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An exact solution of an incompressible second-grade fluid for flow between two coaxial cylinders
with porous walls is given. It is assumed that the inner cylinder is rotating with a constant angular
velocity and the outer one is at rest. The solution is expressed in terms of the confluent hypergeo-
metric functions and it is valid for all values of the cross-Reynolds number and the elastic number.
The solutions for −2, +∞, and −∞ values of the cross-Reynolds number are obtained and a compar-
ison with those of the Newtonian fluid is given. Furthermore, the torque exerted by the fluid on the
inner cylinder is calculated. It is shown that the moment coefficient depends on the cross-Reynolds
number, the elastic number, and the ratio of the radii of the cylinders. The variation of the moment
coefficient with these numbers is discussed.
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1. Introduction

The flow considered in this paper is for flow of a second-grade fluid in an annulus with porous
walls. For a Newtonian fluid, the flow in an annulus has been investigated by Berman [1,
2] and Yuan [3]. The extensions of this flow to non-Newtonian fluids have been studied by
many authors [4–6]. However, the results for non-Newtonian fluids have been given by using
a perturbation method. Therefore, it is not possible to compare with the exact solution of a
Newtonian fluid for all values of the cross-Reynolds number which is defined by the suction
velocity at the surface of the cylinder, the radius of the cylinder, and the kinematic viscosity of
the fluid. The exact solution given in this paper provides comparison with the exact solution
of a Newtonian fluid for all values of the cross-Reynolds number. The non-Newtonian fluid
model in this paper is that of the second-grade fluid [7]. Although there are some criticisms
on the applications of this model, many papers have been published and a listing of some
of them may be found in the literature. Furthermore, it has been shown by Walters [8] that
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for many types of problems in which the flow is slow enough in the viscoelastic sense, the
results given by Oldroyd’s constitutive equation will be substantially similar to those of fluids
of the second or third grade. Therefore, it would seem reasonable to use the second- or third-
grade models in carrying out the calculations. This is particularly so in view of the fact that the
calculation is generally simpler. The constitutive equation for an incompressible second-grade
fluid has three coefficients. There are some restrictions on these coefficients due to the Clausius-
Duhem inequality and due to the assumption that the Helmhotlz free energy is minimum in
equilibrium. A comprehensive discussion on the restrictions for these coefficients has been
given by Dunn and Fosdick [9] and Dunn and Rajagopal [10]. The sign of the material moduli
is the subject of much controversy [11, 12].

The no-slip boundary condition is sufficient for a Newtonian fluid, but may not be suf-
ficient for a fluid of second grade. Therefore, one needs an additional condition at boundary.
However, if one uses a perturbation expansion in terms of the coefficient appearing in the
higher-order derivative of the governing equation, the no-slip boundary condition is sufficient.
A critical review on the boundary conditions, the existence, and uniqueness of the solution has
been given by Rajagopal [13]. In order to overcome the difficulty on the boundary condition,
several workers have studied to give an additional condition. Frater [14] has studied the prob-
lem without using a perturbation expansion in terms of the coefficient of the higher-order term
of the governing equation. He imposed an additional condition so that the solution tends to
the Newtonian value as the coefficient of the higher derivative in the equation approaches
zero. This can be used provided the explicit solution or the numerical solution should exist. In
this paper, the solution is obtained in terms of the confluent hypergeometric functions and has
three coefficients: two of them can be determined by the no-slip boundary condition and the
other can be determined by using the properties of the confluent hypergeometric functions.

The problem considered in this paper is an extension of a viscous fluid in an annulus
with uniform porous walls to the problem for the flow of a second-grade fluid. The fluid injec-
tion rate at one wall is taken equal to the withdrawal rate at the outer wall. Further, because
of this restriction on the cross wall, the velocity components do not vary along the axis of the
cylinder. The flow in an annulus with porous walls has been investigated by many authors
[4–6]. In order to obtain the solution in [4, 6], a perturbation method has been used, there-
fore, the results obtained can be applicable for small values of the cross-Reynolds number. The
axial flow in an annulus with porous walls of a second-grade fluid has been investigated in
[15]. It can be shown that the axial and the azimuthal velocities are superposable. The solu-
tion for the flow of a second-grade fluid between two parallel porous plates has been given
in [16]. The flow of a second-grade fluid generated by a rotating porous cylinder has been in-
vestigated in [17]. The flow of a second-grade fluid between eccentric rotating cylinders was
examined in [18]. Assuming that the eccentricity is small, the secondary flow for a third-grade
fluid between two eccentrically placed cylinders has been investigated in [19].The flow of a
second-grade fluid in a porous cylindrical tube was examined for suction or injection through
the surface of the tube, under the assumption that the second-order parameter is sufficiently
small [20]. In this paper, the solution is obtained in terms of the confluent hypergeometric
functions and it is valid for all values of the cross-Reynolds number and the elastic number.
The solutions for +∞, −∞, and −2 values of the cross-Reynolds number are discussed. The
solution for +∞ value of the cross-Reynolds number is given in terms of the modified Bessel
functions of the first kind of order one. The solution for −∞ value of the cross-Reynolds num-
ber is given in terms of the modified Bessel function of the second kind of order one. The
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solution for −2 value of the cross-Reynolds number is given in terms of the exponential inte-
gral.

The torque exerted by the fluid on the inner cylinder is calculated. This can be used to
obtain the values of the material coefficients. It is shown that the moment coefficient depends
on the cross-Reynolds number, the elastic number, and the ratio of the radii of the cylinders.
The variation of the moment coefficient with these numbers is discussed. There are appreciable
differences between that of the Newtonian fluid and that of the second-grade fluid.

2. Basic equations

The equation of motion for a fluid in the absence of body forces is

ρ
Du
Dt

= ∇·σ, (2.1)

where ρ is the density of the fluid, u is the velocity, σ is the stress tensor, and D/Dt represents
the material derivative. The continuity equation for the velocity is

∇·u = 0. (2.2)

Equations (2.1) and (2.2) can be applied to all types of incompressible Newtonian and non-
Newtonian fluids. The stress depends on the local properties of the fluid. The relation between
the stress and the local properties of the fluid is called constitutive equation. The constitutive
equation for an incompressible second-grade fluid is in the following form [7]:

σ = −pI + μA1 + α1A2 + α2A2
1, (2.3)

where μ, α1, and α2 are material constants, and An represents the Rivlin-Eriksen tensor defined
as [21]

A0 = I, A1 = ∇u + (∇u)T ,

A2 =
(
∂

∂t
+ u·∇

)
A1 +A1·(∇u) + (∇u)T ·A1,

(2.4)

where t is time, p is pressure, and I is the identity tensor. The Clausius-Duhem inequality and
the condition that Helmholtz free energy is minimum in equilibrium provide the following
restrictions [9, 10]:

μ ≥ 0, α1 + α2 = 0, α1 ≥ 0. (2.5)

A comprehensive discussion on the restriction for μ, α1, and α2 can be found in the work by
Dunn and Rajagopal [10]. The sign of the material moduli α1 and α2 is the subject of much
controversy [11, 12]. The experiments have not confirmed these restriction on α1 and α2. Thus,
the conclusion is that the fluids which have been tested are not fluids of second grade and
characterized by a different constitutive structure.

Fully developed laminar flow of an incompressible fluid of second grade in an annulus
with porous walls is considered. The cylindrical polar coordinates are used. The radii of the
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porous cylinders are a1 and b1(a1 < b1). The rate of fluid withdrawal at one wall of the annulus
is assumed to be equal to the rate of injection of fluid at the other wall, and that these rates are
independent of axial position in annulus. The condition that the suction rate at wall is equal to
the injection rate at the outer is satisfied if

b1ub = a1ua, (2.6)

where ua and ub are the radial velocities at walls of smaller and larger pipes, respectively.
Equation (2.6) provides that the velocity is independent of the axial position in annulus. The
velocity field is assumed to be in the following form:

ur =
α

r
, uθ = u(r), uz = 0 (2.7)

where ur, uθ, uz are components of the velocity in cylindrical polar coordinates, α is positive
for injection at the inner cylinder and negative for suction at the inner one. The velocity field
given by (2.7) is not a special case of the flow that is given in [22]. The velocity field in [22] is
a superposition of the stagnation point flow and the rotating flow. Equation (2.2) is satisfied
identically by the velocity given by (2.7). Inserting the velocity given by (2.7) into the expres-
sion of the stress, the components of the stress tensor, in cylindrical polar coordinates, can be
written in the following forms:

σrr = −p −
2αμ
r2

+ α1

[
8α2

r4
+ 2u′2 − 2

(
u2

r

)′]
+ α2

[
4α2

r4
+
(
u′ − u

r

)2]
,

σrθ = μ
(
u′ − u

r

)
+
α1α

r

(
u′′ +

u′

r
− u

r2

)
,

σrz = 0,

σθθ = −p + 2μ
α

r2
+ α2

[
4
α2

r4
+
(
u′ − u

r

)2]
,

σθz = 0,

σzz = −p,

(2.8)

where σrθ = σθr , σrz = σzr , σθz = σzθ; the primes denote differentiation with respect to r.
Inserting the stress components and the velocity given by (2.7) into (2.1), one obtains

α1α

(
u′′′

r
+ 2

u′′

r2
− u

′

r3
+
u

r4

)
+ μ

(
u′′ +

u′

r
− u

r2

)
− ρα

r

(
u′ +

u

r

)
= 0 (2.9)

and the boundary conditions are

u
(
a1
)
= Ωa1, u

(
b1
)
= 0, (2.10)

where a1 is the radius of the inner cylinder and b1 is the radius of the outer cylinder. The
solution to (2.9) has three coefficients: two of them can be determined by the no-slip condi-
tion (2.10) and the other can be determined by the confluent hypergeometric functions. It is
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expected that when the viscoelastic parameter goes to zero, the solution should give the New-
tonian case [23], leading to entirely two different kinds of flow behavior. Similar discussions
can be found in [24–26].

3. Solution of the problem

After some manipulations, (2.9) takes the form

xy′′ + (1 − x)y′ + R

2
y = 0, (3.1)

where

u =
g(r)
r

, g ′ =
r

b2
1

y(x), x = − ξ2

2εR
, ξ =

r

b1
, R =

α

v
, ε =

α1/ρ

b2
1

, (3.2)

where prime denotes the differentiation with respect to r, y(x) is the new function, x is the
new variable, R is the cross-Reynolds number, and ε is the elastic number and the boundary
conditions are

g
(
a1
)
= Ωa2

1, g
(
b1
)
= 0. (3.3)

Equation (3.3) denotes that the inner cylinder is rotating with angular velocity Ω and the outer
one is at rest. The solution of (3.1) can be written in the following form:

y = C1M

(
− R

2
, 1, x

)
+ C2U

(
− R

2
, 1, x

)
, (3.4)

where M(a, b, x) and U(a, b, x) are the confluent hypergeometric functions [27, 28]. The so-
lution has three coefficients; therefore, one needs three boundary conditions. Thus, unless an
additional condition is prescribed over the conditions (2.10), one has a parametric solution.
However, the third coefficient can be determined by the properties of the confluent hyperge-
ometric functions. For R > 0, x becomes negative; then for x < 0, U(a, b, x) is not acceptable
and therefore C2 must be zero and (3.4) takes the form

dg

dr
= C1

r

b2
1

M

(
− R

2
, 1,−

r2/b2
1

2εR

)
. (3.5)

Using the identity in [28],

M

(
− R

2
, 1,−

r2/b2
1

2εR

)
= e−r

2/b2
1/2εRM

(
1 +

R

2
, 1,

r2/b2
1

2εR

)
. (3.6)

The integration gives

g = C
∫
e−zM

(
1 +

R

2
, 1, z

)
dz +D, (3.7)
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where z = (r2/b2
1)/2εR. Using the identity in [28] which is

∫
e−zM

(
1 +

R

2
, 1, z

)
dz = ze−zM

(
2 +

R

2
, 2, z

)
+ constant, (3.8)

and by the boundary condition (3.3), one obtains

g

Ωa2
1

=
ξ2e−ξ

2/2εRM
(
2 + R/2, 2, ξ2/2εR

)
− e−1/2εRM

(
2 + R/2, 2, 1/2εR

)
σ2e−σ2/2εRM

(
2 + R/2, 2, σ2/2εR

)
− e−1/2εRM

(
2 + R/2, 2, 1/2εR

) , (3.9)

where u/Ωa1 = (σ/ξ)(g/Ωa2
1) and σ = a1/b1. When ε goes to zero, using the asymptotic

expression of M(a, b, x) in [28], g/Ωa2
1 becomes

lim
ε→0

g

Ωa2
1

= lim
ε→0

(
r2/b2

1

)(
σ2/b2

1/2εR
)R/2 − (1/2εR)R/2

σ2
(
σ2/2εR

)R/2 − (1/2εR)R/2
=

1 − ξR+2

1 − σR+2
, (3.10)

or

u

Ωa1
=

σ

1 − σ2+R

(
1
ξ
− ξ1+R

)
, (3.11)

which is the expression of the velocity of a Newtonian fluid. The variation of u/Ωa1 with
respect to ζ = (ξ − σ)/(1 − σ) for various values of R and ε is illustrated in Figure 1. The value
of σ is taken as 0.2 and the values of ε are taken as 0 and 1. Equation (3.9) is valid for all values
of R and ε. When R goes to infinity, using the expression given in [28] which is

lim
a→∞

1
Γ(b)

M

(
a, b,

x

a

)
= x1/2−(1/2)bIb−1

(
2
√
x
)
, (3.12)

equation (3.9) takes the following form:

u

Ωa1
=
σ

ξ

ξI1
(
ε−1/2ξ

)
− I1

(
ε−1/2)

σI1
(
ε−1/2σ) − I1

(
ε−1/2

) , (3.13)

where Γ(x) is the Gamma function and I1(x) is the modified Bessel function of the first kind
of order one. The variation of u/Ωa1 with respect to ζ for various values of ε is illustrated in
Figure 1. Since the asymptotic form of I1(x) is ex/

√
2πx when ε goes to zero, (3.13) becomes

u

Ωa1
=
σ

ξ
. (3.14)
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Figure 1: The variation of the azimuthal velocity for various values of the cross-Reynolds number and the
elastic number. (ε = 0); (ε = 1), ζ = (ξ − σ)/(1 − σ); σ ≤ ξ ≤ r/b1, σ = 0.2.

Equation (3.14) satisfies the boundary condition at ξ = σ, but it does not satisfy the boundary
condition at ξ = 1. It is clearly seen from Figure 1 that when R goes to +∞, the flow shows a
boundary layer character near the outer cylinder for a Newtonian fluid, but it does not behave
the same way for a fluid of second grade. A similar situation occurs for the axial flow between
two circular cylinders with porous walls of a second-grade fluid [15].

For R < 0, x is positive; then for x > 0, M(a, b, x) becomes an increasing function of x;
therefore, C1 must be zero, then (3.4) takes the form

dg

dr
= C2

r

b2
1

(
N

2
, 1,

r2/b2
1

2εN

)
, (3.15)

where N = −R(> 0). Using the identity in [28] which is

∫
U(a, 1, z)dz =

1
1 − aU(a − 1, 0, z) + constant, (3.16)

and by the boundary condition, the integration gives

g

Ωa2
1

=
U
(
N/2 − 1, 0, r2/b2

1/2εR
)
−U

(
N/2 − 1, 0, 1/2εN

)
U
(
N/2 − 1, 0, σ2/2εN

)
−U

(
N/2 − 1, 0, 1/2εN

) , (3.17)

where u/Ωa1 = (σ/ξ)(g/Ωa2
1). When ε goes to zero, using the asymptotic expression of

U(a, b, x) in [28], one obtains

u

Ωa1
=

σ

1 − σ2−N

(
1
ξ
− ξ1−N

)
(3.18)
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which is the expression of the velocity for a Newtonian fluid. The variation of u/Ωa1, with
respect to ζ = (ξ−σ)/(1−σ) for various values of −R and ε, is illustrated in Figure 1. The value
of σ is taken as 0.2 and the values of ε are taken as 0 and 1. Equation (3.17) is valid for all values
of −R and ε. When N goes to infinity, using the asymptotic expression given in [28] which is

lim
a→∞

Γ(1 + a − b)U
(
a, b,

x

a

)
= 2x1/2−(1/2)bKb−1

(
2
√
x
)
. (3.19)

Equation (3.17) takes the following form:

u

Ωa1
=
σ

ξ

ξK1
(
ε−1/2ξ

)
−K1

(
ε−1/2)

σK1
(
ε−1/2σ

)
−K1

(
ε−1/2

) , (3.20)

where K1(x) is the modified Bessel function of the second kind of order one. The variation of
u/Ωa1 with respect to ζ for various values of ε is illustrated in Figure 1. Since the asymptotic
form of K1(x) is

√
π/2xe−x when ε goes to zero, (3.20) becomes

u

Ωa1
= 0. (3.21)

Equation (3.21) satisfies the boundary condition at ξ = 1, but it does not satisfy the boundary
condition at ξ = σ. The reason is that a boundary layer occurs at ξ = σ for a Newtonian fluid,
but it does not behave the same way for a fluid of second grade.

The case of R = −2, namely N = 2, cannot be obtained by (3.17). For N = 2, by the
definition of U(a, b, x), U(1, 1, x) can be found as

U(1, 1, x) = exEi(x), (3.22)

where Ei(x) is the exponential integral defined in the following form

Ei(x) =
∫∞
x

e−t

t
dt. (3.23)

Inserting U(1, 1, x) into the expression of dg/dr and by integration and by using the boundary
conditions, one finds

u

Ωa1
=
σ

ξ

eξ
2/4εEi

(
ξ2/4ε

)
− e1/4εEi(1/4ε) + ln

(
ξ2)

eσ2/4εEi
(
σ2/4ε

)
− e1/4εEi(1/4ε) + ln

(
σ2

) . (3.24)

The variation of Ωa1 with respect to ζ for various values of ε is illustrated in Figure 1. The
value of σ is taken as 0.2 and the values of ε are taken as 0 and 1. When ε goes to zero, the
argument of the exponential integral becomes large, then Ei(x) can be written as e−x/x and
(3.24) becomes

u

Ωa1
=
σ

ξ

ln ξ
lnσ

. (3.25)
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Figure 2: The variation of the moment coefficient with the cross-Reynolds number. The ratio of the radii of
the cylinders is taken as 0.2. (ε = 0); (ε = 1),

4. The torque exerted by the fluid on the inner cylinder

The torque exerted by the flow on the inner cylinder is given in the following form:

M = 2πha2
1

[
μ

(
du

dr
− u
r

)
+
αα1

r

d

dr

(
du

dr
+
u

r

)]
r=a1

, (4.1)

where h is the length of the inner cylinder. The moment coefficient is

(Cm)r=a1
= σ

[(
du

dξ
− u
ξ

)
+
εR

ξ

d

dξ

(
du

dξ
+
u

ξ

)]
ξ=σ
. (4.2)

Equation (4.2) shows that the moment coefficient depends on the cross-Reynolds number, the
elastic number, and the ratio of the radii of the cylinders. The variation of the moment coeffi-
cient with these numbers is illustrated in Figure 2. There are appreciable differences between
that of the Newtonian fluid and that of the second-grade fluid. The curves in Figure 2 show
the effect of the second-grade fluid. The moment coefficient decreases with the cross-Reynolds
number for a Newtonian fluid and increases with the cross-Reynolds number for a second-
grade fluid, for all values of the ratio of the radii of the cylinders.

5. Conclusions

An exact solution of the governing equation for the flow of a fluid of second grade between two
coaxial cylinders with porous walls is given. The flow of a second-grade fluid for which the in-
ner cylinder is rotating and the outer one is at rest is considered. The solution is given in terms
of the confluent hypergeometric functions and is valid for all values of the cross-Reynolds
number and the elastic parameter. The boundary conditions are the no-slip boundary condi-
tions and an additional boundary condition. The additional boundary condition is that the
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solution tends to the Newtonian value as the elastic number in the solution approaches zero.
The solution is discussed for positive, negative, infinite, and −2 values of the cross-Reynolds
number. The torque exerted by the fluid on the inner cylinder is calculated. It is shown that
the moment coefficient depends on the cross-Reynolds number, the elastic number, and the
ratio of the radii of the cylinders. For a given value of this ratio, it decreases with the cross-
Reynolds number for a Newtonian fluid and increases with the cross-Reynolds number for a
second-grade fluid.
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