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Model-based analysis and synthesis applied to the dynamics, guidance, and control of an
autonomous undersea vehicle are presented. As the dynamic model for describing vehicle
motion mathematically, the equations of motion are derived. The stability derivatives in the
equations of motion are determined by a simulation-based technique using computational fluid
dynamics analysis. The dynamic model is applied to the design of the low-level control systems,
offering model-based synthetic approach in dynamics and control applications. As an intelligent
navigational strategy for undersea vehicles, we present the optimal guidance in environmental
disturbances. The optimal guidance aims at the minimum-time transit of a vehicle in an
environmental flow disturbance. In this paper, a newly developed algorithm for obtaining the
numerical solution of the optimal guidance law is presented. The algorithm is a globally working
procedure deriving the optimal guidance in any deterministic environmental disturbance. As a
fail-safe tactic in achieving the optimal navigation in environments of moderate uncertainty, we
propose the quasi-optimal guidance. Performances of the optimal and the quasi-optimal guidances
are demonstrated by the simulated navigations in a few environmental disturbances.

1. Introduction

In this article, we present model-based analysis and synthesis applied to the dynamics,
guidance, and control of an autonomous undersea vehicle (AUV). The vehicle dynamics is
one of the most important concerns in designing and developing an AUV, while the guidance
and control are the key issues in achieving the desired vehicle performance. Our approach
deals with these individual but closely interrelated issues in a consistent way based on the
model-based simulations.
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In our research, as the dynamic model of an AUV, we employ a set of equations
of motion describing the coupled six-degree-of-freedom (6-DOF) behaviour in three-
dimensional (3D) space. In the linearized form of the equations of motion, to complete
the dynamic model of an AUV, we have to determine the so-called stability derivatives
or hydrodynamic coefficients. There are many well-established approaches for determining
the stability derivatives of aerial vehicles [1, 2] or marine vehicles [3], which are based
on either experiment or theoretical prediction. While the experimental approach allows
direct measurement of the fluid dynamic forces and moments acting on the vehicle, it
requires a large amount of time, labour, expense, as well as an experimental facility. On the
other hand, a few state-of-the-art techniques are now available for predicting the stability
derivatives theoretically [4–6]. Most of them, however, are specialized for deriving the
stability derivatives for the dynamics of conventional airplanes [4, 5] or ships [6], making
them hard to directly apply to the modelling problems related to the dynamics of a specific
AUV. In this respect, we introduce a general-purpose technique for deriving the dynamic
model of an undersea vehicle, primarily depending on the computational fluid dynamics
(CFD) analysis.

The derived dynamic model is directly applied to the model-based design of the
motion control systems of an AUV. Two proportional-integral-derivative (PID) type low-level
controllers are employed to make a vehicle follow the desired trajectories in the longitudinal
and lateral planes, represented as time sequences of the depth (altitude) and heading.

As an intelligent high-level control of AUVs, a strategy of optimal guidance is
presented. The optimal guidance proposed in this research is the minimum-time guidance
in sea current environments, allowing a vehicle to reach a destination with the minimum
travel time. When the power consumption of an AUV is controlled to be constant
throughout the navigation, the navigation time is directly proportional to the total energy
consumption. Released from the umbilical cable, an AUV has to rely on restricted energy
stores during an undersea mission. Therefore, for an AUV, minimizing navigation time
offers an enhanced potential for vehicle safety and mission success rate. We present a newly
developed numerical procedure for deriving the optimal heading reference, by tracking
which vehicle achieves the minimum-time navigation in a given sea current disturbance.
The proposed procedure is systematic and seeks the solution in a global manner in any
deterministic current field, whether stationary or time-varying. Moreover, unlike other
path-finding algorithms, such as dynamic programming (DP) or generic algorithms (GAs)
[7–9], our procedure does not require a computation time increase for the time-varying
problems.

In real environments of AUV navigation, there are some factors that can cause
failure in realizing the proposed optimal guidance strategy [10, 11]. Some examples are
environmental uncertainties, severe sensor noises, or temporally faulty actuators. Though
these risk factors significantly affect the realization of optimality in actual sea navigation,
they have not been seriously treated in most of related literatures. In this article, we present
the concept of quasioptimality as a fail-safe strategy for realizing the proposed optimal
navigation.

2. An AUV “R-One”

In this article, we practice our strategy in dynamics, guidance, and control on the AUV “R-
One,” a long-range cruising type AUV, developed by the Institute of Industrial Science (IIS),
the University of Tokyo [12]. Figure 1 shows the overall layout of R-One.
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Figure 1: Overall layout of the long-range cruising type AUV R-One.
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Figure 2: Coordinate system and actuator actions in describing the dynamics of R-One. The coordinate
system takes its origin at the center of gravity of the vehicle. The nv is the rpm of fore and rear vertical
thrusters. The δe is the elevator deflection. The δpr is the deflected amount of the main thruster axis.

Figure 2 shows the coordinate system and the actions of the actuators installed in the
R-One. The axis-deflectable main thruster keeps or changes the vehicle’s kinematic states
in the horizontal plane. Two elevators and two vertical thrusters play the same role in the
vertical plane.
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Figure 3: Body-fixed coordinate system with linear and angular velocity components.

3. Modelling Vehicle Dynamics

3.1. Equations of Motion for Vehicle Dynamics.

The equations of motion describing the vehicle motion mathematically can be derived from
the conservation law of the linear and the angular momenta with respect to the inertial frame
of [1, 2]. The equations of motion (3.1) describing the 6-DOF motion of an AUV are defined
with respect to the body-fixed frame of reference shown in Figure 3, in which the origin is
taken at the vehicle’s center of gravity. The procedures for deriving the equations of motion
of an aerial vehicle which is quite similar to (3.1) are found in [1, 2]. It should be noted here
however, that in deriving (3.1) by referring to the equations of motion for the aerial vehicles
shown in [1, 2], the hydrostatic loads which do not appear in the flight dynamics have to be
additionally involved

m
(
U̇ +QW − RV

)
= −
(
m − ρ∇

)
g sinΘ +X,

m
(
V̇ + RU − PW

)
=
(
m − ρ∇

)
g cosΘ sinΦ + Y,

m
(
Ẇ + PV −QU

)
=
(
m − ρ∇

)
g cosΘ cosΦ + Z,

IxxṖ − IxzṘ − IxzPQ +
(
Izz − Iyy

)
QR = ρ∇gzB cosΘ sinΦ + L,

IyyQ̇ + (Izz − Izz)RP + Ixz
(
P 2 − R2

)
= ρ∇gzB sinΘ +M,

−IxzṖ + IzzṘ +
(
Iyy − Ixx

)
PQ + IxzQR =N.

(3.1)

In (3.1), U, V, W, and P, Q, R are the x, y, z components of linear and angular velocities.
∇, m, and I represent volume, mass, and mass moments or products of inertia of a
vehicle, and ρ and g are constants expressing water density and gravitational acceleration.
Hydrodynamic forces and moments are represented by X, Y, Z, and L, M, N, each of which
is the component in the direction of x, y, z. Φ,Θ and Ψ are so-called Euler angles to be
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defined in the coordinate transformation between the body-fixed and the inertial frames of
reference. The zB is the z-directional displacement of the buoyancy center of the vehicle.
The equations of motion are frequently linearized for use in stability and control analysis
as mentioned in [1–3]. The following equations are the linearized forms of (3.1), in which
u, v, w, p, q, r, φ, θ, and ψ denote small amounts of velocities, and angular velocities and
displacements, perturbed from their reference values, which are expressed by their uppercase
letters

m
(
u̇ + qW0

)
= −θ

(
m − ρ∇

)
g cos θ0 +X,

m
(
v̇ + rU0 − pW0

)
= φ
(
m − ρ∇

)
g cos θ0 + Y,

m
(
ẇ − qU0

)
= −θ

(
m − ρ∇

)
g sin θ0 + Z,

Ixxṗ − Ixzṙ = φρ∇gzB cos θ0 + L,

Iyyq̇ = θρ∇gzB cos θ0 +M,

−Ixzṗ + Izzṙ =N,

φ̇ = p + r tan θ0,

θ̇ = q,

ψ̇ = r sec θ0.

(3.2)

In general, to complete the linearized equations of motion for use in stability and control
analysis, hydrodynamic loads are expanded and linearized on the assumption that they are
functions of the instantaneous values of the perturbed velocities, accelerations, and control
inputs. Thus, the expanded expressions of the hydrodynamic loads are obtained in the form
of a Taylor series in these variables, which is linearized by discarding all the higher-order
terms. For example, X is expanded as

X = Xuu +Xww +Xu̇u̇ +Xnmnm, (3.3a)

where

Xu =
(
∂X

∂u

)

0
, Xw =

(
∂X

∂w

)

0
, . . . . (3.3b)

The subscript zero in (3.3a) indicates a reference condition where the derivatives are
evaluated. In (3.3a) and (3.3b), derivatives such as Xu or Xw are called stability derivatives
[1–5]. By expanding all the external hydrodynamic loads introducing stability derivatives
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of their dynamic correlations, the equations of motion (3.2) are expressed by means of the
stability derivatives as

(m −Xu̇)u̇ +mW0θ̇ −Xuu −Xww + θ
(
ρ∇ −m

)
g cos θ0 = Xnmnm,

(m − Zẇ)ẇ − Zq̇q̇ − Zuu − Zww −
(
mU0 + Zq

)
q − θ

(
ρ∇ −m

)
g sin θ0 = Znvnv + Zδeδe,

−Mẇẇ+
(
Iyy−Mq̇

)
q̇−Muu−Mww−Mqq−θρ∇gzB cos θ0=−Znv lvfnv+Znv lvrnv+Zδeleδe,

(m − Yv̇)v̇ − Yṙ ṙ − Yvv −
(
mW0 + Yp

)
p + (mU0 − Yr)r = Yδpr δpr ,

−Lv̇v̇ +
(
Ixx − Lṗ

)
ṗ − (Ixz + Lṙ)ṙ − Lvv − Lpp − Lrr − φρ∇gzB cos θ0 = Lδpr δpr ,

−Nv̇v̇ +
(
Ixz +Nṗ

)
ṗ + (Izz −Nṙ)ṙ −Nvv −Npp −Nrr =Nδprδpr ,

φ̇ = p + r tan θ0,

θ̇ = q,

ψ̇ = r sec θ0,

(3.3)

where nm represents the rpm of the main thruster.

3.2. Evaluation of Stability Derivatives by CFD Analyses.

As noticeable in (3.3), within the framework of small perturbation theory, constructing
the dynamic model is, in effect, reduced to the determination of the stability derivatives
defined in the linearized equations of motion. The most commonly and widely employed
approaches for evaluating the stability derivatives are the wind tunnel test for aerial vehicles
and the towing tank test for marine vehicles [1–6]. These experimental approaches, however,
require a huge experimental facility and a large workforce, which makes them expensive
and laborious, even when the test is for a single model. In this article, we present a model-
based approach for evaluating the stability derivatives. In the approach, dominant stability
derivatives are evaluated from the hydrodynamic loads which are obtained by CFD analyses.
When we are to evaluate the value of Xu in (3.3) defined at a reference speed of U0,
for example, we conduct CFD analyses repeatedly at the cruising speeds of U0(1 ± η),
where U0 is the reference cruising speed and η is the perturbation ratio of U0. By taking
central difference approximation of X with respect to u by using the X values obtained at
U0(1±η), we can derive Xu defined at U0. However, while the majority of dominant stability
derivatives are able to be evaluated by this technique, there are other stability derivatives
which are not. For such stability derivatives, the simplified estimation formulae proposed in
the field of flight dynamics [1, 2] are modified and applied.

In our CFD analyses, we used a commercial fluid dynamics solver called “Star-CD,”
developed by CD-adapco [13]. The Star-CD is a Navier-Stokes solver based on the finite
difference numerical scheme. Like other famous commercial CFD solvers such as FLUENT
or ANSYS, Star-CD also has shown numerous field application results that it replicates
experimental model results with acceptably fine accuracy [14, 15]. The Star-CD derives
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Figure 4: Grid system for CFD analyses of flow field around the R-One. The entire grid system is completed
by assembling individually generated subgrid blocks.

the numerical solution by pressure-implicit split-operator (PISO) algorithm, which is a well-
known, robust scheme with predictor-corrector steps. In our CFD analyses, the problem-
specific high Reynolds number (Re) requires a proper turbulence model. In using Star-CD,
we selected the Reynolds-Averaged Navier-Stokes (RANS) turbulence model, which is one
of the most widely used turbulence model in engineering applications of moderate turbulent
conditions [16].

Figure 4 shows the grid system for evaluating the hydrodynamic loads by CFD
analyses. To generate a computationally robust, structured grid system adapting to the
complicated aftbody geometry of the vehicle, we employed a grid generation technique called
the multiblock method [17].

Not only estimating the drag force of acceptable accuracy is the primary concern in our
CFD analyses for deriving the stability derivatives, it also serves as the most fundamental
measure to evaluate a CFD solver [14–16]. After completing the hull structure, drag forces
acting on the R-One at three cruising speeds were investigated by means of the towing tank
tests [12]. In Figure 5, two drag curves, obtained by CFD calculations and tank tests, are
shown together. The drag curves shown are quadratic interpolations of the raw data set of
drags, calculated and measured at the cruising speeds of 1.03, 1.54, and 2.06 m/s, respectively.
Validity of the quadratic interpolation is based on the fact that within the small Re interval,
drag of an immersed body has quadratic dependency on its advance speed [18]. In Figure 5,
the gradients of two drag curves are also expressed. As seen in the figure, drags obtained by
CFD calculations are more or less excessive than the ones by tank tests. However, it is noted
that the gradients of drags show close similarity between CFD analyses and tank tests, which
advocates our approach to evaluating the stability derivatives principally by means of the
CFD analyses.

Figure 6 shows the pressure distribution with a few selected streamlines along
the body surface of R-One. By integrating the pressure over the entire body surface,
hydrodynamic loads are obtained.

It is generally known and also noticeable from (3.3) that, according to the coupling
relation, linearized equations of motion are split into two independent groups: longitudinal
equations for surge, heave, and pitch, and lateral equations for sway, roll, and yaw [1–3].
In Tables 1(a) and 1(b), the longitudinal and lateral stability derivatives appearing in (3.3)
are summarized. By substituting all stability derivatives in (3.3) with their corresponding
numerical values in the tables, the dynamic model of R-One is completed.
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Figure 5: Curves of drags and gradient of drags.

Table 1: (a) Stability derivatives in the longitudinal equations of motion for R-One. (b) Stability derivatives
in the lateral equations of motion for R-One.

(a)

Xu̇ (kg) −237.65 Zu (kg/s) −64.41
Zẇ (kg) −2152.10 Zw (kg/s) −2819.64
Zq̇ (kg·m) −25547.00 Zq (kg·m/s) −11360.06
Mu̇ (kg·m) 0.00 Mu (kg·m/s) 0.00
Mẇ (kg·m) −1928.80 Mw (kg·m/s) 870.36
Mq̇ (kg·m2) −153400.00 Mq (kg·m2/s) −39351.25
Xu (kg/s) −364.37 Zδe (kg·m/s2) −3168.10
Xw (kg/s) 64.72 Mδe (kg·m2/s2) −10974.31
Xq (kg·m/s) 0.00

(b)

Yv̇ (kg) −4653.77 Yr (kg·m/s) 3931.06
Yṙ (kg) 746.74 Lv (kg·m/s) −515.99
Lv̇ (kg·m) −1.31 Lp (kg·m2/s) −1165.25
Lṗ (kg·m2) 3.81 Lr (kg·m2/s) 1500.45
Lṙ (kg·m2) −3.35 Nv (kg·m/s) −4054.37
Nv̇ (kg·m) −554.21 Np (kg·m2/s) −1.02
Nṗ (kg·m2) −1.19 Nr (kg·m2/s) −13704.63
Nṙ (kg·m2) −15934.27 Yδpr (kg·m/s2) −399.04
Yv (kg/s) −1809.97 Lδpr (kg·m2/s2) 0.00
Yp (kg·m/s) 0.00 Nδpr (kg·m2/s2) 1677.38
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Figure 6: Visualized results of a CFD analysis.

3.3. Vehicle Motion Simulation

State-space forms of the longitudinal and the lateral equations of motion for R-One,
completed by assigning the numerical values in Table 1 to corresponding stability derivatives
in (3.3), are represented as follows.

(i) Longitudinal equations of motion for R-One:

⎡

⎢⎢⎢⎢⎢
⎣

u̇

ẇ

q̇

θ̇

⎤

⎥⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢⎢⎢
⎣

−0.0786 0.0140 0 0.0145

−0.0103 −0.4725 0.2465 0.0610

0.0001 0.0108 −0.2420 −0.0156

0 0 1 0

⎤

⎥⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢⎢
⎣

u

w

q

θ

⎤

⎥⎥⎥⎥⎥
⎦
+

⎡

⎢⎢⎢⎢⎢
⎣

0.0554 0 0

0 0.0027 −0.2169

0 −0.0001 −0.0684

0 0 0

⎤

⎥⎥⎥⎥⎥
⎦

⎡

⎢⎢
⎣

nm

nv

δe

⎤

⎥⎥
⎦.

(3.5a)

(ii) Lateral equations of motion for R-One:

⎡

⎢⎢⎢⎢⎢
⎣

v̇

ṗ

ṙ

φ̇

⎤

⎥⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢⎢⎢
⎣

−0.2097 0.0053 −0.5388 0.0112

−4.7444 −11.2192 16.1215 −23.6516

−0.1185 0.0643 −1.1931 0.1357

0 1 0 0

⎤

⎥⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢⎢
⎣

v

p

r

φ

⎤

⎥⎥⎥⎥⎥
⎦
+

⎡

⎢⎢⎢⎢⎢
⎣

−0.0388

−0.0948

0.0634

0

⎤

⎥⎥⎥⎥⎥
⎦
δpr . (3.5b)

By solving (3.5a) and (3.5b) in the time domain with appropriate initial conditions and
actuator inputs, motion responses of the R-One are computed. In the inertial navigation
system (INS) installed in R-One, not only vehicle kinematics but also time sequences of
the actuator inputs during an undersea mission are recorded. In Figure 7, simulated vehicle
trajectories are compared with actual vehicle trajectories recorded during the Teisi knoll
survey mission [19]. As noticeable from the figure, the dynamic model of R-One implemented
by our model-based approach provides motion responses exhibiting sufficiently good
agreement between the simulated and actual vehicle trajectories.
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Figure 7: Simulated and actual vehicle trajectories (a and c) generated from the corresponding actuator
inputs (b and d).

4. Tracking Control Design

The controller implemented for the motion control of R-One is based on the PID
compensation. Needless to say that, PID-type controller is the most commonly and widely
used controller for most artificial control systems. However, in designing a PID controller,
precise plant dynamics is a key prerequisite to ensuring acceptably good control performance.
Deriving a precise plant dynamics is not easy in some cases. For this reason, during the past
three decades, a few significant attempts have been made to provide controller models that do
not depend on a precise description of the plant model in its design [20–22]. Neural network
(NN) controllers based on the self-organizing map or fuzzy logic controllers are the most
famous ones in such attempts [21, 22]. In order to derive a practically useful controller by NN
or fuzzy logic, however, we have to ensure huge random diversity in training data. This is a
very difficult task in a real world problem, because, in general, we do not have any definitive
guidelines for deciding whether the prepared training data is biased or not [22, 23].

To change or keep the kinematic states of the vehicle, two independent low-level
controls were implemented in the R-One: the depth (altitude) control for the longitudinal
motion and the heading control for the lateral motion. Configurations of the depth and the
heading controls are depicted in Figures 8(a) and 8(b).

To build the mathematical models for the control systems shown in the Figure 8,
transfer functions of p(s)/δe(s), w(s)/δe(s), and r(s)/δpr(s) are extracted from (3.5a) and
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Figure 8: (a) Configuration of the depth (altitude) control system for R-One. (b) Configuration of the
heading control system for R-One.
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Figure 9: Simulated heading tracking control (a) with corresponding actuator input (b).

(3.5b). Then, PID-tuning is carried out to determine the optimal values of controller gains
from the standpoint of system robustness and swiftness of response. In determining the
optimal gain values, we used the model-based control system design tool called “SISO Design
Tool,” offered by the “Control System Toolbox” included in “Matlab” [24].

An example of the performance result for the designed control systems is shown in
Figure 9, where it is clearly seen that the designed heading controller lets the vehicle follow
the heading reference with sufficient swiftness and small overshoot.
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5. Optimal Guidance of AUV

5.1. Background

The sea environment contains several disturbances, such as surface waves, wind, and sea
currents. Among them, the sea current is known to be the most significant disturbance for
the dynamics of an undersea vehicle as it directly interacts with the vehicle motion [3, 8, 11].
Considering the guidance problem to make a vehicle transit to a given destination in a region
of sea current, it is quite natural that there arises a navigation time difference according to
the selection of an individual navigation trajectory. The problem of the minimum-time vessel
guidance in a region of current flow has interested people as long years ago as ancient Greece
[25]. However, since the problem requires a minimization technique of the functionals, it had
hardly been treated mathematically until the advent of the calculus of variations. On the basis
of this mathematical tool, Bryson and Ho [26] derived the minimum-time guidance law of a
surface vessel in a region of a surface current flow. Though the law is an optimal controller
of explicit form, obtaining its solution is not easy since it actually is a so-called two-point
boundary value problem. As an ad hoc approach for the minimum-time navigation problem
in a linearly varying, shear flow-like current distribution presented by Lewis and Syrmos,
a graphical solution finding technique has been presented [25]. As is naturally expected,
however, such an approach is problem-specific and lacks universality in its applicability.
Papadakis and Perakis [8] treated the minimum-time routing problem of a vessel moving
in a wave environment. In their approach, by subdividing the navigation region into several
subregions of different sea states, the path for the optimal routing is obtained by the DP
approach. Aside from the difficulties in constructing a numerical solution procedure for their
approach, it has a problem that the solution significantly depends on the features of regional
subdivision. As a completely discrete and nonlinear approach, the cell mapping technique
was applied to derive the minimum-time tracking trajectory to capture a moving target in a
deterministic vortex field [27]. It, however, has the same problem of regional subdivision as
is inherent in the approach by Papadakis and Perakis [8], which might lead to the divergence
due to numerical instability.

In this research, we propose a newly developed procedure for obtaining the numerical
solution of the optimal guidance law, which achieves the minimum-time navigation of a
vehicle in a given current field. The algorithm of our solution procedure is simple but
consistently applicable to any current field if only the distribution of which is deterministic.
As a fault-tolerable strategy for putting the proposed optimal navigation into practice, the
concept of quasioptimality is introduced. The basic idea of the quasioptimal navigation is
quite simple and, in effect, consists of the on-site feedbacks of the optimal guidance revisions.

5.2. The Optimal Guidance Law

In our optimal guidance problem, we employed the guidance law presented by Bryson and
Ho [26] as

ψ̇ = sin2ψ
∂vc
∂x

+
1
2

(
∂uc
∂x
− ∂vc
∂y

)
sin 2ψ − cos2ψ

∂uc
∂y

, (5.1)

where ψ represents the vehicle heading as defined in Figure 10, and uc, vc are x, y components
of the sea current velocity. The detailed procedure of deriving (5.1) is well explained in [11].
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Figure 10: Coordinate system and definition of the heading for describing the optimal guidance problem.
O′-x′y′ is the inertial frame of reference, while O-xy is the body-fixed coordinate system.

Though Bryson and Ho derived (5.1) on the assumption of a stationary flow condition, we
have shown that it is also valid for time-varying currents, like tidal flows [11]. Equation (5.1)
is a nonlinear ordinary differential equation of an unspecified vehicle heading ψ(t). Though
it seems that the solution would be readily obtainable by using a suitable numerical scheme,
such as Runge-Kutta, there still remains a significant shortfall: while (5.1) defines an initial
value problem, its solution cannot be obtained with an arbitrarily assigned initial heading.
If we solve (5.1) with an arbitrary initial value of ψ, a vehicle following the solution of (5.1)
as the heading reference does not arrive at the destination. This is because (5.1) is, in fact, a
two-point boundary value problem, the correct initial value of which constitutes a part of the
solution.

5.3. Numerical Solution Procedure

To obtain the solution of the two-point boundary value problems, an iterative solution
procedure is generally used, such as “shooting” or “relaxation” [28]. Starting from an
initial guess, solutions generated by these schemes are repeatedly adjusted to eliminate the
discrepancies between the estimated and the desired boundary conditions at both endpoints.
These schemes, however, strongly rely on the initial guess, inappropriate assignment of
which may lead to a local solution or divergence [28]. In this article, we present a numerical
procedure to obtain the solution of (5.1), called “AREN,” which stands for Arbitrary
REference Navigation”. In applying AREN, first we need to make a simulated navigation
along any feasible trajectory, generated by an arbitrary guidance and terminating at the
destination. We call this navigation the “reference navigation,” because it is used as the
reference in deriving the optimal navigation. In a reference navigation, the time it takes
for the vehicle to reach the destination should be recorded, which we call the “reference
navigation time,” denoted by tf ref. As already mentioned, the only requirement for the
reference navigation is letting the vehicle arrive at the destination. Therefore, a navigation
following any trajectory shown in Figure 11 can be qualified as the reference navigation.
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Destination

Initial position

Figure 11: A few possible trajectories for the reference navigation.

In AREN, to search for the correct initial heading numerically, the interval of 0 ∼ 2π is
divided by equally spaced N − 1 subintervals as

ψ
(i)
0 = iΔψ for i = 0, 1, . . . ,N − 1, (5.2)

where Δψ = 2π/N. In (5.2), ψ(i)
0 is the (i)th initial heading trial and Δψ is its increment,

that is, the interval of initial heading trials. Next, for an initial heading trial ψ(i)
0 , we solve

(5.1) in the time domain using an appropriate time marching scheme, which produces a
simulated navigation starting from ψ

(i)
0 . The navigation produced here is called the (i)th “trial

navigation” adjoining ψ(i)
0 . Once the trajectory produced by a trial navigation passes through

vicinity of the destination, it can be considered as a potential optimal navigation since the
optimal guidance law (5.1) with the correct initial heading lets a vehicle reach the destination.
Therefore, N trial navigations starting from N initial headings given in (5.2) are all possible
candidates for the optimal navigation. In practice, however, discretization error in initial
heading trials causes convergence error at the destination, so that the optimal navigation
should be identified in an approximate manner. We define the “minimum distance,” as the
shortest distance between the destination and the trajectory generated by trial navigation.
In Figure 12, l(k−1)

min , l
(k)
min, and l

(k+1)
min represent the minimum distances between the destination

and the trajectories generated by (k − 1)th, (k)th, and (k + 1)th trial navigations, respectively.
If the minimum distance of the (k)th trial navigation is smaller than any other minimum
distance and thus satisfies (5.3), we choose it as the optimal navigation because in the (k)th
trial navigation, the vehicle approaches the destination with the smallest deviation among all
trial navigations, that is, the optimal navigation candidates.

l
(k)
min ≤ l

(i)
min, for i = 0, 1, . . . ,N − 1. (5.3)

However, in choosing the optimal navigation among the trial ones, there still remains a
serious drawback: we have no idea how long we have to continue a trial navigation so as to
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Figure 12: Trial navigations corresponding to a few discrete initial heading trials. The approximate optimal
navigation converging to the destination is determined on the basis of the minimum distances. Note that
all trial navigations are continued until t = tf ref.

determine its true minimum distance. This is where the reference navigation time prepared
beforehand comes into play. It is apparent that the reference navigation is nonoptimal, since it
is based on an arbitrary guidance law, only achieving the vehicle’s arrival at the destination.
Therefore, the reference navigation time must be larger or equal to that of the optimal
navigation as

O < t∗f ≤ tf ref, (5.4)

where t∗
f

represents navigation time with the optimal guidance. It should be noted here that,
according to the minimum principle, once we have started a trial navigation with an initial
heading close to the optimal one, a vehicle should pass by the vicinity of the destination at
a time surely smaller than tf ref. In other words, the reference navigation time qualifies to
be the upper limit of the simulation times of the trial navigations, in order to identify an
optimal navigation among the trial ones. In Figure 12, among all trial navigations continued
until t = tf ref, (k)th trial navigation marks the smallest minimum distance, satisfying (5.3).
Therefore, the (k)th trial navigation is determined as the optimal navigation.

6. Optimal Navigation Examples

6.1. The Reference Navigation

As mentioned in the previous section, to implement the optimal guidance for an AUV
navigation by AREN, it is necessary to make a reference navigation beforehand. The simplest
guidance satisfying the vehicle’s arrival at the destination may be proportional navigation
(PN) [25, 26]. In PN, vehicle heading is continuously adjusted so that the line of sight (LOS)
is directed toward the target point. In our work, we employ PN as the reference navigation.
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6.2. Optimal Navigation in a Shearing Flow

The first numerical example in this research is an optimal navigation in a current disturbance
of the linear shear flow, taken from Bryson and Ho [26]. The current velocity in this problem
is described by

uc
(
x, y
)
= 0,

vc
(
x, y
)
= −Ucx

h
,

(6.1)

where Uc and h are set to be 1.544 m/s and 100 m, respectively. Starting from the initial
position at (x0, y0) = (−186 m, 366 m), the vehicle is directed to move toward the destination
at the origin in this example. Due to its simplicity, the current distribution of (6.1) allows
derivation of the analytic optimal guidance law expressed as

x

h
= cscψ − cscψf ,

y

h
=

1
2

[
cscψf

(
cotψ − cotψf

)
+ cotψ

(
cscψf − cscψ

)
+ log

cscψf − cotψf
cscψ − cotψ

]
,

(6.2)

where ψf is the vehicle heading at the final state.
Navigation trajectories are shown in Figure 13. In the reference navigation by PN,

significant adverse drift happens at the initial stage, since within the region of |x| > 100 m
current flow speed exceeds the vehicle speed relative to the water. The optimal guidance
detours the vehicle across the upper half plane, taking advantage of the favorable current
flow. Navigation times by PN and optimal guidance are 353.7 and 739.2 s, respectively,
indicating a 52% decrease in navigation time by the optimal guidance proposed.

6.3. Optimal Navigation in a Time-Varying Flow

The next numerical example is an optimal navigation in a time-varying current flow. In actual
sea environments, for a lot of currents the direction and the magnitude of their velocities
change continuously like tidal flows. As mentioned previously, we have proved that the
optimal guidance law (5.1) is also valid for time-varying currents as well as for stationary
ones. Therefore, once the flow velocity distribution in a navigation region is described as a
function of the position and time, our numerical scheme is expected to be effective and thus
realize the minimum-time navigation in a time-varying flow.

Navigation trajectories in an artificially made time-varying current are depicted in
Figure 14. As shown in the figure, near the middle of the navigation region, the vehicle
following the guidance of PN temporarily fails to proceed toward the destination due to
severe drift caused by strong local current flow of adverse direction. The occurrence of such
a disadvantage is prevented in the optimal navigation. By following the optimal guidance,
the vehicle proceeds taking advantage of the favorable flows and avoids passing through
the region in which the current flow is gradually changing to the strongly adverse one. In
Figure 14(b), it should be noted that at 623.0 s, having been released from the severe drift,
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Figure 13: Navigation trajectories in a linear shearing current flow.

the vehicle under the guidance of PN is about to restart toward the destination. At the same
instant, however, the optimal guidance has already made the vehicle arrive at the destination.

6.4. QuasiOptimal Navigation

The quasioptimal navigation is a fail-safe strategy introduced to react to failure in realizing
the optimal navigation, due to environmental uncertainties or temporal malfunctions in
sensors and actuators. The basic idea of the quasioptimal navigation is quite simple. The
optimal heading reference during the quasioptimal navigation is revised repeatedly in
response to the on-site request to prevent failure in on-going optimal navigation. According
to Bellman’s principle of optimality [25, 26], once we have failed in tracking the optimal
trajectory, the best policy we can take from then on is to construct and follow a revised optimal
trajectory starting at the present state. To derive the revised optimal trajectory, the optimal
guidance law (5.1) has to be applied and solved again by using the proposed numerical
solution procedure, that is, AREN, taking the present vehicle position as the new initial
position. The whole trajectory obtained here is not optimal, since it already has included the
past nonoptimal interval. Nonetheless, it is evidently the best trajectory we can take under the
present situation, so that we call the corresponding navigation the quasioptimal navigation.
Optimal and quasioptimal navigation trajectories in a time-varying current flow are shown
in Figure 15.

The current distribution in this example is the same one that we took in the previous
example. In this example, however, while the optimal navigation is performed with the exact
information about the current flow distribution, assuming a situation of incorrect localization
due to sensor failure, mismatched current flow information is fed to the vehicle guidance
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Figure 14: Navigation trajectories in a time-varying current flow at (a) t = 432 s and (b) t = 623 s.

controller in the quasioptimal case. The time interval during which mismatched information
is taken is 0.0 ∼ 252.0 s. Starting at 252.0 s, optimal guidance revised on the basis of the
correct current flow information achieves the quasioptimal navigation. Figure 16 shows the
time sequence of the vehicle headings during the optimal and the quasioptimal navigations.

As expected naturally, the performance of the quasioptimal navigation is not as high
as that of the optimal one. While the optimal guidance completes the navigation at 623 s, the
quasioptimal one continues it until 702 s. Note that in Figure 16, an abrupt heading change
occurs at 252.0 s during the quasioptimal navigation.

6.5. Optimal Navigation in Northwestern Pacific

In what follows, we try to accomplish the minimum-time navigation within a real sea
environment. The sea region selected for this optimal navigation example is located in
the Northwestern Pacific Ocean near Japan. The current field considered here is an actual
measurement of the surface flow provided by the Japan Meteorological Agency, available
at http://www.data.kishou.go.jp/db/kobe/db kobe.html. The most notable environmental
characteristic in this sea region is the current field dominated by the Kuroshio. The
Kuroshio is a strong western boundary current in the Northwestern Pacific Ocean, flowing
northeastward along the eastern coast of Japan [29]. As seen in Figure 18, Kuroshio-induced
flows moving eastwards constitute the principal stream in this region.

In the current field data from the database of the Japan Meteorological Agency, current
velocity is defined only on the predefined, large-scale grid nodes covering the sea region.
As noticeable from (5.1), however, in order to derive the optimal heading reference, current
velocity and its gradient at every vehicle position have to be available. As a remedy for
this data deficiency, we estimate the current velocity and its gradient by interpolating the
predefined values on grid nodes surrounding the present vehicle position. In applying
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Figure 15: Navigation trajectories in a time-varying current flow at (a) t = 252 s, (b) t = 623 s, and (c) t =
702 s.

the interpolation, the nearest grid node to the present vehicle position has to be identified
first. Then, the current velocity at the present vehicle position is estimated by 2D biquadratic
interpolation utilizing values on the nearest node and surrounding eight nodes, as shown
in Figure 17. Gradients of current velocities are obtained by the same manner. Since the
velocity gradients are not provided from the database, however, prior to the interpolation,
we calculate their nodal values by finite difference approximations.

The description of the navigation to be optimized here is as follows. Starting from an
initial position, the vehicle is to transit to a destination in a mission-specified area, where
an undersea survey mission is to be undertaken. Taking into account the inshore or harbor
launch, the vehicle is made to start from the initial position off Minamiizu, the southern
extreme of the Izu peninsula (Figure 18).
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Figure 16: Time sequence of vehicle headings.

x′

y′O′

n1 n2 n3

n4 n0 n5

n6 n7 n8

Figure 17: Cut sea area for interpolating current velocity and its gradient. When n0 is the nearest grid node
to the present vehicle position, current velocity and its gradient on that position are estimated using their
values on n0 to n8.

Figure 18 shows the navigation trajectories achieved by the PN and optimal guidance.
As shown in the figure, like the preceding examples in which exact values of current velocity
and its gradients are available anywhere in the navigation region, the vehicle tracks the
optimal reference trajectory with a negligibly small deviation. This indicates that our strategy
of optimal navigation is also valid in the real sea current data, originally defined only on the
coarsely defined discrete grid nodes.

In Figure 18, with the vehicle moving under PN, having reached the region of the
mainstream of Kuroshio, its speed relative to the ground is remarkably reduced. This is
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Figure 18: Navigation trajectories in a Northwestern Pacific Ocean region. The current data is built from
actual measurements.

because in this region, for the vehicle following the guidance of PN, the direction of its
advance velocity is placed out-of-phase with the direction of the mainstream of Kuroshio.
In the optimal navigation, the former segment of the navigation trajectory is formed along
the shoreline until the vehicle reaches a point off the southern extreme of Kii peninsula.
By taking this route, the vehicle attains a speed increase, riding the coastal current mainly
flowing westwards. Note that upon the vehicle reaching a point off the southern extreme of
the Kii peninsula, the optimal trajectory takes a large turn, slightly rolling back eastward from
the destination. This slight rollback is the result of the optimal guidance’s action to prevent
the vehicle’s advancing direction from being out-of-phase with that of the mainstream
of Kuroshio, leading to the optimal navigation trajectory shown. The optimal trajectory
obtained reveals one of the significant advantages of our approach over GA-based path
planning which is not able to generate the optimal path with interim backward intervals
by its nature [7, 9].

Navigation times by PN and optimal guidance are 232198 and 212006 s, respectively,
indicating an 8.7% decrease in navigation time by the optimal guidance proposed.

7. Conclusions and Future Works

In this article, model-based analysis and synthesis to the following three research fields in
AUV design and development have been presented.

(i) Dynamic system modelling of an AUV.

(ii) Motion control design and tracking control application.

(iii) Optimal guidance of an AUV in environmental disturbances.
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In the dynamic system modelling of the AUV R-One, we evaluated the hydrodynamic
loads by using CFD analyses. Then, by differentiating a hydrodynamic load with respect
to the amount of a perturbation, corresponding stability derivatives were obtained. Using
the stability derivatives evaluated, we built up the dynamic model of the R-One, which is
characterized to be 6-DOF [3 longitudinal (surge, heave, pitch) + 3 lateral (sway, roll, yaw)],
linear, and multiple-input multiple-output (MIMO).

Depth and heading control systems are designed by employing controller models
based on the PID compensations. In the PID-tuning, model-based simulations for the depth
and the heading controls are exploited in determining the optimal gains.

Concerning the guidance problem of AUVs moving in sea environmental distur-
bances, a newly developed procedure for obtaining the numerical solution of the optimal
guidance law to achieve the minimum-time navigation has been presented. The optimal
heading is obtained as the solution of the optimal guidance law, which is fed to the heading
controller as the optimal reference. Reduced computational cost is one of the outstanding
features of the proposed procedure. Numerical calculations of the optimal navigation
examples presented in this article except for the last one are completed within 10 minutes on
a single core 2.4 GHz windows XP platform. Moreover, unlike other path-finding algorithms
such as DP or GAs, our procedure does not require a computation time increase for the time-
varying problems.

As a fail-safe strategy for putting the proposed optimal navigation into execution,
the concept of quasioptimal guidance has been proposed. The fact that there actually are
several possible actions lessening the chance of achieving optimality emphasizes the practical
importance of the quasioptimal navigation.

We have not considered the problem of unknown or nondeterministic currents. Our
approach cannot be applied to an entirely unknown environment. For a sea region containing
partially or coarsely defined currents, however, an estimated distribution can be built via
interpolation and extrapolation, as shown in the last navigation example. The estimation
possibly contains more or less uncertainty. Notably, however, it is the quasioptimal strategy
that can cope with the environmental uncertainty. When the uncertainty in the estimation is
significant, convergence may not be guaranteed.
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