.37 14129.83 0.946
— 7 35 20.25 − 7.11 225.06 − 5.09 375.82 − 6.05 15639.08 0.94
none 8 41 20.03 − 8.12 210.87 − 11.63 366.39 − 8.4 10378.51 0.984
none 9 45 19.98 − 8.35 205.17 − 14.02 351.41 − 9.65 13227.83 1
............ 10 48 19.81 − 9.13 201.39 − 15.61 360.23 − 9.94 16863.71 0.945
none 15 59 15.74 − 23.21 195.43 − 18.1 328.51 − 17.87 17459.29 0.954
none 20 76 15.92 − 26.97 187.31 − 21.51 310.32 − 22.42 29243.62 0.935
none 10 115 13.61 −37.57 132.75 − 44.37 200.39 − 49.9 58346.43 0.957

4.2. Example 2

A discrete bilinear system which corresponds to the discretization of a bilinear continuous one
for small sampling period and zero-order hold (ZOH) is given as defined in Section 2.2, by

x(k + 1) =
[
A(T) + u(k)N(T)

]
x(k) + E(T)u(k) +w(k),

y(k) = Cx(k),
(4.2)

where x(k) ≡ [xT1 (k), x
T
2 (k), x

T
3 (k)]

T , y(k) ≡ [yT1 (k), 0, 0] T and there exists a deterministic

disturbance w(k) ≡ [wT
1 (k), 0, 0] T so that w1(k) ≡ S1(T)u2(k) + [S2(T) + u(k)S3(k)] q(k),

being T the sampling period, (·)T denotes transpose and the sampling instant is defined as
tk+1 = tk + T.

In (4.2), the coefficients of the block matrices are composed of the following structures:

A(T) =

⎡

⎢
⎢
⎣

A1(T) 0 M1(T)

P2(T) A2(T) R2(T)

P3(T) R3(T) A3(T)

⎤

⎥
⎥
⎦ ;

N(T) =

⎡

⎢
⎢
⎣

N1(T) 0 S2(T)

0 0 0

0 0 0

⎤

⎥
⎥
⎦ ;

E(T) =

⎡

⎢
⎢
⎣

E1(T)

E2(T)

E3(T)

⎤

⎥
⎥
⎦ ;

C =
[
I 0 0

]
.

(4.3)
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Figure 3: Electromechanical system with interconnected subsystems.
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Figure 4: Motor angular speed output as function of the sampling period with respect to a step reference
signal of 277 rad/seg.

In particular, (4.2) and (4.3) correspond to the linearized discretization of an electromechan-
ical system consisting of two amplidynes acting on the DC-motor shown in Figure 3, with a
regulation mechanism incorporated as introduced in Section 3. This regulation scheme is not
restricted to considering either the relevant control current or voltage to be constant, which
emphasizes the interest of the bilinear modelling.

Figure 4 plots a typical tracking response output of the system as a function of the sam-
pling period, for a fixed optimization horizon N = 50 samples and Q being unity in the
quadratic regulation performance criterion (see (3.1)).

The control action implemented can be used as an alternative to the traditional strate-
gies of linear control on electrical DC-machines. In general, it has been noticed that the dis-
crete control implies better transients related to the linear approach because those transient
responses are faster, that is, present lower settling times with greater shooting parameters. Be-
sides, it has also been observed that the discrete control performance improves, in general,
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as the optimization horizon is increased for different experiments, with respect to that of the
nominal plant when no control action is reached.

5. Conclusions

A multivariable invariant discrete-time bilinear system being composed of interconnected sub-
systems has been studied. An equivalent feed-forward linear system with equivalent inputs,
which are derived from products state-input, has been given. Then, the system has been sub-
optimized with respect to a quadratic finite-time optimization horizon in order to drive each
subsystem from any arbitrary initial point to a predefined final state.

The suboptimization has been made by neglecting either the time-dependence of the
control vectors on the state vector (modified suboptimal scheme 1) or the dependence of a de-
terministic disturbance vector on the equivalent input sequence (modified suboptimal scheme
2). These approaches have effect only on the system implementability rather than on its sta-
bility. Besides, stability proofs lead to drawbacks when the optimization horizon is infinite
because of the suboptimal real implementation. This is also translated into drawbacks when
implementing decentralized expected results. The proposed suboptimal schemes have been
proven by means of realistic examples.

Appendices

A. Vector variation for the two alternative interpretation
schemes of the feed-forward linear systems

Section 2.4 deals with two alternative representations of the feed-forward linear system (2.13).
This appendix is devoted to the derivation of the vectorsC(·)(·) and ξ(·) involved in this section.

Substituting (2.18) into (2.13) and grouping terms, one obtains

cj+li−1(k) ≡ eji+li−1 +
ni+ai∑

j=1/j /= ji

{{

bTji (i)xi(k)δji +

[

pTji−ni(i)zi(k) +
p∑

l=1

mT
ji−ni(i, l)y1(k)

]

δji

}−1

×
{

bTj (i)xi(k)δji+

[

pTj−ni(i)zi(k)+
p∑

l=1

mT
j−ni(i, l)y1(k)

]

δji

}

ej+li−1

}

,

(A.1)

or alternatively

ξ(k) ≡

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p∑

i=1

ni+ai∑

j=1/j /= ji

{

bTji (i)xi(k)δji +

[

pTji−ni(i)zi(k) +
p∑

l=1

mT
ji−ni(i, l)y1(k)

]

δji

}−1

×
{

bTj (i)xi(k)δji +

[

pTj−ni(i)zi(k) +
p∑

l=1

mT
j−ni(i, l)y1(k)

]

δji

}

νji(k)ej+li−1

}

;

if at least an admissible ji ∈Ni exists at the current sampling instant,

0; otherwise,

(A.2)

where δji ≡ 1 − δji , with δji = 1, if ji ∈Ni, and δji = 0, if ji ∈N+
i , all i ∈ I, k = 0, 1, 2, . . . .
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B. Derivation of the optimization equations

In the sequel, in order not to repeat tedious notation, the ji-index (related to the system inputs
and associate equations of the feed-forward linear system (2.13)) will be denoted by the sub-
script i, i ∈ I. Also, three modified auxiliary inputs ν(1)(k), ν(2)(k), and ν(3)(k) are calculated
from ν(k), and introduced due to the bilinear terms.

B.1. First transformation

Let us define new variables as

C
(1)
j (k) ≡ ACj(k − 1); ν

(1)
j (k) ≡ νj(k − 1),

f(k) ≡ Ax(k − 1) = x(k) −
p∑

i=1

Ci(k − 1)νi(k − 1)
(B.1)

with j ∈ I and k ≥ 1.
Substituting (B.1) into (2.22), one obtains

f(k + 1) = Af(k) +
p∑

i=1

C
(1)
i (k)ν(1)i (k); k = 0, 1, 2, 3, . . . . (B.2)

Also, the loss function (3.1) can be equivalently rewritten as

JN =
1
2

{
N∑

k=0

fT(k)
[

Q(k) −
p∑

i=1

r−1
i (k)hi(k)hTi (k)

]

f(k)

+
p∑

i=1

{

ri(k)
[
ν
(1)
i (k) + r−1

i (k)hTi (k)f(k)
]2

+ 2
p∑

j=1/j>i

C
(1)T

i (k)A
−T
hj(k)ν

(1)
i (k)ν(1)j (k)

}}

; N <∞,

(B.3)

where

rj(k) ≡ C(1)T

j (k)A
−T
Q(k)A

−1
C

(1)
j (k) = CT

j (k − 1)Q(k)Cj(k − 1),

hj(k) ≡ Q(k)A
−1
C

(1)
j (k) = Q(k)Cj(k − 1),

(B.4)

all j ∈ I; k = 1, 2, 3, . . ..

B.2. Second transformation

The following new variables are defined as follows:

C
(2)
j (k) ≡ C(1)

j (k),

ν
(2)
j (k) ≡ ν(1)j (k) + r−1

j (k)hTj (k)f(k)

= νj(k − 1) + xT(k − 1)A
T
Q(k)Cj(k − 1)

[
CT
j (k − 1)Q(k)Cj(k − 1)

]−1
,
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A
(2)
(k) ≡ A −

p∑

i=1

r−1
i (k)C(1)

i (k)hTi (k)

= A −
p∑

i=1

[
CT
i (k − 1)Q(k)Ci(k − 1)

]−1
ACi(k − 1)CT

i (k − 1)Q(k),

(B.5)

all j ∈ I; k = 1, 2, 3, . . . .
From (B.5), one has equivalently to (B.3);

f(k + 1) = A
(2)
(k)f(k) + C(2)(k)ν(2)(k); k = 0, 1, 2, 3, . . . , (B.6)

where

C(2)(·) ≡
[
C

(2)
1 (·), C(2)

2 (·), . . . , C(2)
p (·)

]
∈ R(n+a)x(n+a),

ν(2)(·) ≡
[
ν
(2)
1 (·), ν(2)2 (·), . . . , ν(2)p (·)

]
∈ Rp.

(B.7)

Also, taking into account the mentioned (B.5), (B.3) becomes as follows:

JN =
1
2

N∑

k=0

{

fT(k)Q
(2)
(k)f(k) +

p∑

i=1

[

ri(k)ν
(2)2

i (k) + 2
p∑

j=1/j>i

pij(k)ν2
i (k)ν

2
j (k)

]

−2
p∑

i=1

p∑

j=1/j>i

fT(k)pij(k)
[
tTj (k)ν

2
i (k) + t

T
i (k)ν

2
j (k)

]
}

; N <∞
(B.8)

with

pij(k) = pji(k) ≡ C(2) T

i A
−T
hj(k) = CT

i (k − 1)Q(k)Cj(k − 1); j /= i,

ti(k) ≡ r−1
i (k)hTi (k) =

[
CT
i (k − 1)Q(k)Ci(k − 1)

]−1
CT
i (k − 1)Q(k),

(B.9)

for all i, j ∈ I; k = 0, 1, 2, . . . .
Equation (B.8) can be compactly rewritten as

Jn =
1
2

N∑

k=0

[
fT(k)Q

(2)
(k)f(k) + ν(2)

T

(k)R
(2)
(k)ν(2)(k) + 2fT(k)W

(2)
(k)ν(2)(k)

]
; N <∞,

(B.10)
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where the matrices involved are

Q
(2)
(k) ≡ Q(k) −

p∑

i=1

{
[
CT
i (k − 1)Q(k)Ci(k − 1)

]−1
Q(k)Ci(k − 1)CT

i (k − 1)Q(k)

− 2
p∑

‘j=1/j>i

{[
CT
j (k − 1)Q(k)Ci(k − 1)

]−1[
CT
j (k − 1)Q(k)Cj(k − 1)

]−1

× Ci(k − 1)Q(k)Cj(k − 1)Q(k)Ci(k − 1)CT
j (k − 1)Q(k)

}
}

(B.11)

R
(2)
(k) = [R

(2)
ij (k)];

R
(2)
ij (k) = R

(2)
ji (k) ≡

⎧
⎨

⎩

ri(k), if j = i,

pij(k), if j /= i,

(B.12)

W
(2)
(k) ≡W1(k)W2(k) (B.13)

with
W1(k) ≡

[
tT1 (k), t

T
2 (k), . . . , t

T
p (k)

]
,

W2(k) ≡
[
Wij(k)

]
;

Wij(k) =Wji(k) ≡

⎧
⎨

⎩

0 if j = i

−pij(k), if j /= i

(B.14)

ri(·), pij(·), and ti(·); j /= i, in (B.12) to (B.14); i, j ∈ I, are given, respectively, in (B.4) and (B.9).

Note that the factorization of matrix W
(2)
(·) in (B.13) is possible from (B.8).

B.3. Third transformation

Although it is not necessary, this transformation of variables provides immediately a loss func-
tion (redefinition of (3.1)), which includes weighting terms associated with both the state vec-
tor and the transformed input. Let us define them as follows:

C(3)(k) ≡ C(2)(k),

ν(3)(k) ≡ ν(2)(k) + R
(2)−1

(k)W
(2)T

(k)f(k),
(B.15)

A
(3)
(k) ≡ A

(2)
(k) − C(2)(k)R

(2)−1

(k)W
(2)T

(k) ∀k = 0, 1, 2, 3, . . . . (B.16)

Substitution of (B.15) and (B.16) into (B.6) yields directly (3.2). Also, substituting (B.15) into
(B.10), one obtains (3.3) if the weighting matrices are defined by

Q
(3)
(k) ≡ Q

(2)
(k) −W

(2)
(k)R

(2)−1

(k)W
(2)T

(k),

R
(3)
(k) ≡ R

(2)
(k)

(B.17)

with Q
(3)
(·) ≥ 0 and R

(3)
> 0.
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