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the plates is investigated. The unsteady Navier-Stokes equations are reduced to a nonlinear fourth-
order differential equation by using similarity solutions. Homotopy analysis method (HAM) is
used to solve this nonlinear equation analytically. The convergence of the obtained series solution
is carefully analyzed. The validity of our solutions is verified by the numerical results obtained by
fourth-order Runge-Kutta.
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1. Introduction

The problem of unsteady squeezing of a viscous incompressible fluid between two parallel
plates in motion normal to their own surfaces independent of each other and arbitrary with
respect to time is a fundamental type of unsteady flow which is met frequently in many
hydrodynamical machines and apparatuses. Some practical examples of squeezing flow
include polymer processing, compression, and injection molding. In addition, the lubrication
system can also be modeled by squeezing flows. Stefan [1] published a classical paper
on squeezing flow by using lubrication approximation. In 1886, Reynolds [2] obtained a
solution for elliptic plates, and Archibald [3] studied this problem for rectangular plates.
The theoretical and experimental studies of squeezing flows have been conducted by many
researchers [4, 4-14]. Earlier studies of squeezing flow are based on Reynolds equation. The
inadequacy of Reynolds equation in the analysis of porous thrust bearings and squeeze films
involving high velocity has been demonstrated by Jackson [13], Ishizawa [14]. The general
study of the problem with full Navier-Stokes equations involves extensive numerical study
requiring more computer time and larger memory. However, many of the important features
of this problem can be grasped by prescribing the relative velocity of the plates suitably.
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If the relative normal velocity is proportional to (1 —at)'/?, where ¢ is the time and a a
constant of dimension [T~!] which characterizes unsteadiness, then the unsteady Navier—
Stokes equations admit similarity solution.

In 1992, Liao [15] employed the basic ideas of the homotopy in topology to propose
a general analytic method for nonlinear problems, namely, homotopy analysis method
(HAM) [16-21]. Based on homotopy of topology, the validity of the HAM is independent
of whether or not there exist small parameters in the considered equation. Therefore, the
HAM can overcome the foregoing restrictions and limitations of perturbation methods
[22]. Furthermore, the HAM always provides us with a family of solution expressions in
the auxiliary parameter %, the convergence region, and the rate of each solution might be
determined conveniently by the auxiliary parameter /. The HAM also avoids discretization
and provides an efficient numerical solution with high accuracy, minimal calculation, and
avoidance of physically unrealistic assumptions. Besides, the HAM is rather general and
contains the homotopy perturbation method (HPM) [21], the Adomian decomposition
method (ADM) [23], and 6-expansion method. In fact, HPM and ADM are always special
cases of HAM when # = —1. The convergence of HAM solution series is dependent upon three
factors, that is, the initial guess, the auxiliary linear operator, and the auxiliary parameter .
However, as a special case of homotopy analysis method when # = -1, the convergence of
HPM solution series is only dependent upon two factors: the auxiliary linear operator and
the initial guess. So, given the initial guess and the auxiliary linear operator, HPM cannot
provide other ways to ensure that the solution is convergent. HAM provides us with a family
of solution expression in the auxiliary parameter / and the solution given by ADM is only
one of them.

In recent years, the HAM has been successfully employed to solve many types of
nonlinear problems such as the nonlinear equations arising in heat transfer [24], the nonlinear
model of diffusion and reaction in porous catalysts [25], the chaotic dynamical systems
[26], the nonhomogeneous Blasius problem [27], the generalized three-dimensional MHD
flow over a porous stretching sheet [28], the wire coating analysis using MHD Oldroyd 8-
constant fluid [29], the axisymmetric flow and heat transfer of a second-grade fluid past a
stretching sheet [30], the MHD flow of a second-grade fluid in a porous channel [31], the
generalized Couette flow [32], the Glauert-jet problem [33], the Burger and regularized long
wave equations [34], the laminar viscous flow in a semiporous channel in the presence of a
uniform magnetic field [35], and other problems. All of these successful applications verified
the validity, effectiveness, and flexibility of the HAM.

In this paper, we use homotopy analysis method to investigate the problem of
unsteady squeezing of a viscous incompressible fluid between two parallel plates. The
paper is organized as follows. In Section 2, the mathematical formulation is presented. In
Section 3, we extend the application of the HAM to construct the approximate solutions for
the governing equation. The convergence of the obtained series solution is carefully analyzed
in Section 4. Section 5 contains the results and discussion. The conclusions are summarized
in Section 6.

2. Mathematical formulation

Let the position of the two plates be at z = +£(1 — at)'/?, where ¢ is the position at time
t = 0 as shown in Figure 1. We assume that the length 1 (in the two-dimensional case) or
the diameter D (in the axisymmetric case) is much larger than the gap width 2z at any time
that the end effects can be neglected. When a is positive the two plates are squeezed until
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Figure 1: Schematic diagram of the problem.

they touch at t = 1/a. When « is negative the two plates are separated. Let u, v, and w be
the velocity components in the x, y, and z directions, respectively. For two-dimensional flow,
Wang introduced the following transforms [36]:

ax

u= mf’(ﬂ),
» @2.1)
= B
where
n=—" (2.2)

[e(1-at)'/?]

Substituting (2.1) into the unsteady two-dimensional Navier-Stokes equations yields a
nonlinear ordinary differential equation in form

fm/ + S{ _ nfm _ 3fl/ _ flfll + ff’/l} — 0, (23)

where S = af?/2v (squeeze number) is the nondimensional parameter. The flow is
characterized by this parameter. It should be mentioned that v is the kinematic viscosity. The
boundary conditions are such that on the plates the lateral velocities are zero and the normal
velocity is equal to the velocity of the plate, that is,

f©) =0,  f"(0)=0,
f=1 f@Q=0.

(2.4)

Similarly, Wang’s transforms [36] for axisymmetric flow are

ax

u= mf,(ﬂ),
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Figure 2: The h-curves of f'(0) given by the 15th-order approximation for the axisymmetric case for the
different values of the squeeze number S.
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Using transforms (2.5), unsteady axisymmetric Navier-Stokes equations reduce to

mf’(ﬂ),

f(m)

(2.5)

f/lll +S{ _7/lf,” _3fll +fflll} — 0’

subject to the boundary conditions (2.4).

(2.6)

Consequently, we should solve the nonlinear ordinary differential equation

fll//+S{ _ﬂf”/_3f"_ﬂf/f”+ff",} =0’

where

0,

1,

and subject to boundary conditions (2.4).

axisymmetric,

two-dimensional,

2.7)

(2.8)
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Figure 3: The /i-curves of f'(0) given by the 15th-order approximation for the two-dimensional case for the
different values of the squeeze number S.

3. HAM solution

To investigate the explicit and totally analytic solutions of (2.7) by using HAM, we choose

fo(n) = %(311 -1), (3.1)

as initial approximation of f(7), which satisfies the boundary conditions (2.4). Besides, we
select the auxiliary linear operator £(f) as

L(f) = f". (3.2)
It is easy to check that this operator satisfies the following equation:
L(cr + e + e+ ca) =0, (3.3)

where ¢;, 1 <i <4, are arbitrary constants. Based on (2.7), we are led to define the following
nonlinear operator:

No@p)]
_0*(n;p) Fo(p)  e(rp) 00 p) 0% p)  Oe(;p)
T ot +S| -1 o 3 o p o o + tﬂ(ﬂ/P)—aHS

(3.4)
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Using these operators, we can construct the so-called zeroth-order deformation equation as
(1 =p)L[e(:p) - fo(m)] = phN[p(;p)], (35)

where p € [0, 1] is an embedding parameter and # is an auxiliary nonzero parameter. It should
be emphasized that one has great freedom to choose the initial guess, the auxiliary linear
operator and the auxiliary parameter 7. However, (3.5), the original equation of HAM, is the
origin of the mathematical term “homotopy” (parameter 7 is the head letter of “homotopy”).
In addition, if & = -1, (3.5) will always change to original equation of HPM. The boundary
conditions for (3.5) are

0%¢(0; p)
(p(OI p) =0, % =0,

op(1;p)
(l/ ) = 1/ ] 0
plLp on

(3.6)

Obviously, when p = 0 and p = 1, the above zeroth-order deformation equation has the
following solutions:

(1;0) = fo(n), (1) = f(n). (3.7)

As p increases from 0 to 1, ¢(7; p) varies from fo(77) to f(77). Now expanding ¢(7; p) by its
Taylor series in terms of p, one would obtain

o(m;p) = fo(n) + f fm(mp™, (3.8)
m=1
where
o"w(n;
fm(n) = %% (3.9)
! o

As pointed out by Liao [19], the convergence of series (3.8) strongly depends upon the
auxiliary parameter h. Assume that £ is selected such that series (3.8) is convergent atp = 1,
then due to (3.7), the final series solution becomes

f(m) = fo(n) + f fmn (1) (3.10)
m=1

For the mth-order deformation equation, we differentiate (3.5) m times with respect to p,
divide by m!, and then set p = 0. The resulting deformation equation at the mth-order is

L[fm(1) = Xmfma(D)] = iR (1), (3.11)
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with the following boundary conditions

fm(0) =0, m(0) =0,

(3.12)
fm) =0, f,(1) =0,
where
0* frn- 0 fin- 0% fn
Ron(1) = faqi(n) +S<—11 fan;(n) 3 fan;(n)
el a n aZ m-1-n 63 m-1-n
- nz=o<_ﬁ fa;n) fa;llz w +fn(n)%>>, (3.13)

We use the symbolic software MATHEMATICA to solve the system of linear equations (3.11)
with the boundary conditions (3.12), and successively obtain

Fil) = 2 (37 +15) ~ (73 + 33)7 + (35 + 21p)7 ~ (-1 4 3)7),

hS

fa(n) = 15523200 { (1025640 + 4158008 + 10256407 + 4158007 + 153060%S + 1267891Sp

+25875hSp%) 1

— (2023560 + 914760 + 20235604 + 9147604 + 3490104S + 3253924
+739981Sp%) 1

+ (970200 + 5821208 + 9702007 + 58212043 + 227304%S + 2813581Sp
+79002hSp%) 1

— (=27720 + 83160 — 277204 + 831604 + 20196/:S + 92268hSp
+403921Sp%) 1’

+ (1078078 + 8085hSp + 10395kSp? ) n’ — (378hS — 14281SP + 882hSP*)n' ],

(3.14)



8 Mathematical Problems in Engineering

Table 1: The analytic results of f() at different orders of approximation compared with the numerical
results obtained by the fourth-order Runge-Kutta for the axisymmetric case.

S, h Ui 2nd-order 4th-order 6th-order 7th-order 8th-order Numerical
0.2 0.319474 0.319526 0.319526 0.319526 0.319526 0.319526
0.4 0.603652 0.603825 0.603830 0.603830 0.603830 0.603830

Lo 13 0.6 0.822574 0.822863 0.822875 0.822876 0.822876 0.822876
0.8 0.956580 0.956789 0.956800 0.956801 0.956801 0.956801
0.2 0.302545 0.302582 0.302582 0.302582 0.302582 0.302582
05, -1 0.4 0.578028 0.578082 0.578082 0.578082 0.578082 0.578082
0.6 0.800737 0.800780 0.800780 0.800780 0.800780 0.800780
0.8 0.947686 0.947702 0.947702 0.947702 0.947702 0.947702
0.2 0.290353 0.290322 0.290322 0.290322 0.290322 0.290322
05, -1 0.4 0.559299 0.559253 0.559252 0.559252 0.559252 0.559252
0.6 0.784341 0.784304 0.784303 0.784303 0.784303 0.784303
0.8 0.940717 0.940704 0.940703 0.940703 0.940703 0.940703
0.2 0.281032 0.281010 0.281010 0.281010 0.281010 0.281010
15, 08 0.4 0.544851 0.544780 0.544779 0.544779 0.544779 0.544779
0.6 0.771493 0.771374 0.771371 0.771371 0.771371 0.771371
0.8 0.935127 0.935038 0.935036 0.935036 0.935036 0.935036
0.2 0.273767 0.273683 0.273682 0.273682 0.273682 0.273682
25, —07 0.4 0.533516 0.533255 0.533247 0.533246 0.533246 0.533246

0.6 0.761299 0.760868 0.760848 0.760847 0.760847 0.760847
0.8 0.930617 0.930299 0.930281 0.930280 0.930280 0.930280

Therefore, like (3.10), the analytical solution of the problem can be expressed as an infinite
series of the form (see [37])

M /2m+2
fn) = fo(n) + A}iinw[z < 3 amrnﬂZn—1>:|,

m=1 n=1

(3.15)

M 2m+2
Fp) = Nlligloo[z < 3 amrn,lznq)]'

m=0 \ n=1

4. Convergence of HAM solution

The series solution contains the auxiliary parameter %. The validity of the method is based on
such an assumption that series (3.8) converges at p = 1. It is the auxiliary parameter 7+ which
ensures that this assumption can be satisfied. In general, by means of the so-called A-curve,
it is straightforward to choose a proper value of 7 which ensures that the series solution is
convergent. For the different values of the squeeze number S, the h-curves obtained by the
15th-order approximation for the axisymmetric (f = 0) and two-dimensional (8 = 1) cases are
shown in Figures 2 and 3, respectively. From these figures, the valid regions of / correspond
to the line segments nearly parallel to the horizontal axis. Figures 2 and 3 elucidate that the
size of the valid region strongly depends on S. In fact, the interval for admissible values of
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Table 2: The analytic results of f(7) at different orders of approximation compared with the numerical

results obtained by the fourth-order Runge-Kutta for the two-dimensional case.

S, h Ui 2nd-order 4th-order 6th-order 7th-order 8th-order Numerical
0.2 0.332883 0.333591 0.333617 0.333618 0.333618 0.333618
15, 13 0.4 0.623190 0.624315 0.624358 0.624358 0.624358 0.624358
0.6 0.838219 0.839284 0.839324 0.839325 0.839325 0.839325
0.8 0.962441 0.962961 0.962983 0.962984 0.962984 0.962984
0.2 0.305436 0.305543 0.305545 0.305545 0.305545 0.305545
05, -1 0.4 0.582314 0.582468 0.582470 0.582470 0.582470 0.582470
0.6 0.804271 0.804390 0.804392 0.804392 0.804392 0.804392
0.8 0.949065 0.949107 0.949108 0.949108 0.949108 0.949108
0.2 0.288347 0.288261 0.288260 0.288260 0.288260 0.288260
05, -1 0.4 0.556268 0.556145 0.556143 0.556143 0.556143 0.556143
0.6 0.781768 0.781670 0.781671 0.781671 0.781671 0.781671
0.8 0.939674 0.939641 0.939640 0.939640 0.939640 0.939640
0.2 0.276526 0.276433 0.276432 0.276432 0.276432 0.276432
15, -08 0.4 0.537929 0.537754 0.537752 0.537752 0.537752 0.537752
0.6 0.765463 0.765252 0.765249 0.765249 0.765249 0.765249
0.8 0.932607 0.932474 0.932471 0.932471 0.932471 0.932471
0.2 0.268041 0.267797 0.267791 0.267791 0.267791 0.267791
25, —07 0.4 0.524558 0.524057 0.524045 0.524045 0.524045 0.524045
0.6 0.753285 0.752627 0.752605 0.752605 0.752605 0.752605
0.8 0.927166 0.926724 0.926704 0.926703 0.926703 0.926703

Figure 4: The influence of positive S on f’() for the two-dimensional case, when i = —0.3.

shrinks toward zero by increasing the squeeze number. As mentioned above, the homotopy
analysis method is rather general and always contains the homotopy perturbation method
(HPM) [21] and the Adomian decomposition method (ADM) [23] when & = -1. From
Figures 2 and 3, h = -1 is not valid for the large values of S.
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Figure 6: The skin friction (f”(1)) for the axisymmetric and two-dimensional cases, when & = —-0.4. From
h-curves, the series solution for & = —0.4 converges in the whole region 0 < S < 10.

5. Results and discussion

Our main concern is the various values of f(r) and f'(17). These quantities describe the
flow behavior. For several values of S, the function f(7) obtained by the different orders
of approximation for the axisymmetric and two-dimensional cases are compared with the
numerical results in Tables 1 and 2, respectively. It is worth mentioning that the numerical
results have been obtained using the fourth-order Runge-Kutta in C++ program. We can see
a very good agreement between the purely analytic results of the HAM and numerical results.
The variation of f'(#) with the change in the positive values of S for the two-dimensional case
is plotted in Figure 4. Figure 5 shows the influence of negative S on f'(#) for the axisymmetric
case. Note that for the large negative values of S, the results of similarity analysis are not
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Figure 7: The pressure gradient (f"'(1)) for the axisymmetric and two-dimensional cases, when /i = -0.4.
From h-curves, the series solution for i = —0.4 converges in the whole region 0 < S < 10.

n

reliable. f”(1) gives skin friction, and f"' (1) represents pressure gradient. f”(1) and f" (1) as
functions of S are illustrated in Figures 6 and 7, respectively.

6. Conclusions

In this paper, the unsteady axisymmetric and two-dimensional squeezing flows between two
parallel plates are studied analytically using the HAM. The convergence of the results is
explicitly shown. Graphical results and tables are presented to investigate the influence of the
squeeze number S on the velocity, skin friction, and pressure gradient. The solution obtained
by means of the HAM is an infinite power series for appropriate initial approximation, which
can be, in turn, expressed in a closed form. Unlike perturbation methods, the HAM does
not depend on any small physical parameters. Thus, it is valid for both weakly and strongly
nonlinear problems. Besides, different from all other analytic methods, the HAM provides
us with a simple way to adjust and control the convergence region of the series solution
by means of auxiliary parameter . Thus the auxiliary parameter % plays an important
role within the frame of the HAM which can be determined by the so-called A-curves.
Consequently, the present success of the homotopy analysis method for the highly nonlinear
problem of squeezing flows verifies that the method is a useful tool for nonlinear problems
in science and engineering.
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