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For solving nonsmooth systems of equations, the Levenberg-Marquardt method and its variants
are of particular importance because of their locally fast convergent rates. Finitely many maximum
functions systems are very useful in the study of nonlinear complementarity problems, variational
inequality problems, Karush-Kuhn-Tucker systems of nonlinear programming problems, and
many problems in mechanics and engineering. In this paper, we present a modified Levenberg-
Marquardt method for nonsmooth equations with finitely many maximum functions. Under
mild assumptions, the present method is shown to be convergent Q-linearly. Some numerical
results comparing the proposed method with classical reformulations indicate that the modified
Levenberg-Marquardt algorithm works quite well in practice.

Copyright © 2008 S.-q. Du and Y. Gao. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

1. Introduction

In the past few years, there has been a growing interest in the study of nonlinear equations
(see, e.g., [1, 2]) and nonsmooth equations, which have been proposed in the study of
the nonlinear complementarity problem, the variational inequality problem, equilibrium
problem and engineering mechanics (see, e.g., [3-10]).

Finitely many maximum functions systems are very useful in the study of nonlinear
complementarity problems, variational inequality problems, Karush-Kuhn-Tucker systems
of nonlinear programming problems, and many problems in mechanics and engineering.
In the present paper, we study a new method for nonsmooth equations with finitely many
maximum functions system proposed in [11]

max f1j(x) =0,

: (1.1)
max fni(x) =0,
jejn f ]( )
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where fi; : R* — Rforj € J;, i=1,...,nare continuously differentiable, J; fori=1,...,n are
finite index sets. Denote

H(x) = (fi(x),..., fa(x))", xeR", (1.2)
where

fi(x) =max f;j(x), xe€R'i=1,...,n,
ek (1.3)
]i(x)={ji€N|f,-]-(x)=fi(x)}, xeR",i=1,...,n

Then (1.1) can be rewritten as follows:
H(x) =0, (1.4)

where F : R" — R" is a nonsmooth function. By using the following subdifferential for the
function H (x) givenin (1.2),

OH®) = {(Vfij o, Vi) 11 €1(X), ... jn € Ju(x)), x€RY, (1.5)

Gao gave Newton method for (1.4) with the superlinear convergence in [11].

Based on [5, 11], we present a modification of the Levenberg-Marquardt method for
solving nonsmooth equations. In Section 2, we recall some results of generalized Jacobian
and semismoothness. In Section 3, we give the Levenberg-Marquardt method which has
been proposed in [5] and the new modified Levenberg-Marquardt method for the system
of nonsmooth equations with finitely many maximum functions. The convergence of the
modified Levenberg-Marquardt algorithm is also given. In Section 4, some numerical tests
comparing the proposed modified Levenberg-Marquardt algorithm with the original method
show that our algorithm works quite well.

2. Preliminaries

We start with some notions and propositions, which can be found in [8-11].
Let F(x) be locally Lipschitzian. Then, F(x) is almost everywhere F-differentiable. Let
the set of points where F(x) is F-differentiable be denoted by Dr. Then for x € R”,

aBF(x) = {V € R™" | H{Xk} € Df, xp — x, F'(xk) —> V} (2.1)
The general Jacobian of F(x) : R" — R" at x in the sense of Clarke is defined as
OF (x) = conv 0gF (x). (2.2)

Proposition 2.1. 0gF(x) is a nonempty and compact set for any x; the point to set B-subdifferential
map is upper semicontinuous.

Proposition 2.2. 0,H (x) is a nonempty and compact set for any x and upper semicontinuous.
Proof. From the fact that 0,H (x) is a finite set of points in R”*" and can be calculated by

determining the index sets Ji(x),i = 1,...,n and evaluating the gradients V f;;(x), ji €
Jilx),i=1,...,n. O
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Definition 2.3. F(x) is semismooth at x if F(x) is locally Lipschitz at x and

lim VI (2.3)
VedF (x+th')

H —h,tl0

exists for all h € R™. If F(x) is semismooth at x, one knows Vh — F'(x;h) = o(||h])), VV €
OF(x +h),h — 0.Ifforall V € OF(x + h), h — 0, Vh - F'(x;h) = o(]|h||?), one calls the
function F(x) is strongly semismooth at x.

Proposition 2.4. (I) If F(x) : R* — R" is locally Lipschitz continuous and semismooth at x, then

|F(x+h)-F(x)-Vh| _
VEdF (x+th) A B
h—0

0. (2.4)

(I) If F(x) : R* — R" is locally Lipschitz continuous, strongly semismooth at x, and
directionally differentiable in a neighborhood of x, then

Jim sup IF(x+h) — F(x) - Vh||

VedF (x+th) |7
h—0

(2.5)

Lemma 2.5. Equation of maximum functions (1.4) is a system of semismooth equations.

In the study of algorithms for the local solution of semismooth systems of equations,
similar to [11], one also has the following lemmas.

Lemma 2.6. Suppose that H(x) and 0,H (x) are defined by (1.4) and by (1.5), respectively, and all
V € 0,.H (x) are nonsingular. Then there exists a constant c such that

[V <e VVedH®x). (2.6)

The proof is similar to [11, Lemma 2.1], from the fact that 0,H (x) is a finite set of
points.

Lemma 2.7. Suppose that x* is a solution of (1.1), then
ldiag (1" fiGxi)) | < M, 27)

for all x in some neighborhood of x* and )Lgk) € Rand 0 < |)L§k)| <+oofori=1,...,n,k=0,1,2,....

Since each f;; of (1.1) is continuous, one gets the lemma immediately.

3. Modified Levenberg-Marquardt method and its convergence

In this section, we briefly recall some results on the Levenberg-Marquardt-type method for
the solution of nonsmooth equations and their local convergence (see, e.g., [5, 9]). We also
give the modified Levenberg-Marquardt method and analyze its local behavior. Now we
consider exact and inexact versions of Levenberg-Marquardt method.
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Table 1: xo = (1, I)T)q =0.01, 1, = 1 and computes di by (3.4).
Step (x1,%2)" F(x)
1 (1.0000,1.0000)" (1.0000, 1.0000)T
2 (0.5006,1.0000)" (0.2506,0.2506)T
3 (0.2506,1.0000)" (0.0628,0.0628)"
4 (0.1255,1.0000)" (0.0157,0.0157)"
5 (0.0628,1.0000)” (0.0039, 0.0039)T
6 (0.0314,1.0000)” 1.0e — 003x(0.9888,0.9888)T
7 (0.0157,1.0000)" 1.0e — 003%(0.2478,0.2478)"
8 (0.0079, 1.0000)" 1.0e — 004 (0.6211,0.6211)"
9 (0.0039,1.0000)" 1.0e — 004%(0.1557,0.1557) "
10 (0.0019,1.0000)" 1.0e — 005%(0.3901,0.3901)T
11 (0.00098,1.0000)" 1.0e — 006%(0.97777,0.97777)"
12 (0.000495,1.0000)" 1.0e — 006 (0.24505, 0.24505)"
13 (0.00024,1.0000)T 1.0e — 007x(0.61416,0.61416)"
14 (0.00012,1.0000)" 1.0e — 007%(0.15392,0.15392)"
15 (0.000062, 1.0000)" 1.0e — 008 (0.38577,0.38577)"
Given a starting vector xp € R", let
Xk+1 = Xk + di, (3.1)
where dj is the solution of the system
(Vi) Vi + ox)d = —(Vi) " H(xx), Vi € 95H (xx), 0k > 0. (3.2)

In the inexact versions of this method d can be given by the solution of the system
(Vi) Vi + ox)d = =(Vi) ' H(xi) +7v, Vi € 35H (x), 0k >0, (3.3)

where 7y is the vector of residuals and we can assume ||ri|| < ax||(Vi)T H (xx)|| for some ay > 0.
We now give the modified Levenberg-Marquardt method for (1.1) as follows.

Modified Levenberg-Marquardt Method
Step 1. Given xy, € >0, )Lf eER",0< |Af| < +o0.
Step 2. Solve the system to get dj,
(Vi) Vi + diag (A9 i () )k = =(Vi) "H (k) + 7%, Vi € 0,H(x), (3.4)
fori=1,...,n and r¢ is the vector of residuals
il < all (Vi) " H (i), ax 2 0. (3.5)
Step 3. Set X1 = xi +dy, if |H (xx)|| < €, terminate. Otherwise, let k := k+1, and go to Step 2.

Based upon the above analysis, we give the following local convergence result.
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Table 2: x; = (1,1)T;y = 0.01, 0, = 1 and computes dj by (3.3).

Step (21, 22) T F(x)

1 (1.0000,1.0000)" (1.0000, 1.0000)T

2 (0.5006,1.0000)" (0.2506,0.2506)T

3 (0.2516,1.0000)" (0.0633,0.0633)T

4 (0.1282,1.0000)" (0.0164,0.0164)"

5 (0.0686,1.0000)” (0.0047,0.0047)T

6 (0.0415,1.0000)T (0.0017,0.0017)T

7 (0.0295,1.0000)" 1.0e — 003x(0.8693,0.8693)T
8 (0.0234,1.0000)" 1.0e — 003%(0.5493,0.5493)T
9 (0.0199,1.0000)" 1.0e — 003%(0.3944, 0.3944)"
10 (0.0175,1.0000)" 1.0e — 003%(0.3055, 0.3055)"
11 (0.0158,1.0000)" 1.0e — 003 (0.2484, 0.2484)T
12 (0.0145,1.0000)” 1.0e — 003x(0.2089, 0.2089)”
13 (0.0134,1.0000)" 1.0e — 003x(0.1801,0.1801)T
14 (0.0126,1.0000)T 1.0e — 003x(0.1581,0.1581)T
15 (0.0119,1.0000)T 1.0e — 003 (0.1409, 0.1409)T
16 (0.0112,1.0000)" 1.0e — 003%(0.12696, 0.12696)
17 (0.0107,1.0000)" 1.0e — 003%(0.1155,0.1155)"
18 (0.0103,1.0000)" 1.0e — 003%(0.10596, 0.10596) "

Table 3: x; = (1,1)T01 =0.01, 0, = 1 and computes di by (3.3).

Step (1, x2)" F(x)
19 (0.00989, 1.0000)” 1.0e — 004%(0.9784,0.9784)"
20 (0.0095, 1.0000)" 1.0e — 004x(0.9087,0.9087)T
21 (0.0092,1.0000)” 1.0e — 004%(0.8481,0.8481)"
22 (0.0089, 1.0000)" 1.0e — 004%(0.7951,0.7951)"
23 (0.0087,1.0000)™ 1.0e — 004x(0.7483,0.7483)T
24 (0.0084, 1.0000)" 1.0e — 004x(0.7066, 0.7066) "
25 (0.0082,1.0000)" 1.0e — 004 (0.6693, 0.6693)"
26 (0.00797,1.0000)" 1.0e — 004%(0.6357,0.6357) "
27 (0.0078,1.0000)T 1.0e — 004x(0.6053,0.6053)T
28 (0.0076,1.0000)T 1.0e — 004x(0.5777,0.5777)T
29 (0.0074,1.0000)T 1.0e — 004x(0.5525,0.5525)T
30 (0.0073,1.0000)™ 1.0e — 004x(0.5293,0.5293)T
31 (0.0071,1.0000)™ 1.0e — 004x(0.5080, 0.5080)"
32 (0.00699, 1.0000)™ 1.0e — 004 (0.4884,0.4884)T
33 (0.0069, 1.0000)” 1.0e — 004 (0.4702,0.4702) T
34 (0.0067,1.0000)T 1.0e — 004x(0.4533,0.4533)T
35 (0.0066, 1.0000)” 1.0e — 004x(0.4376,0.4376)"
36 (0.0065,1.0000)" 1.0e — 004 (0.4229,0.4229)"
37 (0.0064, 1.0000)" 1.0e — 004%(0.4092,0.4092)"
38 (0.0063,1.0000)" 1.0e — 004 (0.3963,0.3963) "
39 (0.0062,1.0000)" 1.0e — 004x(0.3842,0.3842)T
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Theorem 3.1. Suppose that {xi} is a sequence generated by the above method and there exist
constants a > 0, ay < a for all k. Let x* be a solution of H(x) = 0, and let all V € 0,H (x*) be
nonsingular. Then the sequence {xy} converges Q-linearly to x* for ||xo — x*|| < e.

Proof. By Lemma 2.6 and the continuously differentiable of f;(x), there is a constant C > 0
such that for all xy sufficiently close to (Vi) Vi + diag()nlfk) fi(xx)) are nonsingular with

[ [V Vi + ding 0¥ £ x)] | < € (36)

Furthermore, by Proposition 2.4, there exists 6 > 0, which can be taken arbitrarily small, such
that

[1H (xic) = H (x") = Vie (i = x) || < 6| = 7| (3.7)

for all xi in a sufficiently small neighborhood of x* depending on 6. By Proposition 2.2 the
upper semicontinuity of the 0,H (x), we also know

(Vi) || < e, (3.8)

for all Vi € 0,H(x) and all x; sufficiently close to x*, with ¢; > 0 being a suitable constant.
From the locally Lipschitz continuous of H(x), we have

(Vi) H ol < 1 (Vi) I () = H ()| < eaL i -

, (3.9)

for all xy in a sufficiently small neighborhood of x* and a constant L > 0. From (3.4), we also
know

[(Vi)" Vi + diag (4 fi (1)) ] (k1 = x7)
= [(Vie) Vi + diag (A" fi (o)) (oex = %) = (Vi) " H (k) + 7 (3.10)

= (Vi) [H(x*) = H(xg) + Vi (xx — x*)] + diag (A® fi (ocx)) (o0 = %) + 7.

Multiply the above equation by [(Vi)! Vi + diag()tgk) fi (xk))]_1 and taken into account
Lemma 2.7, and (3.6), (3.7), (3.8), and (3.9), we get

[Ixies =) < ULV | I H (xi0) = H () = Vie(ee = ) |

+ [|diag (A i (i) | e = x| + all (Vi) " H (x0) 1)

(3.11)
< C(c16||xk = x*|| + M||xxc — x*|| + ac1L||xx — x*||)
=C(c16 + M + aciL) || xx — x*||.
Lett=C(c16 + M + ac1L), so
|k — x| < 7|2k — x| (3.12)

Since 6 can be chosen arbitrarily small, by taking x; sufficiently close to x*, there exist M > 0
and a > 0 such that 7 < 1, so that the Q-linear convergence of {x} to x* follows by taking
llxo — x*|| < € for a small enough € > 0. Thus we complete the proof of the theorem. O
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Table 4: x; = (10, I)T)q =0.01, A, = 1 and computes di by (3.4).

Step (x1, %) " F(x)
1 (10.0000,1.0000) " (100.0000, 100.0000)"
2 (5.0062,1.0000)T (25.0625,25.0625)T
3 (2.5062,1.0000)" (6.2813,6.2813)7
4 (1.2547,1.0000)" (1.5742,1.5742)T
5 (0.6281,1.0000)" (0.3945,0.3945)T
6 (0.3145,1.0000)T (0.0989,0.0989)T
7 (0.1574,1.0000)T (0.0248,0.0248)T
8 (0.0788,1.0000)" (0.0062,0.0062)T
9 (0.0395,1.0000)" (0.0016,0.0016)T
10 (0.0198,1.0000)™ 1.0e — 003%(0.3901,0.3901)"
11 (0.0099, 1.0000)" 1.0e — 004x(0.9778,0.9778)T
12 (0.00495,1.0000)” 1.0e — 004x(0.2451,0.2451)T
13 (0.0025,1.0000)T 1.0e — 005%(0.6142,0.6142)T
14 (0.0012,1.0000)T 1.0e — 005%(0.1539, 0.1539)T
15 (0.0006, 1.0000)T 1.0e — 006%(0.3858,0.3858)T

Table 5: xy = (10,1)T)q =0.01, A, = 1 and computes dj by (3.4).

Step (x1,2x)" F(x)
16 (0.0003,1.0000)" 1.0e — 007%(0.9668,0.9668)
17 (0.0002, 1.0000)" 1.0e — 007x(0.2423,0.2423)T
18 (0.00008, 1.0000)” 1.0e — 008%(0.6073,0.6073)"

Theorem 3.2. Suppose that {xi} is a sequence generated by the above method and there exist
constants a > 0, ax < a for all k. ||r|| < ax||H (xx)||, ax > 0. Then the sequence {xy} converges

Q-linearly to x* for ||xo — x*|| < e.

The proof is similar to that of Theorem 3.1, so we omit it.

Following the proof of Theorem 3.1, the following statement holds.

Remark 3.3. Theorems 3.1 and 3.2 hold with ||r¢|| = 0 in (3.4).

4. Numerical test

In order to show the performance of the modified Levenberg-Marquardt method, in this
section, we present numerical results and compare the Levenberg-Marquardt method and
modified Levenberg-Marquardt method. The results indicate that the modified Levenberg-
Marquardt algorithm works quite well in practice. All the experiments were implemented in
Matlab 7.0.

Example 4.1.

max { f11(x1,x2), f12(x1,22) } =0,

4.1
max {f21 (X1,x2),f22(x1,x2)} =0, (4.1)
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Table 6: x; = (10, I)T)q =0.01, A, = 1 and computes di by (3.3).

Step (21, 22) T F(x)
1 (10.0000, 1.0000)T (100.0000, 100.0000)"
2 (5.0001,1.0000)" (25.0006, 25.0006)"
3 (2.5002,1.0000)" (6.2508, 6.2508)T
4 (1.2503,1.0000)" (1.5633,1.5633)"
5 (0.6257,1.0000)" (0.3915,0.3915)T
6 (0.3138,1.0000)” (0.0985,0.0985)T
7 (0.1589,1.0000)7 (0.0252,0.0252)T
8 (0.0832,1.0000)" (0.0069,0.0069)T
9 (0.0479,1.0000)" (0.0023,0.0023)T
10 (0.0324,1.0000)" (0.0011,0.0011)T
11 (0.0250,1.0000)" 1.0e — 003%(0.6258, 0.6258) "
12 (0.0208,1.0000)” 1.0e — 003x(0.4345,0.4345)T
13 (0.0182,1.0000)" 1.0e — 003x(0.3296, 0.3296)T
14 (0.0163,1.0000)" 1.0e — 003%(0.2644, 0.2644)"
15 (0.0148,1.0000)T 1.0e — 003%(0.2203,0.2203)T
16 (0.0137,1.0000)" 1.0e — 003x(0.1885,0.1885)T
17 (0.0128,1.0000)" 1.0e — 003%(0.1646,0.1646)"
18 (0.0121,1.0000)" 1.0e — 003 (0.1460, 0.1460) "
19 (0.0115,1.0000)T 1.0e — 003(0.1311,0.1311)7
20 (0.0109,1.0000)" 1.0e — 003%(0.11899,0.11899)"
21 (0.0104,1.0000)T 1.0e — 003x(0.1089,0.1089)T
22 (0.0100,1.0000)" 1.0e — 003x(0.1003,0.1003)T
23 (0.0096,1.0000)" 1.0e — 004x(0.9301,0.9301)"
24 (0.0093,1.0000)" 1.0e — 004 (0.8668, 0.8668)"
25 (0.0090, 1.0000)” 1.0e — 004%(0.8115,0.8115)"
26 (0.0087,1.0000)T 1.0e — 004x(0.7628,0.7628)T
27 (0.0085,1.0000)" 1.0e — 004x(0.7195,0.7195)T
28 (0.0083,1.0000)" 1.0e — 004x(0.6809, 0.6809)T
29 (0.0080, 1.0000)" 1.0e — 004 (0.6462, 0.6462)"
30 (0.0078,1.0000)" 1.0e — 004 (0.6148,0.6148)"
where
1 2 2 1 2 2
f11 = gxll f12 = X1, f21 = gxll fzz = X7 (4-2)

From (1.1), we know

H(x) = (fi(x), fo(x))", (43)
where f1(x) = x3, fo(x) = x7, x € R%.

Our subroutine computes di such that (3.3) and (3.4) hold with a;, = 0. We also use
the condition ||xx — xx_1]| < 107* as the stopping criterion. We can see that our method is good
for Example 4.1.

Results for Example 4.1 with initial point xo= (1, 1)T)L1 =0.01, A, = 1 and computes dj
by (3.4) are listed in Table 1.
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Table 7: xo = (10,1)T 0y = 0.01, 0, = 1 and computes di by (3.3).

Step (1, x2)" F(x)
31 (0.0077,1.0000)T 1.0e — 004x(0.5863,0.5863)T
32 (0.0075,1.0000)T 1.0e — 004x(0.5603,0.5603)T
33 (0.0073,1.0000)™ 1.0e — 004x(0.5366,0.5366)"
34 (0.0072,1.0000)" 1.0e — 004 (0.5147,0.5147)T
35 (0.0070, 1.0000)" 1.0e — 004x(0.4946,0.4946)T
36 (0.0069, 1.0000)T 1.0e — 004x(0.4759, 0.4759)T
37 (0.0068, 1.0000)” 1.0e — 004x(0.4586, 0.4586) "
38 (0.0067,1.0000)" 1.0e — 004x(0.4425, 0.4425)"
39 (0.0065, 1.0000)" 1.0e — 004x(0.4275, 0.4275)"
40 (0.0064, 1.0000)" 1.0e — 004x(0.4135,0.4135)7
41 (0.0063,1.0000)" 1.0e — 004x(0.4004, 0.4004)”
42 (0.0062, 1.0000)” 1.0e — 004 (0.3880, 0.3880)

Results for Example 4.1 with initial point xp= (1, 1)T0'1 =) =001,00 = X, =1and
computes dj by (3.3) are listed in Tables 2 and 3.

Results for Example 4.1 with initial point x¢= (lO,l)T/h = 0.01, 1, = 1 and computes
di by (3.4) are listed in Tables 4 and 5.

Results for Example 4.1 with initial point xo= (10, 1)T01 =1 =001,00 =\ =1and
computes dj by (3.3) are listed in Tables 6 and 7.

Results are shown for Example 4.1 with initial point xo= (100,1)T. We also use the
condition ||xx — xx_1]| < 107 as the stopping criterion and computes di by (3.4) we get that
by 21 steps F(x) = 1.0e — 008%(0.9560,0.9560)". When we compute dj by (3.3), we get that by
45 steps F(x) = 1.0e — 004x(0.3919, 0.3919)". We can test the method with other examples and
will think the global convergence of the method in another paper.
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