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Face recognition is a challenging problem in computer vision and pattern recognition. Recently,
many local geometrical structure-based techiniques are presented to obtain the low-dimensional
representation of face images with enhanced discriminatory power. However, these methods suffer
from the small simple size (SSS) problem or the high computation complexity of high-dimensional
data. To overcome these problems, we propose a novel local manifold structure learning method
for face recognition, named direct neighborhood discriminant analysis (DNDA), which separates
the nearby samples of interclass and preserves the local within-class geometry in two steps,
respectively. In addition, the PCA preprocessing to reduce dimension to a large extent is not
needed in DNDA avoiding loss of discriminative information. Experiments conducted on ORL,
Yale, and UMIST face databases show the effectiveness of the proposed method.

Copyright © 2008 Miao Cheng et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

1. Introduction

Many pattern recognition and data mining problems involve data in very high-dimensional
spaces. In the past few decades, face recognition (FR) has become one of the most active
topics in machine vision and pattern recognition, where the feature dimension of data
usually can be very large and hardly handled directly. To get a high recognition rate for FR,
numerous feature extraction and dimension reduction methods have been proposed to find
the low-dimensional feature representation with enhanced discriminatory power. Among
these methods, two state-of-the-art FR methods, principle component analysis (PCA) [1], and
linear discriminant analysis (LDA) [2] have been proved to be useful tools for dimensionality
reduction and feature extraction.

LDA is a popular supervised feature extraction technique for pattern recognition,
which intends to find a set of projective direction to maximize the between-class scatter
matrix S, and minimize the within-class scatter matrix S, simultaneously. Although
successful in many cases, many LDA-based algorithms suffer from the so-called “small
sample size” (SSS) problem that exists when the number of available samples is much smaller
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than the dimensionality of the samples, which is particularly problematic in FR applications.
To solve this problem, many extensions of LDA have been developed in the past. Generally,
these approaches to address SSS problem can be divided into three categories, namely,
Fisherface method, Regularization methods, and Subspace methods. Fisherface methods
incorporate a PCA step into the LDA framework as a preprocessing step. Then LDA is
performed in the lower dimensional PCA subspace [2], where the within-class scatter matrix
is no longer singular. Regularization methods [3, 4] add a scaled identity matrix to scatter
matrix so that the perturbed scatter matrix becomes nonsingular. However, Chen et al. [5]
have proved that the null space of S, contains the most discriminate information, while the
SSS problem takes place, and proposed the null space LDA (NLDA) method which only
extracts the discriminant features present in the null space of the S,,. Later, Yu and Yang [6]
utilized discriminatory information of both S, and S, and proposed a direct-LDA (DLDA)
method to solve SSS problem.

Recently, the motivation for finding the manifold structure in high-dimensionality
data elevates the wide application of manifold learning in data mining and machine
learning. Among these methods, Isomap [7], LLE [8], and Laplacian eigenmaps [9, 10]
are representative techniques. Based on the locality preserving concept, some excellent
local embedding analysis techniques are proposed to find the manifold structure based
on local nearby data [11, 12]. However, these methods are designed to preserve the
local geometrical structure of original high-dimensional data in the lower dimensional
space rather than good discrimination ability. In order to get a better classification
effect, some supervised learning techniques are proposed by incorporating the discrim-
inant information into the locality preserve learning techniques [13-15]. Moreover, Yan
et al. [15] explain the manifold learning techniques and the traditional dimensionality
reduction methods as a unified framework that can be defined in a graph embedding
way instead of a kernel view [16]. However, the SSS problem is still exists in the
graph embedding-based discriminant techniques. To deal with such problem, PCA is
usually performed to reduce dimension as a preprocessing step in such environment
[11, 15].

In this paper, we present a two-stage feature extraction technique named direct
neighborhood discriminant analysis (DNDA). Compared to other geometrical structure
learning work, the PCA step is not needed to be done in our method. Thus, more discriminant
information can be kept for FR purpose, and as a result improved performance is expected.
The rest of the paper is structured as follows: we give a brief review of LDA and DLDA in
Section 2. We then introduce in Section 3 the proposed method for dimensionality reduction
and feature extraction in FR. The effectiveness of our method is evaluated in a set of FR
experiments in Section 4. Finally, we give concluding remarks in Section 5.

2. Review of LDA and DLDA
2.1. LDA

LDA is a very popular technique for linear feature extraction and dimensionality reduction
[2], which chooses the basis vectors of the transformed space as those directions of the
original space to make the ratio of the between-class scatter and the within-class scatter are
maximized. Formally, the goal of LDA is to seek the optimal orthogonal matrix w, such that
maximizing the following quotient, the Fisher Criterion:

T'S,w

J(W) = argmax i (2.1)

wTS,w’
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where S, is the between-class scatter matrix, S, is the within-class scatter matrix, such
that w can be formed by the set of generalized eigenvectors corresponding to following
eigenanalysis problem:

Spyw = AS,w. (2.2)

When the inverse of S, exists, the generalize vectors can be obtained by eigenvalue
decomposition of S;'S,. However, one usually confronts the difficulty that the within-class
scatter matrix Sy, is singular (SSS) in FR problem. The so-called PCA plus LDA approach [2]
is a very popular technique which intends to overcome such circumstances.

2.2. DLDA

To take discriminant information of both S, and S, into account without conducting PCA, a
direct LDA (DLDA) technique has been presented by Yu and Yang [6]. The basic idea behind
the approach is that no significant information will be lost if the null space of S, is discarded.
Based on the assumption, it can be concluded that the optimal discriminant features exist in
the range space of Sp.

Let multiclass classification be considered, given a data matrix X € RN where each
column x; represents a sample data. Suppose X is composed of ¢ classes and total number
of samples is denoted by > ;N; = N, for the ith class consists of N; samples. Then, the
between-class scatter matrix is defined as

1 C
So = 17 2 Nii =~ 1) (i~ )" = GvG, (2.3)
i=1
where
N N VN
Gp = S (1= ), = (= ), = (e = ) | (2.4)
VN VN VN
1 &
pi = ﬁi%xm (2.5)
are the class mean sample, and
= lZC:N i (2.6)
H= Nl-:l iHi .

denotes the total mean sample. Similarly, the within-class scatter matrix is defined as

1 (s N,'
Sw = x5 2 2 (%~ i) (x; i) = GuGy, 2.7)

i=1 j=1



4 Mathematical Problems in Engineering

where,

1 1 1
Gy = [\/_N(xl —#m),\/—ﬁ(xz —#CZ),.--,\/—N(XN _.”CN):I' (2.8)

In DLDA, eigenvalue decomposition is performed on the between-class matrix Sy, firstly.
Suppose the rank of Sp is t, and let D, = diag(dy, Ay, ..., ) be a diagonal matrix with
the t largest eigenvalue on the main diagonal in descending order, Y = [v1,vy,...,7¢] is
the eigenvector matrix that consists of t corresponding eigenvectors. Then, dimensionality

of data x is reduced by using the projection matrix Z = YD;U % from d to t, Z'x. And
eigenvalue decomposition is performed on the within-class scatter matrix of the projected

samples, é; =Z7Z7S,Z.LetD,, = diag(#n1, 12, ..., 1:) be the ascending order eigenvalue matrix
of §;, and U = [uy,uy, ..., u;] be the corresponding eigenvector matrix. Therefore, the final
transformation matrix is given by W = YD;l/ 2UD,, .

To address the computation complexity problem of high dimensional data, the
eigenanalysis method presented by Turk and Pentland [1] is applied in DLDA, which makes
the eigenanalysis of scatter matrices be progressed in an efficient way. For the eigenvalue

decomposition of any symmetry matrix A with the form of A = BB, we can consider the
eigenvectors v; of BT B such that

BTBu; = \v;. (2.9)
Premultiplying both sides by G, we have
BB Bv; = ABv; = \;Bv; (2.10)

from which it can be concluded that the eigenvectors of A is Bv; with the corresponding
eigenvalue \;.

3. Direct neighborhood discriminant analysis

Instead of mining the statistical discriminant information, manifold learning techniques try
to find out the local manifold structure of data. Derived from the locality preserving idea [10,
11], graph embedding framework-based techniques extract the local discriminant features
for classification. For a general pattern classification problem, it is expected to find a linear
transformation, such that the compactness for the samples that belong to the same class and
the separation for the samples of the interclass should be enhanced in the transformed space.
As an example, a simple multiclass classification problem is illustrated in Figure 1. Suppose
there are two nearest inter- and intraclass neighbors searched for classification. The inter-
and intracalss nearby data points of five data points A-E is shown in Figures 1(b) and 1(c),
respectively. For data point A, it is optimal that the distance from its interclass neighbors
should be maximized to alleviate their bad influence for classification. On the other hand, the
distance between data point A and its intraclass neighbors should be minimized to make A
be classified correctly.

Based on the consideration, two graphs, that is, the between-class graph G and the
within-class graph G’ are constructed to discover the local discriminant structure [13, 15]. For
each data point x;, its sets of inter- and intraclass neighbors are indicated by kN N”(x;) and
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Figure 1: Local discriminant neighbors. (a) Multi-class classification (b) Two interclass neighbors (c) Two
intraclass neighbors.

kNN™(x;), respectively. Then, the weight W;; reflects the weight of the edge in the between-
class graph G is defined as

) 1 ifx,-EkNNb(x]-)orxjekNNb(x,-),
b= (3.1)
0 else,
and similarly define within-class affinity weight as
» 1 ifx; € KNN¥(xj)orx; € kNN“(x;), (32)
v 0 else. .

Let the transformation matrix be denoted by P € R*¥ (d' « d), which transforms the original
data x from high-dimensional space R? into a low-dimensional space R* by y = PTx. The
separability of interclass samples in the transformed low-dimensional space can be defined
as

Fb = Z”PTJCZ' - PTX]'”ZWZ-
L]

T
= Str[(P"xi = PT;) (PTxi - PTxj) WY
2

= [P (i = x;) W (xi = x;) " P (3.3)
L]

= tr <ZZPTxiDibixiTP - 2ZPTxiWi’}x]TP>
i ij

= tr(PTX(2D" - 2W") X" P),
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where tr(-) is the trace of matrix, X = [x1,xy,...,xn] is the data matrix, and D? is a diagonal
matrix, of which entries are column (or row, since W? is symmetric) sum of W?, DZ = ]-Wl.l;..
Similarly, the compactness of intraclass samples can be characterized as

Fu = 2 [|P"xi - P | "Wy
L]

= Str[(PTxi - Pxy) (P — PPagy) "W
L]

= Ztr [PT (x; - xj)Wi’]‘-’ (xi — x,-)TP] (3.4)
L]

=tr <ZZPTxinlf’xl.TP - ZZPTxiWi’]‘.’x]TP>
i i
= tr(P"X(2D" - 2W™®)X"P).

Here, D¥ is a diagonal matrix of which entries are column (or row) sum of W on the main
diagonal, D} = 3;W?. Then, the optimal transformation matrix P can be obtained by solving
the following problem:

PTSsp
PTS.P’

S = X(2D" -2w?)XT,

P* = argmax
P

(3.5)
Sc=X(2D¥ -2Ww™)X".

Here, S. is always singular with small training sample set leading problem to get
projective matrix P directly, thus previous local discriminant techniques still suffer from the
curse of high dimensionality. Generally, PCA is usually performed to reduce dimension as
a preprocessing step in such environment [15], however, possible discriminant information
may be ignored. Inspired by DLDA, we can perform eigenanalysis on S; and S, successively
to extract the complete local geometrical structure directly without PCA preprocessing. To
alleviate the burden of computation, we reformulate S; and S, so that Turk’s eigenanalysis

method can be employed. For each nonzero element of W?, WZ, we build an N dimensional

interclass index vector h™) of all zeroes except the ith and jth element is set to be 1 and -1,
respectively:

i1 N+

.. N i I~ !
R =0 ---01,0---0,-1,0 --- 0] . (3.6)

Suppose there are Nj nonzero elements in Wb, let Hy = [hy, hy, ...,k N, | be the interclass index
matrix made up of N, interclass index vectors. It can be easily obtained that 2D? — 2W? =
H;H!, which we prove in Appendix A. Therefore, S; can be reformulated as

Sy = XH,HI'XT. (3.7)
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Input: Data matrix X € R™N, class label L
Output: Transformed matrix P*
1. Construct the between-class and the within-class affinity weight matrix Wb, ww.
2. Construct the interclass and the intraclass index matrix Hy, H, according to the non-
zero elements of W?, W¥.
For the kth nonzero element of W?(W®), Wil;. (Wl?]f’), the corresponding kth column in
H,(H,) is constructed as
i-1 o NYoop
—N—i ]~
0---01,0---0,-1,0--- 0

3. Apply eigenvalue decomposition to S; and keep the largest t nonzero eigenvalues
A =[A,Ay,..., N] and corresponding eigenvectors U = [uy, Uy, ..., u;] after sorted in
decreasing order, where t = rank(Ss).

4. Compute P, as Ps= UD;l/z, where D, =diag(Aq, Ay, ..., A;) is diagonal matrix with
A; on the main diagonal.

5. Perform eigenvalue decomposition on §:= PST ScPs. Let Do =diag(p1, pa, ..., fn) be
the eigenvalue matrix of ’S\; in ascending order and V = [v1, vy, ..., v,] be the corres-

ponding eigenvector matrix. Calculate P, as P, = VD;"/2.
6. P* — P,P..

Algorithm 1: DNDA algorithm.

Figure 2: Sample images from ORL, Yale, and UMIST face database. (a) ORL, (b) Yale, and (c) UMIST.

As each column in H, has only two nonzero elements 1 and —1, we can make the first row in
H; be a null row by adding all rows but the first to the first row. On the other hand, for each
column hU? in Hy, there is another column hV9 with contrary sign. Then, it is clear that

rank(H;) = min {N -1, % }, (3.8)

where Nj, is the number of nonzero elements in W. Due to the properties of matrix trace [17],
we can get

rank(S;) = rank(XH,) < min {rank(X), rank (H;) }. (3.9)
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Figure 3: Recognition rate against the number of features used in the matching on the ORL database:
(a) 3 training samples, (b) 4 training samples, and (c) 5 training samples.
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Table 1: Comparison of recognition rates of Eigenface, Fisherface, DLDA, LPP, MFA, and DNDA on the
ORL database.

Method 3 Training samples 4 Training samples 5 Training samples
Eigenface 86.64% (121) 91.65% (112) 94.05% (123)
Fisherface 87.46% (39) 91.42% (39) 93.35% (38)
DLDA 90.04% (38) 94.04% (39) 95.6% (37)
LPP 73.54% (91) 82.73% (98) 86.62% (99)
MFA 87.13% (27) 92% (39) 95.28% (41)
DNDA 91.07% (44) 94.69% (46) 96.12% (77)

Table 2: Comparison of recognition rates of Eigenface, Fisherface, DLDA, LPP, MFA, and DNDA on the
Yale database.

Method 3 Training samples 4 Training samples 5 Training samples
Eigenfaces 76.79% (39) 80.14% (50) 82.39% (60)
Fisherfaces 80.96% (14) 84.27% (14) 90% (14)
DLDA 79.62% (12) 84.52% (11) 89.56% (14)
LPP 77.38% (44) 80.48% (59) 84.33% (59)
MFA 79.42% (26) 86.48% (23) 88.94% (24)
DNDA 82.42% (22) 88.62% (35) 90.61% (29)

In many FR cases, the number of pixels in a facial image is much larger than the number of
available samples, that is, d > N. It tells us that the rank of S; is at most min{N -1, N}, /2}.
Similarly, S. can also be reformulated as

S.=XH.H!X". (3.10)

Here, H. € RN*Nw is the intraclass index matrix consisting of all the N, intraclass index
vectors as columns, which is constructed according to the N, nonzero elements in W*®.
Similar to S, the rank of S, is up to min{N -1, N,,/2}. Based on the modified formulation,
the optimal transformation matrix P can be obtained as

. P's,P PTG,GIP
P* = argmax = arg max

s _—, G:XH,G =XH 311
b PTSCP b PTGCGZP s s c c ( )

As the null space of Sy contributes little to classification, it is feasible to remove such
subspace by projecting S, into its range space. We apply the eigenvalue decomposition to S
and unitize it through Turk’s eigenanalysis method, while discarding those eigvectors whose
corresponding eigvalues are zero, which do not take much power for discriminant analysis.
Then, the discriminant information in S, can be obtained by performing eigenanalysis on
S., which is gotten by transforming S, into the range subspace of S. This algorithm can be
implemented by the pseudocode shown in Algorithm 1.
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Table 3: Comparison of recognition rates of Eigenface, Fisherface, DLDA, LPP, MFA, and DNDA on the
UMIST database.

Dimensionality Recognition rate
Eigenfaces 99 89.84%
Fisherfaces 18 93.04%
DLDA 13 93.65%
LpPpP 93 92.95%
MFA 72 94.82%
DNDA 48 96.01%

DNDA has a computational complexity of o(N;) (N, is the number of nonzero
elements in W?), as it preserves a similar procedure to DLDA (o(c®)). Compared with
Eigenface (o(N?d)) and Fisherface (o(N2d)), DNDA is still more efficient for feature
extraction in high dimensionality if d > N.

4. Experiments

In this section, we investigate the performance of the proposed DNDA method for
face recognition. Three popular face databases, ORL, Yale, and UMIST are used in the
experiments. To verify the performance of DNDA, each experiment is compared with
classical approaches: Eigenface [1], Fisherface [2], DLDA [6], LPP [11], and MFA [15]. The
three nearest-neighbor classifier with Euclidean distance metric is employed to find the image
in the database with the best match.

4.1. ORL database

In ORL database [18], there are 10 different images for each of 40 distinct subjects. For some
subjects, the images were taken at different times, varying the lighting, facial expressions
(open/closed eyes, smiling/not smiling), and facial details (glasses/no glasses). All the
images are taken against a dark homogeneous background with the subjects in an upright,
frontal position (with tolerance for some side movement). The original images have size of
92 x 112 pixels with 256 gray levels; such one subject is illustrated in Figure 2(a).

The experiments are performed with different numbers of training samples. As there
are 10 images for each subject, n (n = 3,4,5) of them are randomly selected for training and
the remaining are used for testing. For each n, we perform 20 times to choose randomly
the training set and the average recognition rate is calculated. Figure 3 illustrates the plot of
recognition rate versus the number of features used in the matching for Eigenface, Fisherface,
DLDA, LPP, MFA, and DNDA. The best performance obtained by each method and the
corresponding dimension of reduced space in the bracket are shown in Table 1.

4.2, Yale database

The Yale Face Database [19] contains 165 grayscale images of 15 individuals. There are 11
images per subject, one per different lighting condition (left-light, center-light, right-light),
facial expression (normal, happy, sad, sleepy, surprised, wink), and with/without glasses.
Each images used in the experiments is 92 x 112 pixels with 256 gray levels. The facial images
of one individual are illustrated in Figure 2(b).
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Figure 4: Recognition rate against the number of features used in the matching on the Yale database:
(a) 3 training samples, (b) 4 training samples and (c) 5 training samples.
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Figure 5: Recognition rate against the number of features used in the matching on the UMIST database.

The experimental implementation is the same as before. For each individual, n (n =
3,4,5) images are randomly selected for training and the rest are used for testing. For each
given n, we average the results over experiments repeated 20 times independently. Figure 4
illustrates the plot of recognition rate versus the number of features used in the matching
for Eigenface, Fisherface, DLDA, LPP, MFA, and DNDA. The best results obtained in the
experiments and the corresponding reduced dimension for each method is shown in Table 2.

4.3. UMIST database

The UMIST face database [20] consists of 564 images of 20 people. For simplicity, the
Precropped version of the UMIST database is used in this experiment, where each subject
covers a range of poses from profile to frontal views and a range of race/sex/appearance.
The size of cropped image is 92 x 112 pixels with 256 gray levels. The facial images of one
subject with different views are illustrated in Figure 2(c).

For each individual, we chose 8 images of different views distributed uniformly in
the range 0-90° for training, and the rest are used for training. Figure 5 illustrates the plot of
recognition rate versus the number of features used in the matching for Eigenface, Fisherface,
DLDA, LPP, MFA, and DNDA. The best performance and the corresponding dimensionalities
of the projected spaces for each method are shown in Table 3.

From the experiment results, it is very obvious that DNDA achieves higher accuracy
than the other methods. This is probably due to the fact that DNDA is a two-stage local
discriminant technique, different form LPP and MFA. Moreover, PCA is removed in DNDA
preserving more discriminant information compared with others.

5. Conclusions

Inspired by DLDA, we propose in this paper a novel local discriminant feature extraction
method called direct neighborhood discriminant analysis (DNDA). In order to avoid SSS
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problem, DNDA performs a two-stage eigenanalysis approach, which can be implemented
efficiently by using Turk’s method. Compared with other methods, PCA preprocessing is
left out in DNDA with the immunity from the SSS problem. Experiments on ORL, Yale, and
UMIST face databases show the effectiveness and robustness of our proposed method for face
recognition. To get a better classification result, the improvement and extension of DNDA are
to be taken into account in our future work.

Appendix
A. Proof of 2D - 2W = HH'

Given the graph weight matrix W with | nonzero elements, consider two matrices M, N €
RN*L. For each nonzero element in W, there is corresponding column in M and N with
common location, respectively. Let Z = {(i, j) | W;; # 0} be the index set of nonzero elements
in W. For the kth (1 < k < I) nonzero element W;; in W, the kth column of M, N is represented
as

——i N r
M¢xy=|(0---01,0 01,
Al
o ) (A1)
N(;,k)Z [0 0,-1,0 O] .
Then, it is easy to get
M(a,:)Mz;L:) 0,
N (A.2)
N(a,:)N(b,:) =0
fora#b (1 <ab< N), and
M(a)N{,, =0 for (a,b) ¢ Z,
' (A.3)

N(‘U)M{b,:) =0 for (b/ a) g Z/

where M) and Nk . denote the kth row of M and N, respectively. Therefore, we can get
! ! N
(MMT),-]- = > MMk = 6;; > My = 6;; > Wi,
k=1 k=1 =1

I I N
(NNT),-]- = ) NNk = 6D Nig = 51']'21qu,
k=1 k=1 q= (A.4)

1
(MNT)ij = ZMikak = Wij,
k=1

!
(NMT)ij = ZNiijk = Wi,
k=1
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where §;; is the Kronecker delta. Note that both matrix D and W are symmetry matrices,
based on the above equations, it is easy to find out

(M-N)M-N)' = MM" + NNT - MNT - NM"
=D+D-W-W (A.5)
=2D - 2W.

It is easy to check that H = M — N, which completes the proof.
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