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Due to wide range of interest in use of bioeconomic models to gain insight into the scientific
management of renewable resources like fisheries and forestry, homotopy perturbation method
is employed to approximate the solution of the ratio-dependent predator-prey system with
constant effort prey harvesting. The results are compared with the results obtained by Adomian
decomposition method. The results show that, in new model, there are less computations needed
in comparison to Adomian decomposition method.
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1. Introduction

Partial differential equations which arise in real-world physical problems are often too
complicated to be solved exactly, and even if an exact solution is obtainable, the required
calculations may be practically too complicated, or it might be difficult to interpret the
outcome. Very recently, some promising approximate analytical solutions are proposed
such as Exp-function method, Adomian decomposition method (ADM), variational iteration
method (VIM), and homotopy perturbation method (HPM).

HPM is the most effective and convenient method for both linear and nonlinear
equations. This method does not depend on a small parameter. Using homotopy technique
in topology, a homotopy is constructed with an embedding parameter p ∈ [0, 1], which is
considered as a “small parameter.” HPM has been shown to effectively, easily, and accurately
solve a large class of linear and nonlinear problems with components converging to accurate
solutions. HPM was first proposed by He [1–7] and was successfully applied to various
engineering problems.

mailto:civil_ghotbi40@yahoo.com


2 Mathematical Problems in Engineering

The motivation of this paper is to extend the homotopy perturbation method (HPM)
[8–17] to solve the ratio-dependent predator-prey system. The results of HPM are compared
with those obtained by the ADM [18]. Different from ADM, where specific algorithms are
usually used to determine the Adomian polynomials, HPM handles linear and nonlinear
problems in simple manner by deforming a difficult problem into a simple one. The HPM
is useful to obtain exact and approximate solutions of linear and nonlinear differential
equations.

In this paper, we assume that the predator in model is not of commercial importance.
The prey is subjected to constant effort harvesting with r, a parameter that measures the
effort being spent by a harvesting agency. The harvesting activity does not affect the predator
population directly. It is obvious that the harvesting activity does reduce the predator
population indirectly by reducing the availability of the prey to the predator. Adopting a
simple logistic growth for prey population with e > 0, b > 0, and c > 0 standing for
the predator death rate, capturing rate, and conversion rate, respectively, we formulate the
problem as

dx

dt
= x(1 − x) − bxy

y + x
− rx,

dy

dt
=

cxy

y + x
− ey,

(1.1)

where x(t) and y(t) represent the fractions of population densities for prey and predator at
time t, respectively. Equations (1.1) are to be solved according to biologically meaningful
initial conditions x(0) ≥ 0 and y(0) ≥ 0 [18].

2. Applications

In this section, we will apply the HPM to nonlinear differential system of ratio-dependant
predator-prey,

H(ν, p) = (1 − p)[L(ν) − L(u0)
]
+ p

[
A(ν) − f(r)] = 0, p ∈ [0, 1], rεΩ, (2.1)

where A(ν) is a general differential operator which can be divided into a linear part L(ν) and
a nonlinear part N(ν) and f(r) is a known analytical function. p ∈ [0, 1] is an embedding
parameter, while u0 is an initial approximation of the equation which should be solved, and
satisfies the boundary conditions.

According to the HPM (relation (2.1)), we can construct a homotopy of system as
follows:

(1 − p)(ν2ν̇1 + ν1ν̇1 − ẋ0y0 − ẋ0x0
)
+ p

(
ν2ν̇1 + ν1ν̇1 − (1 − b − r)ν1ν2+ν2ν

2
1 − (1 − r)ν2

1 + ν
3
1

)
= 0,

(1 − p) × (
ν2ν̇2 + ν1v̇2 − ẏ0y0 − x0ẏ0

)
+ p

(
ν2ν̇2 + ν1ν̇2 + (e − c)ν1ν2 + eν2

2
)
= 0,

(2.2)

where dot denotes differentiation with respect to t, and the initial approximations are as
follows:

v1,0(t) = x0(t) = x(0),

v2,0(t) = y0(t) = y(0) .
(2.3)
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Assume that the solution of (2.2) can be written as a power series in p as follows:

ν1 = ν1,0 + pν1,1 + p2ν1,2 + p3ν1,3 + · · · ,
ν2 = ν2,0 + pν2,1 + p2ν2,2 + p3ν2,3 + · · · ,

(2.4)

where νi,j (i, j = 1, 2, 3, . . .) are functions yet to be determined. Substituting (2.3) and (2.4)
into (2.2), and arranging the coefficients of p powers, we have
(
v2,0v̇1,0 + v1,0v̇1,0

)

+
(
v3

1,0 − v2
1,0 + v1,0 v̇1,1 + v2,0v̇1,1 + r v1,0v2,0 + bv1,0v2,0 − v1,0v2,0 + v2,0v

2
1,0 + rv

2
1,0

)
p

+ (v1,1 v̇1,1+v1,0 v̇1,2+v2,0 v̇1,2+v2,1 v̇1,1+2r v1,0v1,1 + b v1,0v2,1 + 2v2,0 v1,0 v1,1 + r v1,1 v2,0

+ r v1,0 v2,1 + b v1,1 v2,0 − v1,0 v2,1−v1,1v2,0 + v2,1v
2
1,0 − 2v1,0 v1,1 + 3v2

1,0v1,1
)
p2

+
(
v1,1v̇1,2 + v1,2v̇1,1 + v1,0v̇1,3 + v2,1v̇1,2 + v2,0v̇1,3 + v2,2v̇1,1 + v2,0v

2
1,1 − v1,0v2,2 − v1,2v2,0

− v1,1v2,1+v2,2v
2
1,0 + rv

2
1,1+3v1,0v

2
1,1−v2

1,1 + bv1,1v2,1 + bv1,0v2,2 + bv1,2v2,0 + rv1,0v2,2

+ rv1,1v2,1 + rv1,2v2,0 + 2v2,0v1,0v1,2 + 2rv1,0v1,2 + 2v2,1v1,0v1,1 + 3v2
1,0v1,2

− 2v1,0v1,2
)
p3 + · · · = 0,

(
v2,0v̇2,0 + v1,0v̇2,0

)

+
(
ev1,0v2,0 − cv1,0v2,0 + v2,0v̇2,1 + v1,0v̇2,1 + ev2

2,0
)
p

+
(
v2,1v̇2,1+ev1,0v2,1−cv1,0v2,1+ev1,1v2,0−cv1,1v2,0+2ev2,0v2,1+v2,0v̇2,2+v1,1v̇2,1+v1,0v̇2,2

)
p2

+
(
ev2

2,1 + v2,1v̇2,2 + v2,2v̇2,1 + v2,0v̇2,3 + v1,1v̇2,2 + v1,2v̇2,1 + v1,0v̇2,3 + ev1,0v2,2 + ev1,1v2,1

− cv1,0v2,2 − cv1,1v2,1 + ev1,2v2,0 − cv1,2v2,0 + 2ev2,0v2,2
)
p3 + · · · = 0.

(2.5)

In order to obtain the unknown of νi,j(x, t), i, j = 1, 2, 3, . . ., we must construct and solve the
following system which includes 6 equations, considering the initial conditions of νi,j(0) =
0, i, j = 1, 2, 3, . . . :

v2,0v̇1,0 + v1,0v̇1,0 = 0,

v3
1,0 − v2

1,0 + v1,0 v̇1,1 + v2,0v̇1,1 + v1,0v2,0 + bv1,0v2,0 − v1,0v2,0 + v2,0v
2
1,0 + rv

2
1,0 = 0,

v1,1 v̇1,1 + v1,0 v̇1,2 + v2,0 v̇1,2 + v2,1 v̇1,1 + 2r v1,0v1,1 + b v1,0v2,1 + 2v2,0 v1,0 v1,1 + r v1,1 v2,0

+ r v1,0 v2,1 + b v1,1 v2,0 − v1,0 v2,1 − v1,1v2,0 + v2,1v
2
1,0 − 2v1,0 v1,1 + 3v2

1,0v1,1 = 0,

v2,0v̇2,0 + v1,0v̇2,0 = 0,

ev1,0v2,0 − cv1,0v2,0 + v2,0v̇2,1 + v1,0v̇2,1 + ev2
2,0 = 0,

v2,1v̇2,1 + ev1,0v2,1 − cv1,0v2,1 + ev1,1v2,0 − cv1,1v2,0 + 2ev2,0v2,1 + v2,0v̇2,2 + v1,1v̇2,1 + v1,0v̇2,2 = 0.
(2.6)

From (2.4), if the first three approximations are sufficient, then setting p = 1 yields the
approximate solution of (1.1) to

x(t) = lim
p→1

v1(t) =
k=3∑

k=0

v1,k(t),

y(t) = lim
p→1

v2(t) =
k=3∑

k=0

v2,k(t).

(2.7)
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Therefore,

v1,0(t) = x0(t) = x(0), (2.8)

v1,1(t) = −x0
(
x2

0 − x0 − y0 + x0y0 + ry0 + by0 + rx0
)
t

x0 + y0
, (2.9)

v1,2(t) =
1

2
(
x0 + y0

)3

((
x0t

2(3y0x
2
0 − x2

0by0 + 2x3
0by0 + 3x4

0r + 6x3
0y

2
0 − 3y3

0x0 + x3
0r

2 − 9x3
0y0

+ 6x4
0y0 − 9x2

0y
2
0 + 2y3

0x
2
0 − 2x3

0r − 2ry3
0 − 2by3

0+b
2y3

0 + r
2y3

0

+ x2
0by0r + 3x0ry

2
0b + y

2
0x0eb + bx2

0y0e − bx2
0y0c − 3x0by

2
0

+ 3x0y
2
0 + 3y3

0x0r + 3y3
0x0b − 6x2

0ry0 + 2x5
0 − 3x4

0 + y
3
0 + 2ry3

0b

+ 9x3
0ry0 − 6x0ry

2
0 + 9x2

0y
2
0r + 5x2

0y
2
0b + x

3
0 + 3x0r

2y2
0 + 3x2

0r
2y0

)))
,

(2.10)

v2,0(t) = y0(t) = y(0) , (2.11)

v2,1(t) =
y0

( − ex0 + cx0 − ey0
)
t

y0 + x0
, (2.12)

v2,2(t) = − 1

2
(
y0 + x0

)3

((
y0t

2(3y0ex
2
0c + y

2
0cx0e + 2ex3

0c − cx2
0y0 − cx0y

2
0 − c2x3

0 + cx
3
0y0

+ cx2
0y0r + cx0y

2
0b + cx

2
0y

2
0 + cx0y

2
0r − e2x3

0 − 3y0e
2x2

0

− 3y2
0e

2x0 − y3
0e

2))).
(2.13)

We also obtained v1,3 and v2,3, but because they were too long to maintain, we skip them and
only use them in the final numerical results. In this manner, the other components can be
easily obtained by substituting (2.8) through (2.13) into (2.7) as follows:

x(t) = x(0) −
(x0

(
x2

0 − x0 − y0 + x0y0 + ry0 + by0 + rx0
)
t

x0 + y0

)

+
1

2
(
x0 + y0

)3
(x0t

2(3y0x
2
0 − x2

0by0 + 2x3
0by0 + 3x4

0r + 6x3
0y

2
0 − 3y3

0x0 + x3
0r

2 − 9x3
0y0

+ 6x4
0y0 − 9x2

0y
2
0 + 2y3

0x
2
0 − 2x3

0r − 2ry3
0 − 2by3

0 + b
2y3

0 + r
2y3

0

+ x2
0by0r + 3x0ry

2
0b + y

2
0x0eb + bx2

0y0e − bx2
0y0c − 3x0by

2
0 + 3x0y

2
0

+ 3y3
0x0r+3y3

0x0b−6x2
0ry0+2x5

0 − 3x4
0+y

3
0+2ry3

0b+9x3
0ry0 − 6x0ry

2
0

+ 9x2
0y

2
0r + 5x2

0y
2
0b + x

3
0 + 3x0r

2y2
0 + 3x2

0r
2y0

))
+ v1,3 · · · ,

y(t) = y(0) +
y0

( − ex0 + cx0 − ey0
)
t

y0 + x0
− 1

2
(
y0 + x0

)3

× (
y0t

2(3y0ex
2
0c + y

2
0cx0e + 2ex3

0c − cx2
0y0 − cx0y

2
0 − c2x3

0 + cx
3
0y0 + cx2

0y0r

+ cx0y
2
0b + cx

2
0y

2
0 + cx0y

2
0r − e2x3

0 − 3y0e
2x2

0 − 3y2
0e

2x0 − y3
0e

2)) + v2,3 · · · .
(2.14)

3. Numerical results and comparison with ADM

For comparison with the results obtained by ADM [18], the parameter values in four cases
are considered in Table 1.
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Table 1: Parameter values used for illustration purposes.

Case x0 y0 b c e r

1 0.5 0.3 0.8 0.2 0.5 0.9
2 0.5 0.3 0.8 0.2 0.5 0.1
3 0.5 0.6 0.5 0.5 0.3 0.1
4 0.5 0.2 0.5 0.5 0.1 0.2

t

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 1: Population fraction versus time for Case 1: r = 0.9: (—) prey population fraction; (◦◦◦) predator
population fraction.

Results of four terms approximation for x(t), y(t) obtained by using HPM and ADM
[18] are presented in (3.1), respectively:

Case 1 : x ≈ 0.5 − 0.35t + 0.19476t2 − 0.107288t3,

y ≈ 0.3 − 0.1125t + 0.018808t2 − 0.0011284t3,

Case 2 : x ≈ 0.5 + 0.05t + 0.012265t2 − 0.0016032t3,

y ≈ 0.3 − 0.1125t + 0.024433t2 − 0.00398199t3,

Case 3 : x ≈ 0.3 + 0.0799t + 0.00533 t2 − 0.00115 t3,

y ≈ 0.6 − 0.08t + 0.01866t2 − 0.00231t3,

Case 4 : x ≈ 0.5 + 0.07857t − 0.016020 t2 − 0.00119873 t3,

y ≈ 0.2 + 0.051428t + 0.0055918t2 + 0.00002245t3,

Case 1 : x ≈ 0.5 − 0.35000t + 0.19476t2 − 0.10728t3,

y ≈ 0.3 − 0.11250t + 0.018809t2 − 0.0011286t3,

Case 2 : x ≈ 0.5 + 0.05000t + 0.012266t2 − 0.0016034t3,

y ≈ 0.3 − 0.11250t + 0.024434t2 − 0.0039821t3,

Case 3 : x ≈ 0.3 + 0.08000t + 0.005333 t2 − 0.0011555 t3,

y ≈ 0.6 − 0.08000t + 0.018667t2 − 0.0023112t3,

Case 4 : x ≈ 0.5 + 0.07857t − 0.016021 t2 − 0.0011984t3,

y ≈ 0.2 + 0.051430t + 0.0055920t2 + 0.00002246t3.

(3.1)
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t
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Figure 2: Population fraction versus time for Case 2: r = 0.1: (—) prey population fraction; (◦◦◦) predator
population fraction.
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Figure 3: Population fraction versus time for Case 3: r = 0.1: (—) prey population fraction; (◦◦◦) predator
population fraction.
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Figure 4: Population fraction versus time for Case 4: r = 0.2: (—) prey population fraction; (◦◦◦) predator
population fraction.
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Figures 1–4 show the relations between prey and predator populations versus time.
A noteworthy observation from Figure 1 is that prey and predator species can become

extinct simultaneously for some values of parameters, regardless of the initial values. Thus,
overexploitation of the prey population by constant effort harvesting process together with
high predator capturing rate may lead to mutual extinction as a possible outcome of predator-
pray interaction. In Figure 2, only the predator population gradually decreases and becomes
extinct despite the availability of increasing prey population. This can be attributed to the
effect of the predator death rate, being greater than the conversion rate and low constant
prey harvesting as shown in Case 2 (see Table 1). Figures 3 and 4 illustrate the possibility
of predator and prey long-term coexistence. Depending on the initial values, both prey and
predator populations increase or reduce in order to allow long-term coexistence [18].

4. Conclusion

Homotopyperturbation method was employed to approximate the solution of the ratio-
dependent predator-prey system with constant effort prey harvesting. The results obtained
here were compared with results of Adomian decomposition method. The results show that
there is less computations needed in comparison to ADM.
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