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1. Introduction

Many problems in applied sciences can be modeled by singular and nonsingular boundary
value problems. The application of these problems involve astrophysics, experimental and
mathematical physics, nuclear charge in heavy atoms, thermal behavior of a spherical cloud of
gas, thermodynamics, population models, chemical kinetics, and fluid mechanics, see [1–46]
and the references therein. Several techniques including decomposition, variational iteration,
finite difference, polynomial spline, and homotopy perturbation have been developed for
solving such problems, see [1–51] and the references therein. Most of these methods have
their inbuilt deficiencies coupled with the major drawback of huge computational work.
These facts have motivated to develop other methods for solving these problems. Adomian’s
decomposition method [42–44, 51] was employed for finding solution of linear and nonlinear
boundary value problems. He [12–18] developed the variational iteration method (VIM) for
solving linear, nonlinear, initial, and boundary value problems. It is worth mentioning that
the origin of variational iteration method can be traced back to Inokuti et al. [19]. In these

mailto:noormaslam@hotmail.com


2 Mathematical Problems in Engineering

methods, the solution is given in an infinite series usually converging to an accurate solution,
see [1–5, 12–19, 21, 23, 31–44, 46, 48, 51] and the references therein. In this paper, we apply
the modified variational iteration method (MVIM), which is obtained by the elegant coupling
of variational iteration method and the Adomian’s polynomials for solving singular and
nonsingular initial and boundary value problems. This idea has been used by Abbasbandy
[1, 2] implicitly, and by Noor and Mohyud-Din [36, 38, 40] for the solution of nonlinear
boundary value problems. The basic motivation of this paper is to apply this modified
variational iteration method (MVIM) for finding the solution of singular and nonsingular
initial and boundary value problems. It is shown that the MVIM provides the solution in a
rapid convergent series with easily computable components. We write the correct functional for
the boundary value problem and calculate the Lagrange multiplier optimally. The Adomian’s
polynomials are introduced in the correct functional and evaluated by using the specific
algorithm [42–44] and the references therein. Finally, the approximants are calculated by
employing the Lagrange multipliers and the Adomian’s polynomial scheme simultaneously.
The use of Lagrange multiplier reduces the successive application of the integral operator
and minimizes the computational work. Moreover, the selection of the initial value is done
by exploiting the concept of modified decomposition method. In the present study, we apply
this technique to solve boundary layer problem, unsteady flow of gas, singularly perturbed
sixth-order Boussinesq, third-order dispersive, and fourth-order parabolic equations. To make
the work more concise and to get a better understanding of the solution behavior, in case of
boundary layer problem and the unsteady flow of gas, we replace the series solutions by the
powerful Pade approximants [22, 28, 34, 43, 44, 47]. The use of Pade approximants shows
real promise in solving boundary value problems in an infinite domain. The proposed MVIM
solves effectively, easily, and accurately a large class of linear, nonlinear, partial, deterministic,
or stochastic differential equations with approximate solutions which converge very rapidly to
accurate solutions. Our results can be viewed as important and significant improvement of the
previously known results.

2. Variational iteration method

To illustrate the basic concept of the technique, we consider the following general differential
equation:

Lu +Nu = g(x), (2.1)

where L is a linear operator, N a nonlinear operator, and g(x) is the inhomogeneous term.
According to variational iteration method [1–5, 13–19, 21, 23, 31–41, 46, 48], we can construct a
correct functional as follows:

un+1(x) = un(x) +
∫x

0
λ(s)

(
Lun(s) +Nũn(s) − g(s)

)
ds, (2.2)

where λ(s) is a Lagrange multiplier [13–18], which can be identified optimally via variational
iteration method. The subscripts n denote the nth approximation, ũn is considered as a
restricted variation, that is, δũn = 0. Relational (2.2) is called as a correct functional. The
solution of the linear problems can be solved in a single iteration step due to the exact
identification of the Lagrange multiplier. The principles of variational iteration method and its
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applicability for various kinds of differential equations are given in [13–18]. In this method, it is
required first to determine the Lagrange multiplier λ optimally. The successive approximation
un+1, n ≥ 0 of the solution u will be readily obtained upon using the determined Lagrange
multiplier and any selective function. Consequently, the solution is given by u = limn→∞ un.
For the convergence criteria and error estimates of variational iteration method, see Ramos
[41].

3. Adomian’s decomposition method

To convey an idea of the technique, we consider the differential equation [42–44] of the form

Lu + Ru +Nu = g, (3.1)

where L is the highest-order derivative which is assumed to be invertible, R is a linear
differential operator of order lesser than L, Nu represents the nonlinear terms, and g is the
source term. Applying the inverse operator L−1 to both sides of (3.1) and using the given
conditions, we obtain

u = f − L−1(Ru) − L−1(Nu), (3.2)

where the function f represents the terms arising from integrating the source term g and by
using the given conditions. Adomian’s decomposition method [42–44] defines the solution by
the series

u(x) =
∞∑
n=0

un(x), (3.3)

where the components un(x) are usually determined recurrently by using the relation

u0 = f,

uk+1 = L−1(Ruk) − L−1(Nuk
)
, k ≥ 0.

(3.4)

The nonlinear operator N(u) can be decomposed into an infinite series of polynomials given
by

N(u) =
∞∑
n=0

An, (3.5)

where An are the so-called Adomian’s polynomials that can be generated for various classes of
nonlinearities according to the specific algorithm developed in [42–44] which yields

An =
(

1
n!

)(
dn

dλn

)
N

(
n∑
i=0

(
λiui
))

λ=0

, n = 0, 1, 2, . . . . (3.6)



4 Mathematical Problems in Engineering

4. Modified variational iteration method (MVIM)

To illustrate the basic concept of the variational decomposition method, we consider the
following general differential (4.1), we have

Lu +Nu = g(x), (4.1)

where L is a linear operator, N is a nonlinear operator, and g(x) is the forcing term.
According to variational iteration method [1–5, 13–19, 21, 23, 31–41, 46, 48], we can

construct a correct functional as follows:

un+1(x) = un(x) +
∫x

0
λ
(
Lun(s) +Nũn(s) − g(s)

)
ds, (4.2)

where λ is a Lagrange multiplier [13–18], which can be identified optimally via variational
iteration method. The subscripts n denote the nth approximation, ũn is considered as a
restricted variation, that is, δũn = 0 (4.2) is called as a correct functional. We define the solution
u(x) by the series

u(x) =
∞∑
i=0

ui(x), (4.3)

and the nonlinear term

N(u) =
∞∑
n=0

An(u0, u1, u2, . . . , ui), (4.4)

where An are the so-called Adomian’s polynomials and can be generated for all types of
nonlinearities according to the algorithm developed, in [42–44] which yields the following:

An =
(

1
n!

)(
dn

dλn

)
N
(
u(λ)

)
. (4.5)

Hence, we obtain the following iterative scheme for finding the approximate solution

un+1(x) = un(x) +
∫ t

0
λ

(
Lun(x) +

∞∑
n=0

An − g(x)
)
dx, (4.6)

which is called the modified variational iteration method (MVIM) and is formulated by the
elegant coupling of variational iteration method and the Adomian’s polynomials.

5. Pade approximants

A Pade approximant is the ratio of two polynomials constructed from the coefficients of the
Taylor series expansion of a function u(x). The [L/M] Pade approximants to a function y(x)
are given by [22, 28, 34, 43, 44, 47]

[
L

M

]
=

PL(x)
QM(x)

, (5.1)
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where PL(x) is polynomial of degree at most L and QM(x) is a polynomial of degree at most
M. The formal power series

y(x) =
∞∑
i=1

aix
i,

y(x) − PL(x)
QM(x)

= O
(
xL+M+1),

(5.2)

determine the coefficients of PL(x) and QM(x) by the equation. Since we can clearly multiply
the numerator and denominator by a constant and leave [L/M] unchanged, we imposed the
normalization condition

QM(0) = 1.0. (5.3)

Finally, we require that PL(x) and QM(x) have non-common factors. If we write the coefficient
of PL(x) and QM(x) as

PL(x) = p0 + p1x + p2x
2 + · · · + pLxL,

QM(x) = q0 + q1x + q2x
2 + · · · + qMxM.

(5.4)

Then by (5.3) and (5.4), we may multiply (5.5) by QM(x), which linearizes the coefficient
equations. We can write out (5.5) in more details as

aL+1 + aLq1 + · · · + aL−MqM = 0,
qL+2 + qL+1q1 + · · · + aL−M+2qM = 0,

...
aL+M + aL+M−1q1 + · · · + aLqM = 0,

(5.5)

a0 = p0,
a0 + a0q1 + · · ·+ = p1,

...
aL + aL−1q1 + · · · + a0qL = pL.

(5.6)

To solve these equations, we start with (5.5), which is a set of linear equations for all the
unknown q’s. Once the q’s are known, then (5.6) gives an explicit formula for the unknown
p’s, which complete the solution. If (5.5) and (5.6) are nonsingular, then we can solve them
directly and obtain (5.7) [22], where (5.7) holds, and if the lower index on a sum exceeds the
upper, the sum is replaced by zero:

[
L

M

]
=

det

⎡
⎢⎢⎢⎢⎢⎣

aL−M+1 aL−M+2 · · · aL+1
...

...
. . .

...
aL aL+1 · · · aL+M∑L

j=M
aj−Mx

j
∑L

j=M−1
aj−M+1x

j · · ·
∑L

j=0
ajx

j

⎤
⎥⎥⎥⎥⎥⎦

det

⎡
⎢⎢⎢⎣
aL−M+1 aL−M+2 · · · aL+1

...
...

. . .
aL aL+1 · · · aL+M
xM xM−1 · · · 1

⎤
⎥⎥⎥⎦

. (5.7)

To obtain diagonal Pade approximants of different order such as [2/2], [4/4], or [6/6], we can
use the symbolic calculus software Maple.
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6. Numerical applications

In this section, we apply the modified variational iteration method (MVIM) for solving the
singular and nonsingular boundary value problems. We write the correct functional for the
boundary value problem and carefully select the initial value because the approximants
are heavily dependant on the initial value. The Adomian’s polynomials are introduced in
the correct functional for the nonlinear terms. The results are very encouraging indicating
the reliability and efficiency of the proposed method. We apply the MVIM for solving
the boundary layer problem; unsteady flow of gas through a porous medium; Boussinesq
equations, third-order dispersive, and fourth-order parabolic singular partial differential
equations. The powerful Pade approximants are applied in case of boundary-layer problem
and unsteady flow in order to make the work more concise and for better understanding of the
solution behavior.

Example 6.1 (see [43]). Consider the following nonlinear third-order boundary layer problem
which appears mostly in the mathematical modeling of physical phenomena in fluid
mechanics [43, 45]:

f ′′′(x) + (k − 1)f(x)f ′′(x) − 2n
(
f ′(x)

)2 = 0, k > 0, (6.1)

with boundary conditions

f(0) = 0, f ′(0) = 1, f ′(∞) = 0, k > 0. (6.2)

The correct functional is given as

fn+1(x) = fn(x) +
∫x

0
λ(s)

(
f ′′′n (s) + (k − 1)f̃n(x)f̃ ′′n(s) − 2n

(
f̃ ′n(s)

)2)
ds = 0, k > 0. (6.3)

Making the correct functional stationary, the Lagrange multipliers can be identified as λ(s) =
−(1/2!)(s − x)2, consequently, we have

fn+1(x) = fn(x) −
∫x

0

1
2!
(s − x)2

(
f ′′′n (s) + (k − 1)f̃n(s)f̃ ′′n(x) − 2n

(
f̃ ′n(s)

)2)
ds = 0, k > 0, (6.4)

where f ′′(0) = α < 0. Applying the modified variational iteration method, we have

fn+1(x) = fn(x) +
∫x

0

1
2!
(s − x)2

(
f ′′′n (s) + (k − 1)

∞∑
n=0

An − 2n
∞∑
n=0

Bn

)
ds = 0, (6.5)
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Table 1: Numerical values for α = f ′′(0) for 0 < k < 1 by using diagonal Pade approximants [43].

n [2/2] [3/3] [4/4] [5/5] [6/6]
0.2 −0.3872983347 −0.3821533832 −0.3819153845 −0.3819148088 −0.3819121854
1/3 −0.5773502692 −0.5615999244 −0.5614066588 −0.5614481405 −0.561441934
0.4 −0.6451506398 −0.6397000575 −0.6389732578 −0.6389892681 −0.6389734794
0.6 −0.8407967591 −0.8393603021 −0.8396060478 −0.8395875381 −0.8396056769
0.8 −1.007983207 −1.007796981 −1.007646828 −1.007646828 −1.007792100

where An and Bn are the so-called Adomian’s polynomials and can be generated for all types
of nonlinearities according to the algorithm defined in [42–44]. Consequently the following
approximants are made:

f0(x) = x,

f1(x) = x +
1
2
αx2 +

1
3
x3,

f2(x) = x +
1
2
αx2 +

1
3
x3 +

1
24
α(3n + 1)x4 +

1
30
n(n + 1)x5,

f3(x) = x +
1
2
αx2 +

1
3
x3 +

1
24
α(3n + 1)x4 +

1
30
n(n + 1)x5 +

1
120

α2(3n + 1)x5

+
1

720
α
(
19n2 + 18n + 3

)
x6 +

1
315

n
(
2n2 + 2n + 1

)
x7,

f4(x) = x +
1
2
αx2 +

1
3
x3 +

1
24
α(3n + 1)x4 +

1
30
n(n + 1)x5 +

1
120

α2(3n + 1)x5

+
1

720
α
(
19n2 + 18n + 3

)
x6 +

1
315

n
(
2n2 + 2n + 1

)
x7,

1
5040

α2(27n2 + 42n + 11
)
x7

+
1

40320
α
(
167n3 + 297n2 + 161n + 15

)
x8 +

1
22680

n
(
13n3 + 38n2 + 23n + 6

)
x9,

...

(6.6)

The series solution is given as

f(x) = x +
αx2

2
+
nx3

3
+
(

1
8
nα +

1
24
α

)
x4 +

(
1

30
n2 +

1
40
nα2 +

1
120

α2 +
1
30
n

)
x5

+
(

19
720

n2α +
1

240
α +

1
40
nα

)
x6+

(
1

120
nα2+

1
315

n+
2

315
n3+

11
5040

α2+
3

560
n2α2+

2
315

n2
)
x7

+
(

11
40320

α3 +
33

4480
n2α +

3
4480

α3n2 +
23

5760
nα +

1
2688

α +
167

40320
n3α +

1
960

α3n

)
x8

+
(

1
3780

n +
527

362880
n3α2 +

19
11340

n3 +
709

362880
nα2 +

23
8064

n2α2 +
23

22680
n2 +

13
22680

n4

+
43

120960
α2
)
x9 + · · · .

(6.7)

Example 6.2 (see [34, 44]). Consider the following nonlinear differential equation which
governs the unsteady flow of gas through a porous medium:

y′′(x) +
2x√

1 − αy
y′(x) = 0, 0 < α < 1. (6.8)
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Table 2: Numerical values for α = f ′′(0) for k > 1 by using diagonal Pade approximants [43].

n α

4 −2.483954032
10 −4.026385103
100 −12.84334315
1000 −40.65538218
5000 −104.8420672

2e + 06

0

−2e + 06

−4e + 06

−4
−2

0
2

4

x

4
2

0
−2

−4

n

Figure 1: (α = −2.483954032).

With the following typical boundary conditions imposed by the physical properties [34, 44],

y(0) = 1, lim
x→∞

y(x) = 0. (6.9)

The correct functional is given as

yn+1(x) = yn(x) +
∫x

0
λ(s)

(
y′′(s) +

2x√
1 − αy

y′(s)
)
ds, 0 < α < 1. (6.10)

Making the correct functional stationary, using λ = x−s, as the Lagrange multiplier, we get the
following iterative formula:

yn+1(x) = yn(x) +
∫x

0
(s − x)

(
y′′(s) +

2x√
1 − αy

y′(s)
)
ds, 0 < α < 1, (6.11)

where

A = y′(0). (6.12)

Applying the modified variational iteration method, we have

yn+1(x) = yn(x) +
∫x

0
(s − x)

(
y′′(s) + 2x

∞∑
n=0

An

)
ds, 0 < α < 1, (6.13)
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where An are the so-called Adomian’s polynomials and can be generated for all types of
nonlinearities according to the algorithm defined in [42–44]. First few Adomian’s polynomials
are as under:

A0 =
(
1 − αy0

)−1/2
y′0,

A1 =
(
1 − αy0

)−1/2
y′1 +

α

2
(
1 − αy0

)−3/2
y′0y1,

A2 =
(
1 − αy0

)−1/2
y′2 +

α

2
(
1 − αy0

)−3/2
y′1y1 +

α

2
(
1 − αy0

)−3/2
y′0y2 +

3
8
α2(1 − αy0

)−5/2
y′0y

2
1 ,

A3 =
(
1 − αy0

)−1/2
y′3 +

α

2
(
1 − αy0

)−3/2
y′2y1 +

α

2
(
1 − αy0

)−3/2
y′1y2 +

α

2
(
1 − αy0

)−3/2
y′0y3

+
3
8
α2(1 − αy0

)−5/2
y′1y

2
1 +

3
4
α2(1 − αy0

)−5/2
y′0y1y2 +

5
16
α3(1 − αy0

)−7/2
y′0y

3
1 ,

...
(6.14)

Consequently, the following approximants are obtained:

y0(x) = 1,

y1(x) = 1 +Ax,

y2(x) = 1 +Ax − A

3
√

1 − α
x3,

y3(x) = 1 +Ax − A

3
√

1 − α
x3 − αA2

12(1 − α)3/2
x4 +

A

10(1 − α)x
5,

y4(x) = 1 +Ax − A

3
√

1 − α
x3 − αA2

12(1 − α)3/2
x4 +

A

10(1 − α)x
5 − 3α2A3

80(1 − α)5/2
x5

+
αA2

15(1 − α)2
x6 +O

(
x7),

y5(x) = 1 +Ax − A

3
√

1 − α
x3 − αA2

12(1 − α)3/2
x4 +

A

10(1 − α)x
5 − 3α2A3

80(1 − α)5/2
x5 +

αA2

15(1 − α)2
x6

− α3A4

48(1 − α)7/2
x6 +O

(
x7),

...
(6.15)

The series solution is given as

y(x) = 1 +Ax − A

3
√

1 − α
x3 − αA2

12(1 − α)3/2
x4 +

(
A

10(1 − α) −
3α2A3

80(1 − α)5/2

)
x5

+
(

αA2

15(1 − α)2
− α3A4

48(1 − α)7/2

)
x6 +O

(
x7).

(6.16)

Now, we investigate the mathematical behavior of the solution y(x) in order to determine the
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Table 3: The initial slopes A = y′(0) for various values of α.

α B[2/2] = y′(0) B[3/3] = y′(0)
0.1 −3.556558821 −1.957208953
0.2 −2.441894334 −1.786475516
0.3 −1.928338405 −1.478270843
0.4 −1.606856838 −1.231801809
0.5 −1.373178096 −1.025529704
0.6 −1.185519607 −0.8400346085
0.7 −1.021411309 −0.6612047893
0.8 −0.8633400217 −0.4776697286
0.9 −0.6844600642 −0.2772628386

initial slope y′(0). This goal can be achieved by forming diagonal Pade approximants [34, 44,
47] which have the advantage of manipulating the polynomial approximation into a rational
function to gain more information about y(x). It is well-known that Pade approximants will
converge on the entire real axis [20, 22, 28, 34, 43, 44, 47], if y(x) is free of singularities on
the real axis. It is of interest to note that Pade approximants give results with no greater error
bounds than approximation by polynomials. More importantly, the diagonal approximant is
the most accurate approximant; therefore we will construct only the diagonal approximants in
the following discussions. Using the boundary condition y(∞) = 0, the diagonals approximant
[M/M] vanishes if the coefficient of x with the highest power in the numerator vanishes.
The computational work can be performed by using the mathematical software MAPLE. The
physical behavior indicates that y(x) is a decreasing function, hence y′(0) < 0. Using this fact,
and following [20, 34, 44], complex roots and nonphysical positive roots should be excluded.
Based on this, the [2/2] Pade approximant produced the slope A to be

A = −2(1 − α)1/4

√
3α

, (6.17)

and using [3/3] Pade approximants we find

A = −

√
(−4674α + 8664)

√
1 − α − 144γ

57α
, (6.18)

where

γ =
√

5(1 − α)
(
1309α2 − 2280α + 1216

)
. (6.19)

Using (6.17)–(6.19) gives the values of the initial slope A = y′(0) listed in Table 1. The formulas
(6.17) and (6.19) suggest that the initial slope A = y′(0) depends mainly on the parameter
α, where 0 < α < 1. Table 3 shows that the initial slope A = y′(0) increases with the
increase of α. The mathematical structure of y(x) was successfully enhanced by using the Pade
approximants. Table 4 indicates the values of y(x) [34, 44] and by using the [2/2] and [3/3]
approximants for specific value of α = 0.5.
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Table 4: The values of y(x) for α = 0.5 for x = 0.1 to 1.0.

X y kidder y[2/2] y[3/3]

0.1 0.8816588283 0.8633060641 0.8979167028
0.2 0.7663076781 0.7301262261 0.7985228199
0.3 0.6565379995 0.6033054140 0.7041129703
0.4 0.5544024032 0.4848898717 0.6165037901
0.5 0.4613650295 0.3761603869 0.5370533796
0.6 0.3783109315 0.2777311628 0.4665625669
0.7 0.3055976546 0.1896843371 0.4062426033
0.8 0.2431325473 0.1117105165 0.3560801699
0.9 0.1904623681 0.04323673236 0.3179966614
1.0 0.1587689826 0.01646750847 0.2900255005

Example 6.3 (see [32, 51]). Consider the following singularly perturbed sixth-order Boussinesq
equation:

utt = uxx +
(
p(u)

)
xx + αuxxxx + βuxxxxxx, (6.20)

taking α = 1, β = 0, and p(u) = 3u2, the model equation is given as

utt = uxx + 3
(
u2)

xx + uxxxx, (6.21)

with initial conditions

u(x, 0) =
2ak2ekx(
1 + aekx

)2
, ut(x, 0) =

2ak3
√

1 + k2
(
1 − aekx

)
ekx(

1 + aekx
)3

, (6.22)

where a and k are arbitrary constants. The exact solution u(x, t) of the problem is given as
[32, 51]

u(x, t) = 2
ak2 exp(kx + k

√
1 + k2t)(

1 + a exp
(
kx + k

√
1 + k2t

))2
. (6.23)

The correct functional is given as

un+1(x, t) =
2ak2ekx(
1 + aekx

)2
+

2ak3
√

1 + k2
(
1 − aekx

)
ekx(

1 + aekx
)3

t

+
∫ t

0
λ

(
∂2un
∂t2

−
(
ũn
)
xx −

(
ũn
)
xxxx − 3

∞∑
n=0

Bn

)
dt,

(6.24)

where Bn are Adomian’s polynomials for nonlinear operator F(u) = u2(x) and can be
generated for all types of nonlinearities according to the algorithm developed in [42–44, 51]
which yields the following:

B0 =
(
u2

0
)
xx,

B1 = 2u0u1xx + 4u0xu1x + 2u0xxu1,

B2 = 2u0u2xx + 4u0xu2x + 2u0xxu2 + 2u1xu1xx + 2
(
u1x
)2

B3 =
(
2u0u3 + 2u1u2

)
xx,

...

(6.25)
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Making the correct functional stationary, the Lagrange multiplier can be identified as λ = x − t,
consequently,

un+1(x, t) =
2ak2ekx(
1 + aekx

)2
+

2ak3
√

1 + k2
(
1 − aekx

)
ekx(

1 + aekx
)3

t

+
∫ t

0
(x − t)

(
∂2un
∂t2

−
(
ũn
)
xx −

(
ũn
)
xxxx − 3

∞∑
n=0

Bn

)
dt.

(6.26)

The following approximants are obtained:

u0(x, t) =
2ex(

1 + ex
)2
,

u1(x, t) =
2ex(

1 + ex
)2

+
2ak3

√
1 + k2

(
1 − aekx

)
ekx(

1 + aekx
)3

t +
2ex
(
1 − 4ex + e2x)
(
1 + ex

)4
t2,

u2(x, t) =
2ex(

1 + ex
)2

+
2ak3

√
1 + k2

(
1 − aekx

)
ekx(

1 + aekx
)3

t +
2ex
(
1 − 4ex + e2x)
(
1 + ex

)4
t2

−
2
√

2ex
(
− 1 + ex

)(
1 − 10ex + e2x)

3
(
1 + ex

)5
t3

+
ex
(
1 − 4ex + e2x)(1 − 44ex + 78e2x − 44e3x + e4x)

3
(
1 + ex

)8
t4,

u3(x, t) =
2ex(

1 + ex
)2

+
2ak3

√
1 + k2

(
1 − aekx

)
ekx(

1 + aekx
)3

t +
2ex
(
1 − 4ex + e2x)
(
1 + ex

)4
t2

−
2
√

2ex
(
− 1 + ex

)(
1 − 10ex + e2x)

3
(
1 + ex

)5
t3

+
ex
(
1 − 4ex + e2x)(1 − 44ex + 78e2x − 44e3x + e4x)

3
(
1 + ex

)8
t4

−
√

2ex
(
− 1 + ex

)(
1 − 56ex + 246e2x − 56e3x + e4x)

15
(
1 + ex

)7
t5

+
ex
(
1 − 452ex + 19149e2x − 207936e3x + 807378e4x − 1256568e5x)

45
(
1 + ex

)12
t6

+
ex
(
807378e6x − 207936e7x + 19149e8x − 452e9x + e10x)

45
(
1 + ex

)12
t6,

...

(6.27)
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Table 5: (Error estimates.) The absolute error between the exact and the series solutions. Higher accuracy
can be obtained by introducing some more components of the series solution.

xi
tj

0.01 0.02 0.04 0.1 0.2 0.5
−1 2.80886 E − 14 1.79667 E − 12 1.15235 E − 10 2.83355 E − 8 1.83899 E − 6 4.74681 E − 4
−0.8 6.27276 E − 14 4.01362 E − 12 2.57471 E − 10 6.33178 E − 8 4.10454 E − 6 1.04489 E − 3
−0.6 6.08402 E − 14 3.90188 E − 12 2.25663 E − 10 6.18024 E − 8 4.02299 E − 6 1.03093 E − 3
−0.4 1.16573 E − 14 7.41129 E − 13 4.82756 E − 11 1.23843 E − 8 8.53800 E − 6 2.46302 E − 4
−0.2 5.53446 E − 14 3.53395 E − 12 2.25663 E − 10 5.47485 E − 8 3.47264 E − 6 8.35783 E − 4
0 8.63198 E − 14 5.53357 E − 12 2.54174 E − 10 8.65197 E − 8 5.54893 E − 6 1.37353 E − 3
0.2 5.56222 E − 14 3.55044 E − 12 2.27779 E − 10 5.60362 E − 8 3.63600 E − 6 9.29612 E − 4
0.4 1.14353 E − 14 7.14928 E − 13 4.49107 E − 11 1.03370 E − 8 5.93842 E − 7 9.61260 E − 5
0.6 6.06182 E − 14 3.87551 E − 12 2.47218 E − 10 5.97562 E − 8 3.76275 E − 6 8.79002 E − 4
0.8 6.23945 E − 14 3.99519 E − 12 2.55127 E − 10 6.18881 E − 8 3.92220 E − 6 9.36404 E − 4
1 2.79776 E − 14 1.78946 E − 12 1.14307 E − 10 2.77684 E − 8 1.76607 E − 6 4.28986 E − 4

The series solution is given as

u(x, t) =
2ex(

1 + ex
)2

+
2ak3

√
1 + k2

(
1 − aekx

)
ekx(

1 + aekx
)3

t +
2ex
(
1 − 4ex + e2x)
(
1 + ex

)4
t2

−
2
√

2ex
(
− 1 + ex

)(
1 − 10ex + e2x)

3
(
1 + ex

)5
t3

+
ex
(
1 − 4ex + e2x)(1 − 44ex + 78e2x − 44e3x + e4x)

3
(
1 + ex

)8
t4

+
8e2x(1 − 10ex + 20e2x − 10e3x + e4x)

(
1 + ex

)8
t4

−
√

2ex
(
− 1 + ex

)(
1 − 56ex + 246e2x − 56e3x + e4x)

15
(
1 + ex

)7
t5

+
ex
(
1 − 452ex + 19149e2x − 207936e3x + 807378e4x − 1256568e5x)

45
(
1 + ex

)12
t6

+
ex
(
807378e6x − 207936e7x + 19149e8x − 452e9x + e10x)

45
(
1 + ex

)12
t6 + · · · .

(6.28)

Example 6.4 (see [32, 51]). Consider the following singularly perturbed sixth-order Boussinesq
equation:

utt = uxx +
(
u2)

xx − uxxxx +
1
2
uxxxxxx, (6.29)

with initial conditions

u(x, 0) = −105
169

sech4
(

x√
26

)
, ut(x, 0) =

−210
√

194/13 sech4(x/
√

26) tanh(x/
√

26)
2197

.

(6.30)
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The exact solution of the problem is given as

u(x, t) = −105
169

sech4

[√
1
26

(
x −

√
97

169
t

)]
. (6.31)

Applying the modified variational iteration method, we obtain

un+1(x, t) = −
105
169

sech4
(

x√
26

)
+
−210

√
194/13 sech4(x/

√
26) tanh(x/

√
26)

2197
t

+
∫ t

0
λ

(
∂2un
∂t2

−
(
ũn
)
xx +

(
ũn
)
xxxx −

1
2
(
ũn
)
xxxxxx +

∞∑
n=0

bn

)
dt.

(6.32)

Making the correct functional stationary, the Lagrange multiplier can be identified as λ = x − t,
consequently

un+1(x, t) = −
105
169

sech4
(

x√
26

)
+
−210

√
194/13 sech4(x/

√
26) tanh(x/

√
26)

2197
t

+
∫ t

0
(x − t)

(
∂2un
∂t2

−
(
ũn
)
xx +

(
ũn
)
xxxx −

1
2
(
ũn
)
xxxxxx +

∞∑
n=0

Bn

)
dt,

(6.33)
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where Bn are Adomian’s polynomials for nonlinear operator F(u) = u2(x) and can be
generated for all types of nonlinearities according to the algorithm developed in [42–44, 51].
Consequently, the following approximants are obtained:

u0(x, t) = −
105
169

sech4
(

x√
26

)
,

u1(x, t) = −
105
169

sech4
(

x√
26

)
− 105

√
194/13 sech6(x/

√
26) sinh(

√
2x/
√

13)
2197

t

− 105
371293

(
− 291 + 194cosh

(√
2x√
13

))
sech6 x√

26
t2,

u2(x, t) = −
105
169

sech4
(

x√
26

)
− 105

√
194/13 sech6(x/

√
26) sinh(

√
2x/
√

13)
2197

t

− 105
371293

(
− 291 + 194cosh

(√
2x√
13

))
sech6 x√

26
t2

+
395 sech7(x/

√
26)

52206766144

(
10816

√
2522 sinh

x√
26
− 1664

√
2522 sinh

3x√
26

)
t3

+
(
− 334200 sech5

(
x√
26

)
+ 354247cosh

(
2√
13
x

)
sech5

(
x√
26

)

− 47164cosh
(

2
√

2√
13
x

)
sech5

(
x√
26

))
t4

+
(

3201cosh3
(

3
√

2√
13
x

)
sech5

(
x√
26

)
− 388cosh

(
4
√

2√
13
x

)
sech5

(
x√
26

))
t4 + · · · ,

...
(6.34)

The series solution is obtained as

u(x, t) = −105
169

sech4
(

x√
26

)
− 105

√
194/13 sech6(x/

√
26) sinh(

√
2x/
√

13)
2197

t

− 105
371293

(
− 291 + 194cosh

(√
2x√
13

))
sech6 x√

26
t2

+
395 sech7(x/

√
26)

52206766144

(
10816

√
2522 sinh

x√
26
− 1664

√
2522 sinh

3x√
26

)
t3

+
(
− 334200 sech5

(
x√
26

)
+ 354247cosh

(
2√
13
x

)
sech5

(
x√
26

)

− 47164cosh
(

2
√

2√
13
x

)
sech5

(
x√
26

))
t4

+
(

3201cosh3
(

3
√

2√
13
x

)
sech5

(
x√
26

)
− 388cosh

(
4
√

2√
13
x

)
sech5

(
x√
26

))
t4 + · · · .

(6.35)
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Table 6: The absolute error between the exact and the series solutions. Higher accuracy can be obtained by
introducing some more components of the series solution.

xi
tj

0.01 0.02 0.04 0.1 0.2 0.5
−1 7.77156 E − 16 1.36557 E − 14 8.57869 E − 13 2.09264 E − 10 1.33823 E − 8 3.25944 E − 6
−0.8 1.11022 E − 16 1.99840 E − 15 1.12688 E − 13 2.73880 E − 11 1.74288 E − 9 4.14094 E − 7
−0.6 2.22045 E − 16 1.09912 E − 14 7.28861 E − 13 1.78030 E − 10 1.14025 E − 8 2.79028 E − 6
−0.4 1.11022 E − 16 2.32037 E − 14 1.50302 E − 12 3.67002 E − 10 2.34944 E − 8 5.74091 E − 6
−0.2 6.66134 E − 16 3.23075 E − 14 2.04747 E − 12 4.99918 E − 10 3.19983 E − 9 7.81509 E − 6
0 4.44089 E − 16 3.49720 E − 14 2.24365 E − 12 5.47741 E − 10 3.50559 E − 8 8.55935 E − 6
0.2 5.55112 E − 16 3.19744 E − 14 2.04714 E − 12 4.99820 E − 10 3.19858 E − 8 7.80749 E − 6
0.4 3.33067 E − 16 2.32037 E − 14 1.50324 E − 12 3.66815 E − 10 2.34706 E − 8 5.72641 E − 6
0.6 3.33067 E − 16 1.12133 E − 14 7.28528 E − 12 1.77772 E − 10 1.13695 E − 8 2.77022 E − 6
0.8 3.33067 E − 16 1.99840 E − 15 1.13132 E − 13 2.76944 E − 11 1.78208 E − 9 4.41936 E − 7
1 7.77156 E − 16 1.38778 E − 14 8.58313 E − 13 2.09593 E − 10 1.34244 E − 8 3.28504 E − 6

−0.4

−1.4

−2.4

−3.4

0

−5

5
5

0

−5

Figure 3

Example 6.5. Consider the following linear third-order dispersive KdV equation:

ut + 2ux + uxxx = 0, t > 0, (6.36)

with initial condition

u(x, 0) = sinx. (6.37)

The correct functional is given as

un+1(x, t) = un(x, t) +
∫x

0
λ(s)

(
∂un
∂t

+ 2
∂ũn
∂x

+
∂3ũn
∂x3

)
ds. (6.38)
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Making the correct functional stationary, the Lagrange multiplier can be identified as λ = −1,
consequently,

un+1(x, t) = un(x, t) −
∫x

0

(
∂un
∂t

+ 2
∂ũn
∂x

+
∂3ũn
∂x3

)
ds. (6.39)

Applying the modified variational iteration method,

un+1(x, t) = un(x, t) −
∫x

0

(
∂un
∂t

+ 2
∞∑
n=0

∂ũn
∂x

+
∞∑
n=0

∂3ũn
∂x3

)
ds. (6.40)

Consequently, the following approximants are obtained:

u0(x, t) = sinx,

u1(x, t) = sinx − t cosx,

u2(x, t) = sinx
(

1 − t
2

2!

)
− t cosx,

u3(x, t) = sinx
(

1 − t
2

2!

)
− cosx

(
t − t

3

3!

)
,

...

(6.41)

The series solution is given by

u(x, t) = sinx
(

1 − t
2

2!
+
t4

4!
− · · ·

)
− cosx

(
t − t

3

3!
+
t5

5!
+ · · ·

)
, (6.42)

and in a closed form by

u(x, t) = sin(x − t). (6.43)

If we change the initial condition as u(x, 0) = cosx, than the following closed-form solution
will be obtained:

u(x, t) = cos(x − t). (6.44)

Example 6.6. Consider the following linear third-order dispersive KdV equation in a two-
dimensional space:

ut + uxxx + uyyy = 0, t > 0, (6.45)

with initial condition

u(x, y, 0) = cos(x + y). (6.46)

The correct functional is given as

un+1(x, y, t) = un(x, y, t) +
∫x

0
λ(s)

(
∂un
∂t

+ 2
∂3ũn
∂x3

+
∂3ũn
∂y3

)
ds. (6.47)
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Making the correct functional stationary, the Lagrange multiplier can be identified as λ = −1,
consequently,

un+1(x, y, t) = un(x, y, t) −
∫x

0

(
∂un
∂t

+ 2
∂3ũn
∂x3

+
∂3ũn
∂y3

)
ds. (6.48)

Applying the modified variational iteration method,

un+1(x, y, t) = un(x, y, t) −
∫x

0

(
∂un
∂t

+ 2
∞∑
n=0

∂3ũn
∂x3

+
∞∑
n=0

∂3ũn
∂y3

)
ds. (6.49)

Consequently, the following approximants are obtained:

u0(x, y, t) = cos(x + y),

u1(x, y, t) = cos(x + y) − 2t sin(x + y),

u2(x, y, t) = cos(x + y)
(

1 − (2t)2

2!

)
− (2t) sin(x + y),

u3(x, y, t) = cos(x + y)
(

1 − (2t)2

2!

)
− sin(x + y)

(
(2t) − (2t)3

3!

)
,

...

(6.50)

The series solution is given by

u(x, y, t) = cos(x + y)
(

1 − (2t)2

2!
+ · · ·

)
− sin(x + y)

(
(2t) − (2t)3

3!
+ · · ·

)
, (6.51)

and in a closed form by

u(x, y, t) = cos(x + y + 2t). (6.52)

If we change the initial condition as u(x, y, 0) = sin(x + y), than the following closed-form
solution will be obtained:

u(x, y, t) = sin(x + y + 2t). (6.53)
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Figure 5: (t = 1).

Example 6.7 (see [42]). Consider the following singular fourth-order parabolic partial
differential equation in two space variables:

∂2u

∂t2
+ 2
(

1
x2

+
x4

6!

)
∂4u

∂x4
+ 2
(

1
y2

+
y4

6!

)
∂4u

∂y4
= 0, (6.54)

with initial conditions

u(x, y, 0) = 0,
∂u

∂t
(x, y, 0) = 2 +

x6

6!
+
y6

6!
, (6.55)

and the boundary conditions

u

(
1
2
, y, t

)
=
(

2 +
(0.5)6

6!
+
y6

6!

)
sin t, u(1, y, t) =

(
2 +

1
6!

+
y6

6!

)
sin t,

∂2u

∂x2

(
1
2
, y, t

)
=
(0.5)4

24
sin t,

∂2u

∂x2
(1, y, t) =

1
24

sin t,

∂2u

∂y2

(
x,

1
2
, t

)
=
(0.5)4

24
sin t,

∂2u

∂y2
(x, 1, t) =

1
24

sin t.

(6.56)

The correct functional is given as

un+1(x, t) = u0(x, t) +
∫ t

0
λ(ξ)
(
∂2un
∂t2

+ 2
(

1
x2

+
x4

6!

)
∂4ũn
∂x4

+
(

2
(

1
y2

+
y4

6!

)
∂4ũn
∂y4

))
dξ, (6.57)

where ũn is considered as a restricted variation. Making the above functional stationary, the
Lagrange multiplier can be identified as λ = ξ − t, consequently,

un+1(x, t) = u0(x, t) +
∫ t

0
(ξ − t)

(
∂2un
∂t2

+ 2
(

1
x2

+
x4

6!

)
∂4ũn
∂x4

+
(

2
(

1
y2

+
y4

6!

)
∂4ũn
∂y4

))
dξ. (6.58)
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Applying the modified variational iteration method, we have

un+1(x, t) = u0(x, t)+
∫ t

0
(ξ − t)

(
∂2un
∂t2

+2
(

1
x2

+
x4

6!

) ∞∑
n=0

(
∂4ũn
∂x4

)
+

(
2
(

1
y2

+
y4

6!

) ∞∑
n=0

(
∂4ũn
∂y4

)))
dξ.

(6.59)

Consequently, the following approximants are obtained as:

u0(x, t) =
(

2 +
x6

6!
+
y6

6!

)
t

u1(x, t) =
(

2 +
x6

6!
+
y6

6!

)(
t − t

3

3!

)

u2(x, t) =
(

2 +
x6

6!
+
y6

6!

)(
t − t

3

3!
+
t5

5!

)
,

u3(x, t) =
(

2 +
x6

6!
+
y6

6!

)(
t − t

3

3!
+
t5

5!
− t

7

7!

)
,

u4(x, t) =
(

2 +
x6

6!
+
y6

6!

)(
t − t

3

3!
+
t5

5!
− t

7

7!
+
t9

9!

)
,

...

(6.60)

The solution is given by

u(x, y, t) =
(

2 +
x6

6!
+
y6

6!

)(
t − t

3

3!
+
t5

5!
− t

7

7!
+
t9

9!
+ · · ·

)
=
(

2 +
x6

6!
+
y6

6!

)
sin t. (6.61)

Remark 6.8. It is worth mentioning that Ghorbani and Saberi-Nadjafi [49] and Ghorbani [50]
introduced He polynomials which are compatible to Adomian’s polynomials, are easier to
calculate, and hence make the solution procedure simpler.
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7. Conclusion

In this paper, we applied the modified variational iteration method (MVIM) for solving
singular and nonsingular initial and boundary value problems. The proposed technique is
applied on boundary layer problem, unsteady flow of gas, Boussinesq equations, third-order
dispersive and fourth-order parabolic partial differential equations. The Pade approximants
were employed in order to make the work more concise and for better understanding of
the solution behavior. It may be concluded that the proposed frame work is very powerful
and efficient in finding the analytical solutions for singular and nonsingular boundary value
problems. The method gives more realistic series solutions that converge very rapidly in
physical problems.
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