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Three different artificial neural network (ANN) methods, namely, feed-forward back-propagation
(FFBP), radial basis function (RBF), and generalized regression neural networks (GRNNs) were
applied to predict peak ground acceleration (PGA). Ninety five three-component records from 15
ground motions that occurred in Northwestern Turkey between 1999 and 2001 were used during
the applications. The earthquake moment magnitude, hypocentral distance, focal depth, and site
conditions were used as inputs to estimate PGA for vertical (U-D), east-west (E-W), and north-
south (N-S) directions. The direction of the maximum PGA of the three components was also
added to the input layer to obtain the maximum PGA. Testing stage results of three ANN methods
indicated that the FFBPs were superior to the GRNN and the RBF for all directions. The PGA
values obtained from the FFBP were modified by linear regression analysis. The results showed
that these modifications increased the prediction performances.
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1. Introduction

Knowing the characteristics of ground motions in a specified region is vital for the design
of engineering structures. Peak ground acceleration (PGA) is commonly used to define the
ground motions. Based on the historical ground motion records, several empirical equations
were suggested through regression analysis for the estimation of PGA [1–7]. Different
combinations of the earthquake characteristics and site condition were generally taken into
consideration by the authors during the derivation of the equations. Douglas [8] performed
an extensive analysis for earlier empirical formulas. As a result of this investigation very
little agreement has been reached in the past 30 years of ground motion estimation relation
studies since each formula had been derived based on the available data which varied greatly
with geographical regions. The empirical attenuation relationships based on Turkish strong
ground motion data were proposed by Aydan et al. [9], Inan et al. [10], Aydan [11], Gülkan
and Kalkan [12], and Ulusay et al. [13].
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Northwestern Turkey, which includes the Marmora region, is a densely populated and
industrialized region of the country. In recent years, two destructive earthquakes Kocaeli
(1999) (the moment magnitude, Mw = 7.4) and Düzce (1999) (Mw = 7.1) occurred in this
area. As a result of comprehensive records from these ground motions, their aftershocks and
other recent earthquakes, several investigations were performed to evaluate the PGA of this
region. Some of these investigations were summarized as follows: Özbey [14] developed
an attenuation relationship for peak horizontal acceleration using data from the Kocaeli
(1999) and the Düzce (1999) earthquakes. Akyol et al. [15] evaluated attenuation and site
effects of the 69 microearthquakes recorded at six stations located in different geological
conditions in the city of Bursa, Marmora region, Turkey. Durukal [16] compared not only
horizontal peak accelerations from the Kocaeli and Düzce earthquakes with the attenuation
relationships derived by Boore et al. [3], Campbell [4], Sadigh et al. [5], and Atkinson and
Boore [17] but also vertical peak accelerations from these earthquakes with the formulas of
Campbell [4], and Atkinson and Boore [17]. From these comparisons, the author concluded
that the attenuation relationships relied heavily on extrapolation from larger distances and
smaller magnitude earthquakes to define ground motion predictions in the distance and
magnitude range and could not yield correct values in the near field for large magnitude
events. Fukushima et al. [18] investigated attenuation characteristics of PGA recorded on
different sites during the Kocaeli (1999) and Düzce (1999) earthquakes and found that the
PGA data of the Kocaeli earthquake showed good agreement with the attenuation relation
derived by Fukushima and Tanaka [19]. Özbey et al. [20] used 195 recordings from 17 recent
earthquakes including the Kocaeli (1999) and Düzce (1999) earthquakes and their aftershocks
to develop empirical attenuation relationships of PGA and 5% damped spectral acceleration
for Northwestern Turkey. Özel et al. [21] evaluated PGA values recorded on 19 different
sites during the largest aftershock (Mw = 5.8) of the Kocaeli (1999) earthquake by using the
empirical attenuation relationships derived by Fukushima and Tanaka [22] and Ansal [23].

Artificial neural networks (ANNs), however, are not defined as a specific equation
form. They can infer solutions to problems having nonlinear and complex interaction among
the variables and find functional relationship between the input and output of dataset. In
recent years, considerable researches, some of which referenced in this paragraph, were
performed to evaluate the PGA and response spectra of ground motions by using ANN
methods. Dai and MacBeth [24, 25] used ANN to pick seismic arrivals from local earthquakes
data. Dai and MacBeth [26] developed a back-propagation neural network to identify P-
and S-arrivals from three-component recordings of local earthquake data. Giacinto et al.
[27] applied the neural networks to evaluate earthquake risk for real geological structures.
Ghaboussi and Lin [28] proposed a new method using the ANN to generate artificial
earthquake accelerograms from response spectra. Lin and Ghaboussi [29] applied stochastic
neural networks to generate multiple spectrum accelerograms from response spectra or
design spectra. Kerh and Chu [30] estimated PGA at two main line sections of Kaohsiung
Mass Rapid Transit in Taiwan by using three models of the FFBP structured different
combination of epicentral distance, focal depth, and earthquake magnitude in the input layer
and verified their results by using microtremor records. They also compared their results
with those of available empirical formulas in the literature. Lee and Han [31] used five ANN-
based models to generate artificial earthquake and response spectra. Baziar and Ghorbani
[32] developed a neural network model to predict the horizontal ground displacement in
both ground slope and free face conditions due to liquefaction-induced lateral spreading.
Kerh and Ting [33] applied back-propagation neural networks obtained from different input
combinations of epicentral distance, focal depth, and magnitude to predict PGA along
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the high-speed rail system in Taiwan. Alves [34] used neural networks for earthquake
forecasting. Barrile et al. [35] predicted seismic sequences of aftershocks occurred after a
great earthquake by using radial basis function neural network. Liu et al. [36] evaluated the
peak ground velocity for West America region. The authors used the earthquake magnitude,
epicentre distance, site intensity, and site condition as inputs. As a result of this study, input
parameters were ordered as earthquake magnitude, epicentral distance, and soil condition
with respect to the importance of them on the peak ground velocity variations. Amiri and
Bagheri [37] used wavelet multiresolution analysis and radial basis function neural network
to generate artificial earthquake accelerograms from response spectrum.

The present study aimed at developing the PGA estimation models for Northwestern
Turkey by using ANN methods. The PGA was modelled as function of earthquake moment
magnitude (Mw), hypocentral distance (HD), focal depth (FD), and site conditions (SCs) for
vertical, E-W and N-S directions, separately. The direction of the maximum PGA of the three
components was also used as input to develop the maximum PGA model. Each model was
calculated by using three different ANN methods such as FFBP, RBF, and GRNN. The result
showed that the models of FFBP gave the best prediction performance under the conditions
of used data. In order to improve prediction performance, the PGA values of FFBP were
modified by the regression analysis.

2. Artificial neural network method

2.1. Feed-forward back-propagation networks

Feed-forward back-propagation (FFBP) networks have three components: an input layer, one
or more hidden layers, and an output layer (see Figure 1). Each layer consists of one or more
neurons (nodes). In the calculation process of problem solving, all input nodes are collected
at each hidden node after being multiplied by weights. Later, a bias is attached to this sum,
transformed through a nonlinearity function, and transferred to the next layer. There are
several functions such as hyperbolic tangent, sigmoid and linear functions that can be used
as transfer function. The same procedure can be followed in this layer to provide the network
output results consequently. As the forward processing arrives at the output layer, the overall
error between the network output and the actual observation is calculated. The error at the
output layer propagates backward to the input layer through the hidden layer in the network
to obtain the final desired outputs. During the forward pass all the synaptic weights of the
networks are fixed. During the backward pass, on the other hand, all the synaptic weights
are adjusted in accordance with an error-correction rule [38]. Figure 1 shows a typical FFBP
structure used in this study. There are one input layer having xn neurons, one hidden layer
having hm neurons, and one output layer having yl neurons. Every node in the layer is
connected with that in the next layer by interconnection strength, or weight (w). Input-to-
hidden and hidden-to-output weights are named aswij andwik, respectively. Mathematically
the output of network (yk) is computed by the equation

yk = ˜f

[

m
∑

j=1

wjk · f
[

n
∑

i=1

(

wij ·xi + b1
)

]

+ b2

]

, k = 1, 2, 3, . . . , l, (2.1)

where b1 is the first layer bias, b2 is the second layer bias, f(·) is activation function between
input and hidden layers, and ˜f(·) is activation function between hidden and output layers.
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Figure 1: Schematic diagram of an FFBP.

The tangent sigmoid (tan-sigmoid), logarithmic sigmoid (log-sigmoid), and linear activation
functions [38] are tried for both f(·) and ˜f(·) to obtain the best prediction performance. The
f(·) and ˜f(·) types used in this study are presented in Section 4.

The back-propagation network (BPN) proposed by Rumelhart et al. [39] is used for
learning model. The aim of this model is to minimize iteratively the global error or mean
sum squared error (MSE), E, defined by

E =
1

2P

P
∑

p=1

l
∑

k=1

(

Tpk − ypk
)

, p = 1, 2, 3, . . . , P, (2.2)

where Tpk is the target (observed) output at kth output node of pth pattern, ypk is the
predicted output at kth output node of pth pattern, P is total number of training patterns. The
global error (E) at the output layer propagates backward from the output to hidden layer in
order to adjust the weights in each layer of the network during each iteration. The iterations
are repeated until a specified convergence is reached or a given number of iterations are over.

Each step in the learning phase is called a Learning Epoch. In the present study
Levenberg-Marquardt algorithm [40, 41] is used. It minimizes E while it tries to keep small
the step between the old weights configuration (Wold) and the updated one (Wnew). This
algorithm can be written as follows:

Wnew =Wold −
[

JTJ + γI
]−1

JTE
(

Wold
)

, (2.3)

where J is the Jacobian of the error function E, I is the identity matrix, and γ is the parameter
used to define the iteration step value [42]. The adaptive learning rate, which changes during
the training stage dynamically, is used here. The learning rate takes values changing from
0 to 1. For each epoch, if performance decreases toward the goal, then the learning rate
is increased by the factor learning increment. If performance increases, the learning rate is
adjusted by the factor learning decrement. Throughout all FFBP simulations, the performance
goal is taken as 0.00001. After the training phase of the network has been successfully
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accomplished, performance of the trained model is tested with a different dataset. Details
of the concept of FFBP networks and description of various training algorithms can be seen
in Haykin [38], Bishop and Hinton [43], and Principe et al. [44].

The training input and output data of models are normalized by

xni = a·
xi − xmin

xmax − xmin
+ b, (2.4)

where xi is the observed data obtained from ith record, xni is normalized value of ith record,
xmax and xmin are the maximum and minimum values, respectively. Different values can be
assigned for scaling factors a and b. There are no fixed rules as to which standardization
approach should be used in particular circumstances [45, 46]. In this study, different a and
b values were tried to obtain the best prediction performance, then, a = 0.6 and b = 0.2
were taken. Thus, both input and output data were normalized within the range 0.2–0.8.
The relative better node numbers of the hidden layer were found by trial and error because
there was no theory about the nodes numbers yet. The networks training were stopped after
maximum 10000 epochs.

2.2. Radial basis function networks

Radial basis function (RBF) networks were introduced into the neural networks literature
by Broomhead and Lowe [47]. The RBF consists of three layers, namely, input, hidden and
output. It is a feed-forward network and has only one hidden layer (Figure 2). The input layer
is made up of source nodes (sensory units) that connect the network to its environment. The
second layer applies a nonlinear transformation from the input space to the hidden space;
in most applications the hidden space is of high dimensionality. The output layer is linear,
supplying the response of the network to the activation pattern (signal) applied to the input
layer [38]. The input to each RBF neuron is treated as a measure of the difference between data
and a “centre”, which is a parameter of its transfer function (Figure 2). The transfer function
of the neuron indicates the influence of data points at the centre. Generally this function is
Gaussian and its centres can be chosen either randomly from the training data or they are
iteratively trained or derived using techniques like K-means, Max-Min algorithms, Kohonen
self organizing maps [38, 48]. After this unsupervised learning and cluster formations, the
weights between the hidden and output layer neurons are determined by multiple regression
in a supervised manner. The concept of such a fragmented learning is borrowed from certain
biological neurons (doing, say, visual recognition), which function on the basis of “locally
tuned response” to sensing. The RBF does not involve iterative training and hence much of
the training time is saved [49]. The output y of an RBF is computed by the equation

y = f(x) =
m
∑

i=1

wi ·G
∥

∥x − ci
∥

∥ +wo, (2.5)

where m is number of hidden nodes (i = 1, 2, 3, . . . , m), wi is connection weights between the
hidden neuron and output neuron, x is input feature vector, c is centre of the respective field,
‖x − ci‖ is the Euclidian distance between the prediction location (ci), and each known data
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Figure 2: Schematic diagram of an RBF.

location (x) and G‖x − ci‖ is radial basis function. The general class of radial basis function is
Gaussian as given by (2.6):

G
∥

∥x − ci
∥

∥ = − exp

(

−
m
∑

i=1

∥

∥xi − ci
∥

∥

2σ2
i

)

, (2.6)

where σi is the width of the Gaussian function indicating selectivity of the neuron. In this
study, the exact design RBF creating as many hidden neurons as there were input vectors was
used [50]. Different spread constants were examined to find the best estimation performance
of the RBF with zero error on training vectors.

2.3. Generalized regression neural networks

The generalized regression neural network (GRNN) was proposed by Specht [51] and
reinvented by Schiøler and Hartmann [52]. The GRNN is Specht’s term for Nadaraya-Watson
kernel regression [53, 54]. It is based on established statistical principles and converges with
an increasing number of samples asymptotically to the optimal regression surface [55].

Since the principle of the GRNN has been well documented in the literature
[38, 51, 56], it is briefly explained in this section. As shown in Figure 3, the GRNN consists
of four layers, including the input layer, pattern layer, summation layer, and output layer.
Each input unit in the input layer corresponds to individual process parameter. The input
layer is fully connected to the second, pattern layer, where each unit represents a training
pattern and its output is a measure of the distance of the input from the stored patterns.
Each pattern layer unit is connected to the two neurons in the summation layer: S- and D-
summation neurons. The S-summation neuron computes the sum of the weighted outputs
of the pattern layer while the D-summation neuron calculates the unweighted outputs of the
pattern neurons. The connection weight between the ith neuron in the pattern layer and the
S-summation neuron is yi, the target output value corresponding to the ith input pattern.
For D-summation neuron, the connection weight is unity. The output layer merely divides
the output of each S-summation neuron by that of each D-summation neuron, yielding the
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predicted value to an unknown input vector x as

ŷ(x) =
∑n

i=1 yi exp
[

−D
(

x, xi
)]

∑n
i=1 exp

[

−D
(

x, xi
)] , (2.7)

where n indicates the number of training patterns and the Gaussian D function in (2.7) is
defined as

D
(

x, xi
)

=
p
∑

j=1

(

xj − xij
ζ

)2

, (2.8)

where p indicates the number of elements of an input vector. The xj and xij represent the
jth element of x and xi, respectively. The ζ is generally referred to as the spread, whose
optimal value is experimentally determined. It should be noted that in conventional GRNN
applications all units in the pattern layer have the same single spread [57]. The GRNN
performance is controlled only by the spread factor during the training. In this study, different
spreads were tried to obtain the best prediction performance.

3. Description of data

As presented in Table 1, fifteen ground motions that occurred at Northwestern region
of Turkey between 1999-2000 were used in the ANN applications. Maps of study area
were given in Figures 4(a) and 4(b). 95 PGA records resulting from the ground motions
were downloaded from web sites of the Consortium of Organizations for Strong Motion
Observation Systems (COSMOSs, 2008) for east-west (E-W), north-south (N-S), and Up-
Down (U-D) directions. The records were determined from 11 accelerograph stations
operated by Boğaziçi University’s Kandilli Observatory and Earthquake Research Institute
(see Table 2 and Figure 4(b)).

The local site conditions at an accelerograph station can affect the strong motion
recorded. The widely accepted method of reflecting these effects is to classify the recording
stations based on shear-velocity (Vs). But, information on Vs is currently lacking for most
stations in Turkey. In order to categorize site conditions in Turkey some studies were
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Table 1: Strong ground motions used for PGA estimations.

Earthquake Date Earthquake location
Mw FD (km) Record numbers

Latitude (◦N) Longitude (◦E)
İzmit-Kocaeli 17.08.1999 40.7270 29.9900 7.4 15.00 10
Akyazi-Adapazarı 17.08.1999 40.6400 30.6500 5.5 15.30 1
Cinarcik-Yalova 19.08.1999 40.5900 29.0800 5.0 11.5 4
Hendek-Adapazari 22.08.1999 40.7400 30.6800 5.0 5.40 3
Hendek-Akyazi 23.08.2000 40.6800 30.1000 5.8 15.30 9
İzmit 31.08.1999 40.7500 29.9200 5.2 17.70 9
İzmit 13.09.1999 40.7700 30.1000 5.8 19.60 10
Marmara Sea 20.09.1999 40.6900 27.5800 5.0 16.40 10
Sapanca-Adapazarı 11.11.1999 40.7400 30.2700 5.7 22.00 10
Düzce 12.11.1999 40.7746 31.1870 7.1 10.00 10
Duzce Aftershock 12.11.1999 40.7500 31.1000 5.2 10.00 7
Duzce Aftershock 12.11.1999 40.7400 31.0500 5.4 10.00 7
Kaynaşlı-Bolu 12.11.1999 40.7500 31.3600 5.0 10.00 1
Hendek-Adapazari 27.11.1999 40.7100 30.7000 5.0 10.00 2
Northeast of Bolu 02.14.2000 40.9000 31.7500 5.0 15.70 2

Table 2: Recording stations used in this study.

Station no. Station name Latitude (◦N) Longitude (◦E)
772 Yarimca Pektim, Yarimca 40.7639 29.7620
ARC Arcelik, Darica 40.8236 29.3607
770 Heybeliada Hospital, Heybeliada 40.8688 29.0875
BUR Tofas Factory, Bursa 40.2605 29.0680
769 Yapi-Kredi Plaza, Levent 41.0811 29.0111
777 Fatih Tomb, Fatih 41.0197 28.9500
779 Yesilkoy Airport, Yesilkoy 40.9822 28.8200
768 Nuclear Research Center, K. Cekmece 41.0237 28.7594
767 Ambarli Thermic Power Plant, Ambarli 40.9809 28.6926
766 Botas Gas Terminal, M. Ereglisi 40.9920 27.9796
DAR Arslan Cimento Factory, Darica 40.7569 29.3673

performed by researchers, namely, Zaré and Bard [58], Gülkan and Kalkan [12], Ulusay et al.
[13], and Özbey et al. [20]. In the present study, site conditions (SCs) given in the web site of
COSMOS were used as rock, stiff, and soft. Since the SC was taken into consideration during
the estimation of PGA some records lacking the SC in the web site were not downloaded.

The training of the networks was performed using 72 sets of data. Testing of networks
was done using 23 datasets that were randomly selected among the whole data. As depicted
in Figures 5(a) and 5(b), theMw and FD values of test and train data varied in the range of 5.2
to 7.4 and 5.4 to 22 km, respectively. The HD values were given in the Figure 5(c). Figure 5(d)
illustrated the site conditions of train and test data (selected as SC=1 for rock, SC=3 for stiff
soil, and SC=5 for soft soil). The other numbers could also be selected for SC. As seen in this
figure the site conditions were commonly soft and stiff soil types. Figures 5(e)–5(g) showed
the PGA values for E-W, N-S, and U-D directions, respectively. The maximum PGA records
of the three components were given in Figure 5(h).
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Figure 4: (a) Seismicity map of Turkey (http://neic.usgs.gov/). (b) Location map of the recording stations
and earthquakes occurred in Northwestern Turkey.

4. Results and discussions

The PGA values were estimated by using three different ANN methods such as FFBP, RBF,
and GRNN. Four models were developed for each ANN method. Models (i), (ii), and (iii)
were used to determine the PGA values for E-W, N-S, and U-D directions, respectively. The
input layer of these models consisted of four nodes representing the Mw, FD, HD, and SC
values. The SC values in the models were used as 1, 3, and 5 for rock soil, stiff soil, and soft
soil, respectively. Model (iv) was developed for estimation of maximum PGA values of the
three components. The direction of maximum PGA (D) was varied for each record. Thus, the
D (selected as D = 1 for E-W direction, D = 2 for N-S direction, and D = 3 for U-D direction)
from a record was also used as input in this model. Inputs and outputs of each model were
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Figure 5: Record values of (a) Mw, (b) FD, (c) ED, (d) SC, (e) PGA for E-W direction, (f) PGA for N-S
direction, (g) PGA for U-D direction, (h) maximum PGA of the three directions.

given in the second and third columns of Table 3, respectively. A program including MATLAB
neural network toolbox was coded to train and test the models for each ANN method.

The models of the FFBP had one hidden layer in this paper. The node numbers of
the hidden layer (hm), the transfer function between input and hidden layers, f(·), and
the transfer function between hidden and output layers, ˜f(·), which gave the best testing
performance, were presented in the forth, fifth, and sixth columns of Table 3, respectively.
Similarly the spread values providing the most satisfactory testing performance for models of
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Table 3: The final architectures of the models (i), (ii), (iii), (iv).

Model Inputs Outputs FFBP method GRNN method RBF method
hm f(·) ˜f(·) Spread values Spread values

(i) Mw, FD, HD and SC PGA for E-W 5 tan-sigmoid log-sigmoid 0.015 0.022
(ii) Mw, FD, HD and SC PGA for N-S 5 log-sigmoid log-sigmoid 0.062 0.039
(iii) Mw, FD, HD and SC PGA for U-D 2 tan-sigmoid log-sigmoid 0.076 0.018
(iv) Mw, FD, HD, SC and D Max. PGA 7 log-sigmoid log-sigmoid 0.28 0.060
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Figure 6: The training error graphs (a) for model (i), (b) for model (ii), (c) for model (iii) and (d) for model
(iv).

the GRNN were given in the seventh column. Spread constants of the models for the RBF with
zero error on training vectors were given in last column of Table 3. The training simulation
performance of models of FFBP was evaluated in terms of the MSE values calculated from
(2.2). The error graphs for models (i), (ii), (iii), and (iv) were presented in Figures 6(a), 6(b),
6(c), and 6(d), respectively. These figures showed that the networks had good convergence
during the training data.
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Table 4: R, RMSE, and MAE values of each ANN method for models (i), (ii), (iii), and (iv) in the test
period.

Model
FFBP method GRNN method RBF method

R RMSE
(cm/s/s)

MAE
(cm/s/s)

R RMSE
(cm/s/s)

MAE
(cm/s/s)

R RMSE
(cm/s/s)

MAE
(cm/s/s)

(i) 0.998 5.52 4.06 0.872 37.35 16.69 0.362 58.17 27.50
(ii) 0.950 18.69 8.08 0.891 22.91 10.22 0.481 43.61 16.99
(iii) 0.999 13.55 5.60 0.971 8.10 2.85 0.219 30.71 11.91
(iv) 0.992 18.61 10.89 0.895 41.57 17.79 0.550 50.48 27.21

The correlation coefficients (R), the root mean square error (RMSE), and the mean
average error (MAE) used to evaluate the accuracy of each model are defined as

R =
∑n

i=1
(

Xi −X
)

−
(

Yi − Y
)

√

∑n
i=1

(

Xi −X)
2
·
∑n

i=1
(

Yi − Y
)2 , (4.1)

RMSE =

√

√

√
1
n

n
∑

i=1

(

Xi − Yi
)2
, (4.2)

MAE =
1
n

n
∑

i=1

∣

∣Xi − Yi
∣

∣ , (4.3)

where Xi is observed PGA value at ith record, Yi is predicted PGA value at ith record, n is
total number of testing data, X and Y are the mean of Xi and Yi, respectively.

The R measures the degree of linear association between the target and the realized
outcome but the extreme values heavily affect it. The RMSE is specially suited for iterative
algorithms and is a better measure for high values. The MAE has the advantage that it does
not distinguish between the over- and underestimation and does not get too much influence
by higher values [59, 60]. The R, RMSE, and MAE statistics of the models of each ANN in the
test period were given in Table 4. According to the highest R and the smallest RMSE and MAE
viewpoint, the models (i), (ii), and (iv) of FFBP showed the best performance. Although the
R value of model (iii) of FFBP was the highest, the RMSE and MAE values of model (iii) of
GRNN were the smallest.

The PGA estimates were plotted with observed values in the form of the time series
and scatter plot. Figures 7(a, b), 7(c, d), 7(e, f), and 7(g, h) were drawn for models (i), (ii),
(iii), and (iv), respectively. Figures 7(a) and 7(b) showed that the model of FFBP gave the
best PGA prediction performance considering the highest correlation coefficient that was
also given in the scatter plot, and the most agreements of the estimated with observed
PGA values. The second best performance was provided from the GRNN. The RBF gave
a quite poor performance. As illustrated in Figures 7(c) and 7(d), the results of RBF were
the poorest. Although the results of FFBP and GRNN gave similar values for especially
PGA< 50 cm/s/s, the estimation performance of FFBP (R = 0.950) for PGA> 50 cm/s/s
was better than that of GRNN (R = 0.891). Figures 7(e) and 7(f) indicated that the FFBP
and GRNN provided good prediction performances for PGA< 20 cm/s/s. The GRNN gave
more satisfactory results than the FFBP for PGA> 20 cm/s/s while the correlation coefficient
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Figure 7: Observed and predicted PGA values (a, b) for E-W direction, (c, d) for N-S direction, (e, f) for
U-D direction, (g, h) for maximum PGA direction in test period.

of FFBP results (R = 0.999) was superior to that of GRNN results (R= 0.971). The RBF
predictions were unsatisfactory as seen from this figure. It was concluded from Figures 7(g)
and 7(h) that the testing stage results determined by the FFBP method were more satisfactory
than the other methods. The second best performance was provided by the GRNN. The
performance of RBF ranked as the third.

The exact design RBF used in the applications is structured with zero training error on
the design vectors hence it generates negative values for low PGA estimations. The GRNN, on
the other hand, does not provide negative predictions. The GRNNs learn in one pass through
the data and can generalize from samples as soon as they are stored. The FFBP requires an
iterative training period differing from the RBF and GRNN.

Although the models of FFBP yielded considerably high correlation coefficients
greater than 0.95, the predicted PGA values did not closely agree with observed PGA values
except for E-W direction. A linear fit line was plotted for each model of FFBP in Figures 8(a),
8(c), 8(e), and 8(g). Therefore, some modifications were carried out as follows. We perform
linear curve fitting of the form y = a·x + b to determine equations of these lines, that were
given in (4.4)–(4.7), where y is predicted PGA value from the FFBP and x is observed PGA as
follows:

y = 0.9518 ·x − 1.3243, for model (i), (4.4)

y = 0.6839 ·x + 3.1888, for model (ii), (4.5)

y = 0.5877 ·x + 1.8049, for model (iii), (4.6)

y = 1.2346 ·x − 0.5589, for model (iv). (4.7)

Equation of the exact lines in the scatter plots can be written as

y = x. (4.8)
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Figure 8: Comparison of FFBP and modified FFBP models and observed PGA values (a, b) for E-W
direction, (c, d) for N-S direction, (e, f) for U-D direction, (g, h) for maximum PGA direction.

The predicted PGA values of models for the FFBP were modified by (4.9)–(4.12) to determine
the same exact and fit lines as follows:

z = y + 0.0482 ·x + 1.3243, for model (i), (4.9)

z = y + 0.3161 ·x − 3.1888, for model (ii), (4.10)

z = y + 0.4123 ·x − 1.8049, for model (iii), (4.11)

z = y − 0.2346 ·x + 0.5589, for model (iv), (4.12)

where z is modified PGA values. As seen in scatter plots of each model, the fit lines plotted
by using modified PGA values (z) were identical with exact lines. These lines were named as
modified lines in the figures. The R, RMSE, and MAE statistics of modified models were given
in Table 5. Good correlation was observed between the modified lines and modified PGA
values (R= 0.998 for model (i), R= 0.980 for model (ii), R= 0.996 for model (iii), and R= 0.988
for model (iv)). The RMSE and MARE values of modified models (see Table 5) also showed
better performance than those of models of FFBP (see Table 4) with these modifications and
the PGA prediction performance of each model was considerably increased. The PGA values
of model (i) of FFBP and modified model (i) were nearly identical with those of observed
data (see Figures 8(a) and 8(b)(b)). As illustrated in Figures 8(c) and 8(d) the model (ii)
gave good agreement with observed values except for the fist two test numbers. Although
modified model (ii) gave more convenient results for high PGA values (PGA> 100 cm/s/s)
than the model (ii) of FFBP, it gave a slightly poorer performance for small PGA values
(PGA< 5 cm/s/s). Figure 8(e) showed that the model (iii) results of FFBP had similar trend
with observed values while modified model (iii) results were fairly closed to observed
values. It can be concluded from Figure 8(g) that modified model (iv) results provided better
prediction performance than the model (iv) of FFBP.
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Table 5: R, RMSE, and MAE values of modified models in the test period.

Model R RMSE (cm/s/s) MAE (cm/s/s)
(i) 0.998 3.64 2.86
(ii) 0.980 9.54 6.02
(iii) 0.996 2.66 1.73
(iv) 0.988 9.51 6.80

Table 6: R, RMSE, and MAE values of each ANN method for models (v), (vi), (vii), (viii), and (ix) in the
test period.

Model Inputs Outputs
FFBP method GRNN method RBF method

R RMSE
(cm/s/s)

MAE
(cm/s/s)

R RMSE
(cm/s/s)

MAE
(cm/s/s)

R RMSE
(cm/s/s)

MAE
(cm/s/s)

(v) Mw, FD
and HD

PGA for
E-W

0.856 44.45 18.46 0.829 46.89 18.63 0.487 55.68 29.79

(vi) Mw, FD
and HD

PGA for
N-S

0.122 33.22 16.43 0.109 32.95 16.62 0.066 47.27 26.73

(vii) Mw, FD
and HD

PGA for
U-D

0.093 98.38 93.61 0.933 14.22 5.27 0.751 21.87 10.16

(viii) Mw, FD
and HD

Max.
PGA

0.895 29.55 15.18 0.882 45.29 19.38 0.563 61.52 37.75

(ix)
Mw,

FD, HD
and SC

Max.
PGA

0.667 46.27 21.94 0.803 36.56 15.35 0.07 50.48 95.93

Models (v), (vi), (vii) of each ANN method were developed to show the effects of SC
on the PGA prediction performance for E-W, N-S, and U-D directions, respectively. Models
(viii) and (ix) were structured to check the SC and D effects on the maximum PGA prediction
performance. The input variables of each model were given in the second column of Table 6.
In order to compare these models with the models (i), (ii), (iii), and (iv), the same hm, f(·) and
˜f(·) for the models of FFBP, and the same spread values for the models of RBF and GRNN,
which were given in Table 3, were used. The performance evaluation criteria (R, RMSE, and
MAE) of models of each ANN method were given in Table 6. As seen in this table, the models
(v), (vi), (vii), (viii), and (ix) gave a poorer prediction performance than the models (i), (ii),
(iii), (iv) used the SC and D in the input layer (see Table 4) under the conditions of used ANN
structures.

5. Conclusions

In this study, the PGA values were estimated for Northwestern Turkey by using three
different ANN methods such as FFBP, RBF, and GRNN. The earthquake moment magnitude,
epicentral distance, focal depth, and site conditions of strong motions were utilized as input
parameters for predicting the PGA values for east-west, north-south, vertical directions. The
direction of the maximum PGA of the three components was also added to the input layer
to obtain the maximum PGA. The PGA values in each direction were calculated from each
ANN method, separately. From these calculations, it was found that the model estimates of
RBF were the poorest while those of FFBP were the best from the highest R and the smallest
RMSE and MAE viewpoint. Although the GRNN gave considerably good performance for
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PGA> 20 cm/s/s in vertical direction, it gave lower estimation performance than the FFBP
for other directions and maximum PGA values.

Mathematical differences among the ANN methods can be briefly explained as
follows. The RBFs generate negative values for low PGA estimations while the GRNN does
not provide negative predictions. The GRNNs learn in one pass through the data and can
generalize from samples as soon as they are stored. The FFBP has an iterative training period
differing from the RBF and GRNN. Mathematical details can be found in Section 2.

Although the models of FFBP yielded high correlation coefficients (R) providing
information for linear dependence between observations and corresponding estimations, the
predicted PGA values were not fairly close to the observed values except for E-W direction.
Thus, the predicted PGA values of FFBP were modified by linear regression analysis and
more sensitive prediction performances were obtained.

This paper showed that the ANN methods could be applied successfully to derive the
PGA models for Northwestern Turkey under used test and train data conditions. With further
investigation, using more data from this region these models can be improved.
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[55] D. Tomandl and A. Schober, “A Modified General Regression Neural Network (MGRNN) with new,

efficient training algorithms as a robust ‘black box’-tool for data analysis,” Neural Networks, vol. 14,
no. 8, pp. 1023–1034, 2001.

[56] L. H. Tsoukalas and R. E. Uhrig, Fuzzy and Neural Approached in Engineering, John Wiley & Sons, New
York, NY, USA, 1997.

[57] B. Kim, D. W. Lee, K. Y. Park, S. R. Choi, and S. Choi, “Prediction of plasma etching using a
randomized generalized regression neural network,” Vacuum, vol. 76, no. 1, pp. 37–43, 2004.
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