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Nowadays, digital computer systems and networks are the main engineering tools, being used in
planning, design, operation, and control of all sizes of building, transportation, machinery, business,
and life maintaining devices. Consequently, computer viruses became one of the most important
sources of uncertainty, contributing to decrease the reliability of vital activities. A lot of antivirus
programs have been developed, but they are limited to detecting and removing infections, based
on previous knowledge of the virus code. In spite of having good adaptation capability, these
programs work just as vaccines against diseases and are not able to prevent new infections based
on the network state. Here, a trial on modeling computer viruses propagation dynamics relates
it to other notable events occurring in the network permitting to establish preventive policies in
the network management. Data from three different viruses are collected in the Internet and two
different identification techniques, autoregressive and Fourier analyses, are applied showing that
it is possible to forecast the dynamics of a new virus propagation by using the data collected from
other viruses that formerly infected the network.

Copyright © 2008 J. R. C. Piqueira and F. B. Cesar. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

A few decades ago, computer viruses arose in the form of programs with simple code and
able to undermine the smooth operation of a machine. Initially, in spite of the large number
of viruses, they caused minor damages to machinery and their spread was very slow. Over
the years, due to the rapid development of technology, such as software and hardware, the
development and popularization of the Internet and the great variety of equipment using
software and networks, viruses have become a major threat [1].

Currently, these virus programs have more complex codes, being able to produce
mutations of themselves, and their detection and removal by antivirus programs became more
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difficult [2]. Their goals go much further than simply damaging a machine. They are capable
of acquiring personal data of users of networks, such as a bank account, and cause severe
damages to large corporations [3].

In view of these concerns, a better understanding of the computer viruses spreading
dynamics is mandatory. To improve the safety and reliability in computer systems and
networks, it is important to have the capacity of recognizing and combating the several types
of infections faster and more effectively [4, 5].

Research actions started at the end of the 80s with the classical paper of Kephart et al.
[6] proposing an ecosystem approach for computational systems. Then, the efforts were
concentrated on the development of antivirus programs, responsible for the detection and
removal of viruses, based on the previous recognition of the infection code based on the models
shown in [2, 7, 8]. These programs have a great upgrading power, but act just as simple
vaccines against diseases [2, 4]. They are not able to predict the behavior of networks when
an infection is established in a machine and, consequently, cannot support preventive attitude
against virus actions based on events of the network.

The first effort to produce models for the spreading of computer viruses based on their
epidemiological counterparts is reported in [7] with the initial ideas for deriving long-term
behaviors considering the graph representing the network connections. Then, with Markov
chains representing the local behavior of infection action in a single node, susceptible-infected-
removed (SIR) models were presented trying to fit the long-term behavior of the viruses
propagation [9].

This kind of approach had some attention in the last five years and the relations between
spreading viruses and topological parameters of the network were studied, being successful
mainly when modeling the propagation by email networks [10]. Besides, SIR models were
modified [5] and applied to guide infection prevention [11, 12], deriving expressions for
epidemiological thresholds [11-13].

This work focuses on the achievement of models for the dynamics of the spread of certain
viruses, mainly taking into account the correlation functions between the several viruses
spreading data, during a certain period of time. Thus, the number of infections from a type
of virus could be foreseen in the short term by comparison with other viruses or with notable
events in the network, which would support preventive policies.

In order to provide simple algorithms to allow operational facility, simple autoregressive
models are chosen [14, 15]. Considering the periodicity of the data collected, Fourier models
are also tried, producing the same results of the autoregressive ones.

2. Methodology

The data to be collected for modeling computer infections propagation are the number of daily,
weekly, and monthly infections for several computer viruses. These numbers are found in
the Internet, for instance, in http://www.avira.com/, and support the development of linear
identification models.

The next step is the choice of a specific virus to be analyzed, in the enormous range of
possibilities. In this work, a premise was taken into consideration: in order to have an efficient
identification, the several chosen viruses need to present similar propagation dynamics. Here,
the high incidence of cases reported and the email spreading compose the chosen criterion.
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Figure 1: Wormnetsky.p temporal evolution.
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Figure 2: Wormmytob.mr temporal evolution.

Wormnetsky.p, wormmytob.mr, and trdir.stration.ge were chosen, that is, two worms
and a trojan. Figures 1, 2, and 3 show the dynamical evolution of the number of infections with
wormnetsky.p, wormmytob.mr, and trdir.stration.gen, respectively.

First, in order to verify the relations among the viruses, cross-correlation coefficients
are calculated. Considering two signals x(t) and y(t) simultaneously sampled in regular T
intervals, and calling x(nT) and y(nT) their n samples, for a certain time interval containing N
sample periods, the cross-correlation coefficient, p, between x(t) and y(t) measures how they
are related with each other in this interval (see [16, page 206]). Table 1 summarizes the cross-
correlation coefficients, calculated for the three pairs of infection signals, for the time interval
of Figures 1, 2, and 3, sampling the data daily.

The results from Table 1 indicate acceptable correlation between the spread of the
viruses chosen, corroborating the visual similarity between the temporal evolution of the three
infections. Due to this, only wormnetsky.p is considered to identify the system parameters to be
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Figure 3: Trdir.stration.gen temporal evolution.

Table 1: Viruses cross-correlation coefficients.

Viruses Cross-correlation coefficient

Wormnetsky.p, wormmytob.mr 0.39312
Wormnetsky.p, trdir.stration.ge 0.40541
Wormmytob.mr, trdir.stration.ge 0.99435

used to provide short-term forecasts for the three viruses. Following this identification strategy,
model accuracy is checked.

3. System identification algorithms

In order to identify the parameters to model the temporal evolution of the infections by the
three types of viruses selected here, two approaches were followed:

(i) using a linear autoregressive model, that is, consider that the current value of a
variable depends only on the former values, up to a certain delay [14, 15];

(ii) identifying the main frequencies of the time series and treating them as Fourier series
[14,15].

3.1. Autoregressive model

Considering a regularly sampled signal y(k), its estimated value at instant k is given by

d
y(k) = D piy(k—i), (3.1)
i=1

where p; are the model parameters to be estimated by using the minimum square method,
and d is the maximum delay to be considered [14, 15], measured by the number of sampling
intervals.
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Figure 4: Wormnetsky.p temporal evolution simulation (d = 10).
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Figure 5: Wormnetsky.p temporal evolution simulation (d = 15).

By using a “free-prediction” strategy, the vector data are divided into two parts: one
is used for the identification of the system parameters and the other for the simulation and
validation of the model. In the case of the data described in Section 2, the 25 first samples
are used for identification and the last 5 for simulation. Different values of d are considered
and Figures 4, 5, and 6 show the results for d equal to 10, 15, and 24, respectively, with the
continuous line representing the real data and the asterisks representing the simulation results.

In order to compare the several chosen delays, Table 2 shows the mean-square estimation
error in each case. Considering these results, from now on, all models will use d = 15.

To have an idea of the efficiency of the adopted identification strategy, the estimated
parameters for wormnetsky.p are used to model the dynamics of wormmytob.mr and
trdir.stration.gen. The results are shown in Figures 7 and 8, respectively, with the continuous
line representing the real data and the asterisks representing the simulation results. Table 3
summarizes the mean-square errors of these simulations.
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Figure 6: Wormnetsky.p temporal evolution simulation (d = 24).

Table 2: Estimation errors in autoregressive models for wormmnetsky.p.

d Mean-square estimation error(%)
10 5.5773
15 4.1751
24 6.8542

Table 3: Estimation errors in autoregressive models for wormmytob.mr and trdir.stration.ge.

Virus Mean-square estimation error(%)

Wormmytob.myr 17.142
Trdir.stration.ge 18.32
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Figure 7: Wormmytob.mr temporal evolution simulation.
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Figure 8: Trdir.stration.gen temporal evolution simulation.
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Figure 9: Wormnetsky.p frequency spectrum.

The simulations performed taking into account only the parameters calculated for
the wormnetsky.p show that the short-term estimations of new infections are not precise for
wormmytob.mr and trdir.stration.ge, as expected, because the same model is used for different
viruses. Nevertheless, the model is able to predict with some accuracy the increasing and
decreasing tendencies in their dynamics. This knowledge permits the implementation of
preventive policies, considering only the wormnetsky.p propagation profile.

3.2. Fourier series model

Observing the strong oscillatory character of the three different viruses studied, a model
considering the signals as a sum of cosines was developed. Figures 9, 10, and 11 present
the frequency spectrum for the temporal evolution of the wormnetsky.p, wormmytob.mr, and
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Figure 10: Wormmytob.mr frequency spectrum.
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Figure 11: Trdir.stration.gen frequency spectrum.

trdir.stration.ge propagation. As one can see, the main frequencies of the three dynamic
behaviors are the same.

Figures 9, 10, and 11 indicate that a good set of frequencies for developing the model is F
=[00.2 0.3 0.5]. Following the same reasoning used in Section 3.1 for identification, the model
parameters are calculated by using only the data from wormnetsky.p and the predictions of new
infections for wormmytob.mr and trdir.stration.ge are obtained by using the same parameters.

To have an idea about the efficiency of the adopted identification strategy by using
Fourier methods, Figures 12, 13, and 14 show the predicted dynamics of wormnetsky.p,
wormmytob.mr, and trdir.stration.gen, respectively, with the continuous line representing the real
data and the asterisks representing the simulation results. Table 4 summarizes the mean-square
errors of these simulations.
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Figure 12: Wormnetsky.p Fourier model.
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Figure 13: Wormmytob.mr Fourier model.

As in autoregressive models, simulations performed taking into account only the
parameters calculated for the wormnetsky.p show that the short-term estimations of new
infections are not precise for wormmytob.mr and trdir.stration.ge, as expected, because the same
model is used for different viruses. But, again, the model is able to predict with some accuracy
the increasing and decreasing tendencies in their dynamics, allowing to establish preventive
policies by using only the data from wormnetsky.p propagation.

4. Conclusions

Two different models for the dynamics of computer viruses propagation were compared:
autoregressive and Fourier analysis presenting similar results. They provide good predictions
for three different types of infections by using the data collected for just one of them.

In spite of not being totally satisfactory, these models present the possibility of predicting
increasing and decreasing tendencies in the propagation of a certain type of virus by using the
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Figure 14: Trdir.stration.gen Fourier model.

Table 4: Estimation errors in Fourier models for wormnetsky.p, wormmytob.mr, and trdir.stration.ge.

Virus Mean-square estimation error(%)
Wormnetsky.p 7.0354
Wormmytob.my 16.778
Trdir.stration.ge 18.096

accumulated experience with another one. It seems that this point could be used to predict and
control the infection levels in advance, providing preventive actions in order to increase safety
and reliability.
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