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Alpha-beta bidirectional associative memories are implemented for storing concept lattices. We use
Lindig’s algorithm to construct a concept lattice of a particular context; this structure is stored into
an associative memory just as a human being does, namely, associating patterns. Bidirectionality
and perfect recall of Alpha-Beta associative model make it a great tool to store a concept lattice.
In the learning phase, objects and attributes obtained from Lindig’s algorithm are associated by
Alpha-Beta bidirectional associative memory; in this phase the data is stored. In the recalling phase,
the associative model allows to retrieve objects from attributes or vice versa. Our model assures
the recalling of every learnt concept.

1. Introduction

Concept Lattices is the common name for a specialized form of Hasse diagrams [1] that is
used in conceptual data processing. Concept Lattices are a principled way of representing
and visualizing the structure of symbolic data that emerged from Rudolf Wille efforts to
restructure lattice and order theory in the 1980s. Conceptual data processing, also known
as Formal Concept Analysis, has become a standard technique in data and knowledge
processing that has given rise to applications in data visualization, data mining, information
retrieval (using ontologies), and knowledge management. Organization of discovered
concepts in the form of a lattice-structure has many advantages from the perspective of
knowledge discovery. It facilitates insights into dependencies among different concepts
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mined from a dataset. Lattices of concepts have been implemented with a number of different
algorithms [2–7]. Any of them can generate a very large number of concepts; therefore,
a suitable method is required for an efficient storage and retrieval of parts of the lattice.
The task of efficiently organizing and retrieving various nodes of a lattice is the focus
of this work. A concept is a pair that consists of a set of objects and a particular set of
attribute values shared by the objects. From an initial table, with rows representing the
objects and columns representing the attributes, a concept lattice can be obtained. From this
structure, we can retrieve an object from the attribute or vice versa, and these pairs form a
concept.

The main goal of an Associative Memory is to associate pairs of patterns for recalling
one pattern presenting its corresponding pattern; the recalling is done in one direction only.
In the particular case of Bidirectional Associative Memories (BAM), we can recall any of the
two patterns belonging to a pair just presenting one of them; therefore, the recalling is in
both directions. This behavior allows BAM to be a suitable tool for storing and retrieving
concepts which form a particular lattice concept. The first step for achieving this task is
to apply any of the existing algorithms to obtain the lattice concept; in this work, we use
the Linding’s algorithm [5]; then we store each node (concept) associating the objects and
attributes forming that concept. Once we stored all concepts, we are able to retrieve them
by presenting an object or an attribute. The model of BAM used here is the Alpha-Beta
Bidirectional Associative Memory [8]. The main reason for using this model is because it
presents perfect recall of the training set; this means that it can recall every pair of patterns
that it associated, no matter the size of the patterns or the number of these. This advantage
is not presented by other BAM models which present stability and convergence problems or
limit their use for a particular number of patterns or to the nature of them, such as, Hamming
distance or linear dependency [9–19].

In Section 2, we present a brief discussion on Formal Context Analysis. In Section 3,
we introduce the basic concepts of Associative Models, in particular the Alpha-Beta Model,
because it is the base of Alpha-Beta BAM. Then, we present the theoretical foundations of our
associative model which assure the perfect recall of the training set of patterns with no limits
in the number or nature of patterns. We describe the software that implements our algorithm
in Section 4 and we show an example.

2. Formal Concept Analysis

Formal Concept Analysis (FCA) was first proposed by Wille in 1982 [20] as a mathematical
framework for performing data analysis. It provides a conceptual analytical tool for
investigating and processing given information explicitly [21]. Such data is structured into
units, which are formal abstractions of “concepts” of human thought allowing meaningful
and comprehensible interpretation. FCA models the world as being composed of objects and
attributes. It is assumed that an incident relation connects objects to attributes. The choice
of what is an object and what is an attribute is dependent on the domain in which FCA is
applied. Information about a domain is captured in a “formal context”. A formal context is
merely a formalization that encodes only a small portion of what is usually referred to as a
“context”. The following definition is crucial to the theory of FCA.

Definition 2.1. A formal context K = (G,M, I) is a triplet consisting of two sets G (set of
objects) and M (set of attributes) and a relation I between G and M.
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Definition 2.2. A formal concept in a formal context is a pair (A,B) of sets A ⊆ G and
B ⊆ M such that A ↑= B and B ↓= A (completeness constraint), where A ↑= {m ∈
M | g Im for all g ∈ A} (i.e., the set of attributes common to all the objects in A), and
B ↓= {g ∈ G | g Im for all m ∈ B} (i.e., the set of objects that have all attributes in B). By
g Im we denote the fact that object g has attribute m.

The set of all concepts of a context (G,M, I) is denoted by B(G,M, I). This consists of
all pairs (AcψB) such that A↑ ←− I←− B and B↓ ←− I←− A, where A ⊆ G and B ⊆M.

Definition 2.3. Specificity-generality order relationship. If (A1, B1) and (A2, B2) are concepts
of a context, then (A1, B1) is called a subconcept of (A2, B2) if A1 ⊆ A2 (or equivalently
B1 ⊇ B2). This sub-super concept relation is written as (A1, B1) ≤ (A2, B2). According to this
definition, a subconcept always contains fewer objects and greater attributes than any of its
super concepts.

2.1. Concept Lattice

A set of all concepts of the context (G,M, I) (denoted by B(G,M, I)) when ordered with the
order relation ≤ (a subsumption relation) defined above forms a concept lattice of the context
and is denoted by B(G,M, I).

A lattice is an ordered set V with an order relation in which for any given two elements
x and y, the supremum and the infimum elements always exist in V. Furthermore, such a lattice
is called a complete lattice if supremum and infimum elements exist for any subset X of V. The
fundamental theorem of FCA states that the set of formal concepts of a formal context forms
a complete lattice.

This complete lattice, which is composed by formal concepts, is called a concept lattice.
A Concept lattice can be visualized as a graph with nodes and edges/links. The

concepts at the nodes from which two or more lines run up are called meet concepts (i.e.,
nodes with more than one parent) and the concepts at the nodes from which two or more
lines run down are called join concepts (i.e., nodes with more than one child).

A join concept groups objects which share the same attributes and a meet concept
separates out objects that have combined attributes from different parents (groups of objects).
Each of these join and meet concepts creates a new sub- or super-category or class of a
concept.

3. Alpha-Beta Bidirectional Associative Memories

In this section, the Alpha-Beta Bidirectional Associative Memory is presented. However, since
it is based on the Alpha-Beta autoassociative memories, a summary of this model will be
given before presenting our model of BAM.

3.1. Basic Concepts

Basic concepts about associative memories were established three decades ago in [22–24];
nonetheless, here we use the concepts, results, and notation introduced in [25]. An associative
memory M is a system that relates input patterns and outputs patterns, as follows: x → M →
y with x and y the input and output pattern vectors, respectively. Each input vector forms an
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Table 1: Alpha operator. α : A ×A → B.

x y α(x, y)
0 0 1
0 1 0
1 0 2
1 1 1

Table 2: Beta operator. β : B ×A → A.

x y β(x, y)
0 0 0
0 1 0
1 0 0
1 1 1
2 0 1
2 1 1

association with a corresponding output vector. For k integer and positive, the corresponding
association will be denoted as (xk, yk). Associative memory M is represented by a matrix
whose ijth component is mij . Memory M is generated from an a priori finite set of known
associations, known as the fundamental set of associations.

If μ is an index, the fundamental set is represented as {(xμ, yμ) | μ = 1, 2, . . . , p} with
p being the cardinality of the set. The patterns that form the fundamental set are called
fundamental patterns. If it holds that xμ = yμ, for all μ ∈ {1, 2, . . . , p}, M is autoassociative,
otherwise it is heteroassociative; in this case, it is possible to establish that ∃μ ∈ {1, 2, . . . , p} for
which xμ /=yμ. A distorted version of a pattern xk to be recovered will be denoted as x̃k. If
when feeding a distorted version of x� with � = {1, 2, . . . , p} to an associative memory M, it
happens that the output corresponds exactly to the associated pattern y� , we say that recall
is perfect.

3.2. Alpha-Beta Associative Memories

Among the variety of associative memory models described in the scientific literature, there
are two models that, because of their relevance, it is important to emphasize: morphological
associative memories which were introduced by Ritter et al. [18] and Alpha-Beta associative
memories. Because of their excellent characteristics, which allow them to be superior in
many aspects to other models for associative memories, morphological associative memories
served as a starter point for the creation and development of the Alpha-Beta associative
memories.

The Alpha-Beta associative memories [25] are of two kinds and are able to operate in
two different modes. The operator α is useful at the learning phase, and the operator β is
the basis for the pattern recall phase. The heart of the mathematical tools used in the Alpha-
Beta model is two binary operators designed specifically for this model. These operators are
defined as follows: first, we have the sets A = {0, 1} and B = {0, 1, 2}; then the operators α
and β are defined in Tables 1 and 2, respectively.
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The sets A and B, the α and β operators, along with the usual ∧ (minimum) and ∨
(maximum) operators, form the algebraic system (A,B, α, β,∧,∨) which is the mathematical
basis for the Alpha-Beta associative memories. Below are shown some characteristics of
Alpha-Beta autoassociative memories.

(1) The fundamental set takes the form {(xμ, xμ) | μ = 1, 2, . . . , p}.

(2) Both input and output fundamental patterns are of the same dimension, denoted
by n.

(3) The memory is a square matrix, for both modes, V and Λ. If xμ ∈ An, then

vij =
p
∨

μ=1

α
(

x
μ

i , x
μ

j

)

,

λij =
p
∧

μ=1

α
(

x
μ

i , x
μ

j

)

(3.1)

And according to α : A ×A → B, we have that vij and λij ∈ B, for all i ∈ {1, 2, . . . , n} and for
all j ∈ {1, 2, . . . , n}.

In the recall phase, when a pattern xμ is presented to memories V and Λ, the ith
components of recalled patterns are

(

VΔβxω
)

i
=

n
∧

j=1

β
(

vij , x
ω
j

)

,

(

Λ∇βxω
)

i
=

n
∨

j=1

β
(

λij , x
ω
j

)

.

(3.2)

The next two theorems show that Alfa-Beta autoassociative memories max and min are
immune to certain amount of additive and subtractive noise, respectively. These theorems
have the original numbering presented in [25] and are an important part of the mathematical
foundations for Alfa-Beta BAM theory.

Theorem 3.1. Let {(xμ, xμ) | μ = 1, 2, . . . , p} be the fundamental set of an autoassociative Alpha-
Beta memory of type ∨ represented by V, and let x̃ ∈ An be a pattern altered with additive noise with
respect to some fundamental pattern xω, with ω ∈ {1, 2, . . . , p}. If x̃ is presented to V as input, and
also for every i ∈ {1, . . . , n} it holds that ∃j = j0 ∈ {1, . . . , n}, which is dependent on ω and i such
that vij0 ≤ α(xω, x̃j0), then recall VΔβx̃ is perfect; that is, to say that VΔβx̃ = xω.

Theorem 3.2. Let {(xμ, xμ) | μ = 1, 2, . . . , p} be the fundamental set of an autoassociative Alpha-
Beta memory of type ∧ represented by Λ, and let x̃ ∈ An be a pattern altered with subtractive noise
with respect to some fundamental pattern xω, with ω ∈ {1, 2, . . . , p}. If x̃ is presented to memory Λ
as input, and also for every i ∈ {1, . . . , n} it holds that ∃j = j0 ∈ {1, . . . , n}, which is dependent on ω
and i, such that λij0 ≤ α(xω, x̃j0), then recall Λ∇βx̃ is perfect; that is, to say that Λ∇βx̃ = xω.

With these bases we proceed to describe Alfa-Beta BAM model.
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Figure 1: General scheme of a Bidirectional Associative Memory.

3.3. Alpha-Beta Bidirectional Associative Memories

Usually, any bidirectional associative memory model appearing in current scientific literature
has the following scheme showed in Figure 1.

A BAM is a “black box” operating in the following way: given a pattern x, associated
pattern y is obtained, and given the pattern y, associated pattern x is recalled. Besides, if we
assume that x̃ and ỹ are noisy versions of x and y, respectively, it is expected that BAM could
recover all corresponding free noise patterns x and y.

The first bidirectional associative memory (BAM), introduced by Kosko [26], was the
base of many models presented later. Some of these models substituted the learning rule
for an exponential rule [9–11]; others used the method of multiple training and dummy
addition in order to reach a greater number of stable states [12], trying to eliminate spurious
states. With the same purpose, linear programming techniques [13] and the descending
gradient method [14, 15] have been used, besides genetic algorithms [16] and BAM with
delays [17, 27]. Other models of noniterative bidirectional associative memories exist, such
as, morphological BAM [18] and Feedforward BAM [19]. All these models have arisen to
solve the problem of low pattern recall capacity shown by the BAM of Kosko; however, none
has been able to recall all the trained patterns. Also, these models demand the fulfillment of
some specific conditions, such as a certain Hamming distance between patterns, solvability
by linear programming, orthogonality between patterns, among other.

The model of bidirectional associative memory presented in this paper is Alpha-Beta
BAM [28] and is based on the Alpha-Beta associative memories [25]; it is not an iterative
process and does not present stability problems. Pattern recall capacity of the Alpha-Beta
BAM is maximal, being 2min(n,m), wherem and n are the input and output patterns dimension,
respectively. Also, it always shows perfect pattern recall without imposing any condition.

The model used in this paper has been named Alpha-Beta BAM since Alpha-Beta
associative memories, both max and min, play a central role in the model design. However,
before going into detail over the processing of an Alpha-Beta BAM, we will define the
following.

In this work we will assume that Alpha-Beta associative memories have a fundamental
set denoted by {(xμ,yμ) | μ = 1, 2, . . . , p}, xμ ∈ An and yμ ∈ Am, with A = {0, 1}, n ∈ Z+,
p ∈ Z+, m ∈ Z+ and 1 < p ≤min(2n, 2m). Also, it holds that all input patterns are different; M
that is, xμ = xξ if and only if μ = ξ. If for all μ ∈ {1, 2, . . . , p} it holds that xμ = yμ, the Alpha-
Beta memory will be autoassociative; if on the contrary, the former affirmation is negative,
that is, ∃μ ∈ {1, 2, . . . , p} for which it holds that xμ /=yμ, then the Alpha-Beta memory will be
heteroassociative.

Definition 3.3 (One-Hot). Let the set Abe A = {0, 1} and p ∈ Z+, p > 1, k ∈ Z+, such that
1 ≤ k ≤ p. The kth one-hot vector of p bits is defined as vector hk ∈ Ap for which it holds
that the kth component is hkk = 1 and the set of the components are hkj = 0, for all j /= k,
1 ≤ j ≤ p.
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Figure 2: Alpha-Beta BAM model scheme.

Remark 3.4. In this definition, the value p = 1 is excluded since a one-hot vector of dimension
1, given its essence, has no reason to be.

Definition 3.5 (Zero-Hot). Let the set A be A = {0, 1} and p ∈ Z+, p > 1, k ∈ Z+, such that

1 ≤ k ≤ p. The kth zero-hot vector of p bits is defined as vector h
k
∈ Ap for which it holds

that the kth component is hk
k
= 0 and the set of the components are hkj = 1, for all j /= k,

1 ≤ j ≤ p.

Remark 3.6. In this definition, the value p = 1 is excluded since a zero-hot vector of dimension
1, given its essence, has no reason to be.

Definition 3.7 (Expansion vectorial transform). Let the set A be A = {0, 1} and n ∈ Z+, ym ∈
Z+. Given two arbitrary vectors x ∈ An and e ∈ Am, the expansion vectorial transform of
order m, τe : An → An+m, is defined as τe(x, e) = X ∈ An+m, a vector whose components are
Xi = xi for 1 ≤ i ≤ n and Xi = ei for n + 1 ≤ i ≤ n +m.

Definition 3.8 (Contraction vectorial transform). Let the set A be A = {0, 1} and n ∈ Z+,
ym ∈ Z+ such that 1 ≤ m < n. Given one arbitrary vector X ∈ An+m, the contraction vectorial
transform of order m, τc : An+m → Am, is defined as τc(X, m) = c ∈ Am, a vector whose
components are ci = Xi+n for 1 ≤ i < m.

In both directions, the model is made up by two stages, as shown in Figure 2.
For simplicity, first will be described the process necessary in one direction, in order to

later present the complementary direction which will give bidirectionality to the model (see
Figure 3).

The function of Stage 2 is to offer a yk as output (k = 1, . . . , p) given an xk as input.
Now we assume that as input to Stage 2 we have one element of a set of p orthonormal

vectors. Recall that the Linear Associator has perfect recall when it works with orthonormal
vectors. In this work, we use a variation of the Linear Associator in order to obtain yk, parting
from a one-hot vector hk in its kth coordinate.

For the construction of the modified Linear Associator, its learning phase is skipped
and a matrix M representing the memory is built. Each column in this matrix corresponds to
each output pattern yμ. In this way, when matrix M is operated with a one-hot vector hk, the
corresponding yk will always be recalled.

The function of Stage 2 is to offer a yk as output (k = 1, . . . , p) given an xk as input.
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Figure 3: Schematics of the process done in the direction from x to y. Here, only Stage 1 and Stage 2 are
shown. Notice that hk

k = 1, vik = 1 for all i /= k, 1 ≤ i ≤ p, 1 ≤ k ≤ p.

3.3.1. Theoretical Foundation of Stages 1 and 3

Below are presented 5 theorems and 9 lemmas with their respective proofs, as well as an
illustrative example of each one. This mathematical foundation is the basis for the steps
required by the complete algorithm, which is presented in Section 3.3.2. These theorems and
lemmas numbering corresponds to the numeration used in [23].

By convention, the symbol � will be used to indicate the end of a proof.

Theorem 3.9. Let {(xμ, xμ) | μ = 1, 2, . . . , p} be the fundamental set of an autoassociative Alpha-
Beta memory of type max represented by V, and let x̃ ∈ An be a pattern altered with additive noise
with respect to some fundamental pattern xω with ω ∈ {1, 2, . . . , p}. Let us assume that during the
recalling phase, x̃ is presented to memory V as input, and let us consider an index k ∈ {1, . . . , n}. The
kth component recalled (VΔβx̃)

k
is precisely xω

k
if and only if it holds that ∃r ∈ {1, . . . , n}, dependant

on ω and k, such that νkr ≤ α(xωk , x̃r).

Proof. ⇒) By hypothesis we assume that (VΔβx̃)
k
= xωk . By contradiction, now suppose false

that ∃r ∈ {1, . . . , n} such that νkr ≤ α(xωk , x̃r). The former is equivalent to stating that for all r ∈
{1, . . . , n}, νkr > α(xω

k
, x̃r), which is the same to saying that for all r ∈ {1, . . . , n}, β(νkr , x̃r) >

β[α(xωk , x̃r), x̃r] = x
ω
k . When we take minimums at both sides of the inequality with respect to

index r, we have

n
∧

r=1

β(νkr , x̃r) >
n
∧

r=1

xωk = xωk (3.3)

and this means that (VΔβx̃)
k
=
∧n
r=1β(νkr , x̃r) > x

ω
k

, which contradicts the hypothesis.
⇐) Since the conditions of Theorem 3.1 hold for every i ∈ {1, . . . , n}, we have that

VΔβx̃ = xω; that is, it holds that (VΔβx̃)
i
= xωi , for all i ∈ {1, . . . , n}. When we fix indexes

i and j0 such that i = kyj0 = r (which depends on ω and k), we obtain the desired result:
(VΔβx̃)

k
= xω

k
.

Lemma 3.10. Let {(Xk,Xk) | k = 1, . . . , p} be the fundamental set of an autoassociative Alpha-Beta
memory of type max represented by V, with Xk = τe(xk,hk) for k = 1, . . . , p, and let F = τe(xk,u) ∈
An+p be a version of a specific pattern Xk, altered with additive noise, being u ∈ Ap the vector defined
as u =

∑p

i=1 hi. If during the recalling phase Fis presented to memory V, then component Xk
n+kwill be

recalled in a perfect manner; that is, (VΔβF)
n+k = Xk

n+k = 1.
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Proof. This proof will be done for two mutually exclusive cases.

Case 1. Pattern F has one component with value 0. This means that ∃j ∈ {1, . . . , n + p} such
that Fj = 0; also, due to the way vector Xk is built, it is clear that Xk

n+k = 1. Then α(Xk
n+k, Fj) =

α(1, 0) = 2, and since the maximum allowed value for a component of memory V is 2, we
have ν(n+k)j ≤ α(Xk

n+k, Fj). According to Theorem 3.9, Xk
n+k is perfectly recalled.

Case 2. Pattern F does not contain a component with value 0. That is, Fj = 1 for all
j ∈ {1, . . . , n + p}. This means that it is not possible to guarantee the existence of a value
j ∈ {1, . . . , n+ p} such that ν(n+k)j ≤ α(Xk

n+k, Fj), and therefore Theorem 3.9 cannot be applied.
However, we will show the impossibility of (VΔβF)

n+k = 0. The recalling phase of the
autoassociative Alpha-Beta memory of type max V, when having vector F as input, takes
the following form for the (n + k)th recalled component:

(

VΔβF
)

n+k =
n
∧

j=1

β
(

ν(n+k)j , Fj
)

=
n
∧

j=1

β

⎧

⎨

⎩

⎡

⎣

p
∨

μ=1

α
(

X
μ

n+k, X
μ

j

)

⎤

⎦, Fj

⎫

⎬

⎭

. (3.4)

Due to the way vector Xk is built, besides Xk
n+k = 1, it is important to notice that Xμ

n+k /= 1, for
all μ/= k, and from here we can establish that the following

p
∨

μ=1

α
(

X
μ

n+k, X
μ

j

)

= α
(

Xk
n+k, X

k
j

)

= α
(

1, Xk
j

)

(3.5)

is different from zero regardless of the value ofXk
j . According to Fj = 1 for all j ∈ {1, . . . , n+p},

we can conclude the impossibility of

(

VΔβF
)

n+k =
n
∧

j=1

β
(

α
(

1, Xk
j

)

, 1
)

(3.6)

being zero. That is, (VΔβF)
n+k = 1 = Xk

n+k.

Theorem 3.11. Let {(Xk,Xk) | k = 1, . . . , p} be the fundamental set of an autoassociative Alpha-Beta
memory of type max represented by V, with Xk = τe(xk,hk) for k = 1, . . . , p, and let F = τe(xk,u) ∈
An+p be a pattern altered with additive noise with respect to some specific pattern Xk, with u ∈ Ap

being the vector defined as u =
∑p

i=1 hi. Let us assume that during the recalling phase, F is presented
to memory V as input, and the pattern R = VΔβF ∈ An+p is obtained. If when taking vector R as
argument, the contraction vectorial transform r = τc(R, n) ∈ Ap is done, the resulting vector r has
two mutually exclusive possibilities: ∃k ∈ {1, . . . , p} such that r = hk, or r is not a one-hot vector.

Proof. From the definition of contraction vectorial transform, we have that ri = Ri+n =
(VΔβF)

i+n for 1 ≤ i ≤ p, and in particular, by making i = k we have rk = Rk+n = (VΔβF)
k+n.

However, by Lemma 3.10 (VΔβF)
n+k = Xk

n+k, and since Xk = τe(xk,hk), the value Xk
n+k is

equal to the value of component hkk = 1. That is, rk = 1. When considering that rk = 1, vector r
has two mutually exclusive possibilities: it can be that rj = 0 for all j /= k in which case r = hk,
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or happens that ∃j ∈ {1, . . . , p}, j /= k for which rj = 1, in which case it is not possible that r is
a one-hot vector, given Definition 3.3.

Theorem 3.12. Let {(xμ, xμ) | μ = 1, 2, . . . , p} be the fundamental set of an autoassociative Alpha-
Beta memory of type min represented by Λ, and let x̃ ∈ An be a pattern altered with subtractive noise
with respect to some fundamental pattern xω with ω ∈ {1, 2, . . . , p}. Let us assume that during the
recalling phase, xω is presented to memory Λ as input, and consider an index k ∈ {1, . . . , n}. The kth
recalled component (Λ∇βx̃)

k
is precisely xωk if and only if it holds that ∃r ∈ {1, . . . , n}, dependant on

ωand k, such that λkr ≥ α(xωk , x̃r).

Proof. ⇒) By hypothesis, it is assumed that (Λ∇βx̃)
k
= xω

k
. By contradiction, now let suppose

it is false that ∃r ∈ {1, . . . , n} such that λkr ≥ α(xωk , x̃r). That is to say that for all r ∈
{1, . . . , n}, λkr < α(xωk , x̃r), which is in turn equivalent to for all r ∈ {1, . . . , n}, β(λkr, x̃r) <
β[α(xω

k
, x̃r), x̃r] = xωk . When taking the maximums at both sides of the inequality, with respect

to index r, we have

n
∨

r=1

β(λkr, x̃r) <
n
∨

r=1

xωk = xωk (3.7)

and this means that (Λ∇βx̃)
k
=
∨n
r=1β(λkr, x̃r) < xωk , an affirmation which contradicts the

hypothesis.
⇐) When conditions for Theorem 3.2 [19] are met for every i ∈ {1, . . . , n}, we have

Λ∇βx̃ = xω. That is, it holds that (Λ∇βx̃)
i
= xωi for all i ∈ {1, . . . , n}. When indexes i and j0

are fixed such that i = k and j0 = r, depending on ω and k, we obtain the desired result
(Λ∇βx̃)

k
= xω

k
.

Lemma 3.13. Let {(Xk
,X

k
) | k = 1, . . . , p} be the fundamental set of an autoassociative Alpha-

Beta memory of type min represented by Λ, with X
k
= τe(xk, h

k
) for k = 1, . . . , p, and let G =

τe(xk,w) ∈ An+p be a pattern altered with subtractive noise with respect to some specific pattern Xk,
being w ∈ Apa vector whose components have values wi = ui − 1, and u ∈ Ap the vector defined

as u =
∑p

i=1 hi. If during the recalling phase, G is presented to memory Λ, then component X
k

n+k is

recalled in a perfect manner. That is, (Λ∇βG)
n+k = X

k

n+k = 0.

Proof. This proof will be done for two mutually exclusive cases.

Case 1. Pattern G has one component with value 1. This means that ∃j ∈ {1, . . . , n + p} such

that Gj = 1. Also, due to the way vector X
k

is built, it is clear that X
k

n+k = 0. Because of this,

α(X
k

n+k, Gj) = α(0, 1) = 0 and, since the minimum allowed value for a component of memory

Λ is 0, we have λ(n+k)j ≥ α(X
k

n+k, Gj). According to Theorem 3.12, X
k

n+k is perfectly recalled.

Case 2. Pattern G has no component with value 1; that is, Gj = 0 for all j ∈ {1, . . . , n + p}. This
means that it is not possible to guarantee the existence of a value j ∈ {1, . . . , n + p} such that

λ(n+k) j ≥ α(X
k

n+k, Gj), and therefore Theorem 3.12 cannot be applied. However, let us show
the impossibility of (Λ∇βG)

n+k = 1. Recalling the phase of the autoassociative Alpha-Beta
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memory of type min Λ with vector G as input takes the following form for the (n + k)th
recalled component:

(

Λ∇βG
)

n+k =
n
∨

j=1

β
(

λ(n+k)j , Gj

)

=
n
∨

j=1

β

⎧

⎨

⎩

⎡

⎣

p
∧

μ=1

α
(

X
μ

n+k, X
μ

j

)

⎤

⎦, Gj

⎫

⎬

⎭

. (3.8)

Due to the way vector X
k

is built, besides that X
k

n+k = 0, it is important to notice that X
μ

n+k /= 0,
for all μ/= k, and from here we can state that

p
∧

μ=1

α
(

X
μ

n+k, X
μ

j

)

= α
(

X
k

n+k, X
k

j

)

= α
(

0, X
k

j

)

(3.9)

is different from 2 regardless of the value of X
k

j . Taking into account that Gj = 0 for all j ∈
{1, . . . , n + p}, we can conclude that it is impossible for

(

Λ∇βG
)

n+k =
n
∨

j=1

β

(

α

(

0, X
k

j

)

, 0
)

(3.10)

to be equal to 1. That is, (Λ∇βG)
n+k = 0 = X

k

n+k.

Theorem 3.14. Let {(Xk
,X

k
) | k = 1, . . . , p} be the fundamental set of an autoassociative Alpha-

Beta memory of type min represented by Λ, with X
k
= τe(xk,h

k
) for k = 1, . . . , p, and let G =

τe(xk,w) ∈ An+p be a pattern altered with subtractive noise with respect to some specific pattern Xk,
with w ∈ Ap being a vector whose components have valueswi = ui − 1, and u ∈ Ap the vector defined
as u =

∑p

i=1 hi. Let us assume that during the recalling phase, G is presented to memory Λ as input,
and the pattern S = Λ∇βG ∈ An+pis obtained as output. If when taking vector S as argument, the
contraction vectorial transform s = τc(S, n) ∈ Ap is done, the resulting vector s has two mutually

exclusive possibilities: ∃k ∈ {1, . . . , p} such that s = h
k
, or s is not a one-hot vector.

Proof. From the definition of contraction vectorial transform, we have that si = Si+n =
(Λ∇βG)

i+n for 1 ≤ i ≤ p, and in particular, by making i = k we have sk = Sk+n = (Λ∇βG)
k+n.

However, by Lemma 3.13 (Λ∇βG)
n+k = X

k

n+k, and since X
k
= τe(xk,h

k
), the value X

k

n+k is

equal to the value of component h
k

k = 0. That is, sk = 0. When considering that sk = 0, vector s

has two mutually exclusive possibilities: it can be that sj = 1 for all j /= k in which case s = h
k
;

or it holds that ∃j ∈ {1, . . . , p}, j /= k for which sj = 0, in which case it is not possible for s to be
a zero-hot vector, given Definition 3.5.

Lemma 3.15. Let {(Xk
,X

k
) | k = 1, . . . , p} be the fundamental set of an autoassociative Alpha-Beta

memory of type max represented by V, with Xk = τe(xk,hk) ∈ An+p for all k ∈ {1, . . . , p}. If t is an
index such that n + 1 ≤ t ≤ n + p, then νij /= 0 for all j ∈ {1, . . . , n + p}.



12 Mathematical Problems in Engineering

Proof. In order to establish that νij /= 0 for all j ∈ {1, . . . , n + p}, given the definition of α, it
is enough to find, for each for all t ∈ {n + 1, . . . , n + p}, an index μ for which X

μ
t = 1 in the

expression that produces the tjth component of memory V, which is νtj =
∨p

μ=1α(X
μ
t , X

μ

j ).
Due to the way each vector Xμ = τe(xμ, hμ) for μ = 1, . . . , p is built, and given the domain
of index t ∈ {n + 1, . . . , n + p}, for each t exists s ∈ {1, . . . , p} such that t = n + s. This is why
two useful values to determine the result are μ = s and t = n + s, because Xs

n+s = 1. Then,
νtj = ∨

p

μ=1α(X
μ
t , X

μ

j ) = α(Xs
n+s, X

s
j ) = α(1, Xs

j ), a value which is different from 0. That is, νij /= 0
for all j ∈ {1, . . . , n + p}.

Lemma 3.16. Let {(Xk
,X

k
) | k = 1, . . . , p} be the fundamental set of an autoassociative Alpha-Beta

memory of type max represented by V, with Xk = τe(xk,hk)for k = 1, . . . , p, and let F = τe(xk,u) ∈
An+p be an altered version, by additive noise, of a specific pattern Xk, with u ∈ Ap being the vector
defined as u =

∑p

i=1 hi. Let us assume that during the recalling phase, F is presented to memory Λ as
input. Given a fixed index t ∈ {n + 1, . . . , n + p} such that t /=n + k, it holds that (VΔβF)

t
= 1 if and

only if the following logic proposition is true: for all j ∈ {1, . . . , n + p}, (Fj = 0 → νtj = 2).

Proof. Due to the way vectors Xk = τe(xk,hk) and F = τe(xk,u) are built, we have that Ft = 1
is the component with additive noise with respect to component Xk

t = 0.
⇒) There are two possible cases.

Case 1. Pattern F does not contain components with value 0. That is, Fj = 1, j ∈ {1, . . . , n+p}.
This means that the antecedent of proposition Fj = 0 → νtj = 2 is false, and therefore,
regardless of the truth value of consequence νtj = 2, the expression for all j ∈ {1, . . . , n +
p} (Fj = 0 → νtj = 2) is true.

Case 2. Pattern F contains at least one component with value 0. That is, ∃r ∈ {1, . . . , p} such
that Fr = 0. By hypothesis, (VΔβF)

t
= 1, which means that the condition for a perfect recall of

Xk
t = 0 is not met. In other words, according to Theorem 3.9 expression ¬[∃j ∈ {1, . . . , n + p}

such that νtj ≤ α(Xk
t , Fj)] is true, which is equivalent to

∀j ∈
{

1, . . . , n + p
}

it holds that νtj ≤ α
(

Xk
t , Fj

)

. (3.11)

In particular, for j = r, and taking into account that Xk
t = 0, this inequality ends up like

this: νtr > α(Xk
t , Fr) = α(0, 0) = 1. That is, νtr = 2, and therefore the expression for all j ∈

{1, . . . , n + p} (Fj = 0 → νtj = 2) is true.

⇐) Assuming the following expression is true for all j ∈ {1, . . . , n + p} (Fj = 0 → νtj =
2), there are two possible cases.

Case 1. Pattern F does not contain components with value 0. That is, Fj = 1 for all j ∈
{1, . . . , n+p}. When considering that (VΔβF)

t
=
∧n+p
j=1 β(νtj , Fj), according to the definition of β,

it is enough to show that for all j ∈ {1, . . . , n+p}, νtj /= 0, which is guaranteed by Lemma 3.15.
Then, it has been proven that (VΔβF)

t
=
∧n+p
j=1 β(νtj , Fj) =

∧n+p
j=1 β(νtj , 1) = 1.

Case 2. Pattern F contains at least one component with value 0. That is, ∃r ∈ {1, . . . , p} such
that Fr = 0. By hypothesis we have that for all j ∈ {1, . . . , n + p}, (Fj = 0 → νtj = 2) and,
in particular, for j = r and νtr = 2, which means that (VΔβF)

t
=
∧n+p
j=1 β(νtj , Fj) = β(νtr , Fr) =

β(2, 1) = 1.
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Corollary 3.17. Let {(Xk
,X

k
) | k = 1, . . . , p} be the fundamental set of an autoassociative Alpha-

Beta memory of type max represented by V, with Xk = τe(xk, hk) for k = 1, . . . , p, and let F =
τe(xk,u) ∈ An+p be an altered version, by additive noise, of a specific pattern Xk, with u ∈ Ap being
the vector defined as u =

∑p

i=1 hi. Let us assume that during the recalling phase, F is presented to
memory Λ as input. Given a fixed index t ∈ {n + 1, . . . , n + p} such that t /=n + k, it holds that
(VΔβF)

t
= 0 if and only if the following logic proposition is true: for all j ∈ {1, . . . , n + p}, (Fj =

0 AND νtj /= 2).

Proof. In general, given two logical propositions P and Q, the proposition (P if and only
if Q) is equivalent to proposition (¬P if and only if ¬Q). If P is identified with equality
(VΔβF)

t
= 1 and Q with expression for all j ∈ {1, . . . , n + p} (Fj = 0 → νtj = 2),

by Lemma 3.16 the following proposition is true: {¬[(VΔβF)
t
= 1] if and only if ¬[for all

j ∈ {1, . . . , n+p} (Fj = 0 → νtj=2)]}. This expression transforms into the following equivalent
propositions:

{

(

VΔβF
)

t
= 0 iff ∃j ∈

{

1, . . . , n + p
}

such that ¬
(

Fj = 0 → νtj = 2
)

}

,

{

(

VΔβF
)

t
= 0 iff ∃j ∈

{

1, . . . , n + p
}

such that ¬
[

¬
(

Fj = 0
)

OR νtj = 2
]

}

,

{

(

VΔβF
)

t
= 0 iff ∃j ∈

{

1, . . . , n + p
}

such that
[

¬
[

¬
(

Fj = 0
)]

AND¬
(

νtj = 2
)]

}

,

{

(

VΔβF
)

t
= 0 iff ∃j ∈

{

1, . . . , n + p
}

such that
[(

Fj = 0
)

AND νtj /= 2
]

}

.

(3.12)

Lemma 3.18. Let {(Xk
,X

k
) | k = 1, . . . , p} be the fundamental set of an autoassociative Alpha-Beta

memory of type min represented by Λ, with X
k
= τe(xk,h

k
) ∈ An+p for all k ∈ {1, . . . , p}. If t is an

index such that n + 1 ≤ t ≤ n + p, then λtj /= 2 for all j ∈ {1, . . . , n + p}.

Proof. In order to establish that λtj /= 2 for all j ∈ {1, . . . , n + p}, given the definition of α, it is
enough to find, for each t ∈ {n + 1, . . . , n + p}, an index μ for which X

μ

t = 0 in the expression
leading to obtaining the tjth component of memory Λ, which is λtj =

∧p

μ=1α(X
μ

t , X
μ

j ). In fact,

due to the way each vector X
k
= τe(xk, h

k
) for μ = 1, . . . , p is built, and given the domain

of index t ∈ {n + 1, . . . , n + p}, for each t exists s ∈ {1, . . . , p} such that t = n + s; therefore
two values useful to determine the result are μ = s and t = n + s, because X

s

n+s = 0, then
λtj =

∧p

μ=1α(X
μ

t , X
μ

j ) = α(X
s

n+s, X
s

j ) = α(0, Xμ

j ), a value different from 2. That is, λtj /= 2 for all
j ∈ {1, . . . , n + p}.

Lemma 3.19. Let {(Xk
,X

k
) | k = 1, . . . , p} be the fundamental set of an autoassociative Alpha-Beta

memory of type min represented by Λ, with X
k
= τe(xk,h

k
)for k = 1, . . . , p, and let G = τe(xk,w) ∈

An+p be an altered version, by subtractive noise, of a specific pattern Xk, with w ∈ Ap being a vector
whose components have values wi = ui − 1, and u ∈ Ap the vector defined as u =

∑p

i=1 hi. Let us
assume that during the recalling phase, G is presented to memory Λ as input. Given a fixed index
t ∈ {n+1, . . . , n+p} such that t /=n+k, it holds that (Λ∇βG)

t
= 0, if and only if the following logical

proposition is true for all j ∈ {1, . . . , n + p} (Gj = 1 → λtj = 0).
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Proof. Due to the way vectors X
k
= τe(xk,h

k
) and G = τe(xk,w) are built, we have that Gt = 1

is the component with subtractive noise with respect to component X
k

t = 1.
⇒) There are two possible cases.

Case 1. Pattern G does not contain components with value 1. That is, Gj = 0 for all j ∈
{1, . . . , n + p}. This means that the antecedent of logical proposition Gj = 1 → λtj = 0 is
false and therefore, regardless of the truth value of consequent λtj = 0, the expression for all
j ∈ {1, . . . , n + p} (Gj = 1 → λtj = 0) is true.

Case 2. Pattern G contains at least one component with value 1. That is, ∃r ∈ {1, . . . , n + p}
such thatGr = 1. By hypothesis, (Λ∇βG)

t
= 0, which means that the perfect recall condition of

X
k

t = 1 is not met. In other words, according to Theorem 3.12, expression ¬[∃j ∈ {1, . . . , n+ p}
such that λtj ≥ α(X

k

t , Gj)] is true, which in turn is equivalent to

∀j ∈
{

1, . . . , n + p
}

it holds that λtj < α
(

X
k

t , Gj

)

. (3.13)

In particular, for j = r and considering that X
k

t = 1, this inequality yields λtr < α(X
k

t , Gr) =
α(1, 1) = 1. That is, λtr = 0, and therefore the expression for all j ∈ {1, . . . , n + p} (Gj = 1 →
λtj = 0) is true.

⇐) Assuming the following expression to be true, for all j ∈ {1, . . . , n + p} (Gj = 1 →
λtj = 0), there are two possible cases.

Case 1. Pattern G does not contain components with value 1. That is, Gj = 0 for all j ∈
{1, . . . , n + p}. When considering that (Λ∇βG)

t
=
∨n+p
j=1 β(λtj , Gj), according to the β definition,

it is enough to show that for all j ∈ {1, . . . , n+p}, λtj /= 2, which is guaranteed by Lemma 3.18.
Then, it is proven that (Λ∇βG)

t
=
∨n+p
j=1 β(λtj , Gj) =

∨n+p
j=1 β(λtj , 0) = 0.

Case 2. Pattern G contains at least one component with value 1. That is, ∃r ∈ {1, . . . , n + p}
such that Gr = 1. By hypothesis we have that for all j ∈ {1, . . . , n + p} (Gj = 1 → λtj = 0) and,
in particular, for j = r and λtr = 0, which means that (Λ∇βG)

t
=
∨n+p
j=1 β(λtj , Gj) = β(λtr , Gr) =

β(0, 0) = 0.

Corollary 3.20. Let {(Xk
,X

k
) | k = 1, . . . , p} be the fundamental set of an autoassociative Alpha-

Beta memory of type min represented by Λ, with X
k
= τe(xk,h

k
) for k = 1, . . . , p, and let G =

τe(xk,w) ∈ An+p be an altered version, by substractive noise, of a specific pattern Xk, with w ∈ Ap

being a vector whose components have valueswi = ui −1, and u the vector defined as u =
∑p

i=1 hi. Let
us assume that during the recalling phase, G is presented to memory Λ as input. Given a fixed index
t ∈ {n + 1, . . . , n + p} such that t /=n + k, it holds that (Λ∇βG)

t
= 1 if and only if the following logic

proposition is true: ∃j ∈ {1, . . . , n + p} (Gj = 1AND λtj /= 0).

Proof. In general, given two logical propositions P and Q, the proposition (P if and only if Q)
is equivalent to proposition (P¬ if and only if ¬Q). If P is identified with equality (Λ∇βG)

t
= 0

and Q with expression for all j ∈ {1, . . . , n + p} (Gj = 1 → λtj = 0), by Lemma 3.19, the
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following proposition is true: {¬[(Λ∇βG)
t
= 0] if and only if ¬[for all j ∈ {1, . . . , n+p} (Gj =

1 → λtj = 0)]}. This expression transforms into the following equivalent propositions:

{

(

Λ∇βG
)

t
= 1 iff ∃j ∈

{

1, . . . , n + p
}

such that ¬
[(

Gj = 1 → λtj = 0
)]

}

,

{

(

Λ∇βG
)

t
= 1 iff ∃j ∈

{

1, . . . , n + p
}

such that ¬
[

¬
(

Gj = 1
)

→ OR λtj = 0
]

}

,

{

(

Λ∇βG
)

t
= 1 iff ∃j ∈

{

1, . . . , n+p
}

such that
[

¬
[

¬
(

Gj =1
)]

AND
(

λtj =0
)]

}

,

{

(

Λ∇βG
)

t
= 1 iff ∃j ∈

{

1, . . . , n + p
}

such that
[

Gj = 1 AND λtj /= 0
]}

.

(3.14)

Lemma 3.21. Let {(Xk
,X

k
) | k = 1, . . . , p} be the fundamental set of an autoassociative Alpha-Beta

memory of type max represented by V, with Xk = τe(xk,hk) for k = 1, . . . , p, and let {(Xk
,X

k
) | k =

1, . . . , p} be the fundamental set of an autoassociative Alpha-Beta memory of type min represented by

Λ, with X
k
= τe(xk,h

k
), for all k ∈ {1, . . . , p}. Then, for each i ∈ {n+1, . . . , n+p} such that i = n+r,

with ri ∈ {1, . . . , p}, it holds that νij = α(1, Xri
j ) and λij = α(0, X

ri
j ) for all j ∈ {1, . . . , n + p}.

Proof. Due to the way vectors Xk = τe(xk,hk) and X
k
= τe(xk,h

k
) are built, we have that

Xri
i = 1 and X

ri
i = 0, besides Xμ

i = 0 and X
μ

i = 1 for all μ/= ri such that μ ∈ {1, . . . , p}. Because
of this, and using the definition of α, α(Xri

i , X
ri
j ) = α(1, Xri

j ) and α(Xμ

i , X
μ

j ) = α(0, Xμ

j ), which

implies that, regardless of the values of Xri
j and Xμ

j , it holds that α(Xri
i , X

ri
j ) ≥ α(X

μ

i , X
μ

j ), from
whence

νij =
p
∨

μ=1

α
(

X
μ

i , X
μ

j

)

= α
(

Xri
i , X

ri
j

)

= α
(

1, Xri
j

)

. (3.15)

We also have α(X
ri
i , X

ri
j ) = α(0, X

ri
j ) and α(X

μ

i , X
μ

j ) = α(1, X
μ

j ), which implies that, regardless

of the values of X
ri
j and X

μ

j , it holds that α(X
ri
i , X

ri
j ) ≤ α(X

μ

i , X
μ

j ), from whence

λij =
p
∧

μ=1

α
(

X
μ

i , X
μ

j

)

= α
(

X
ri
i , X

ri
j

)

= α
(

0, X
ri
j

)

(3.16)

μ ∈ {1, . . . , p}, for all j ∈ {1, . . . , n + p}.

Corollary 3.22. Let {(Xk
,X

k
) | k = 1, . . . , p} be the fundamental set of an autoassociative Alpha-

Beta memory of type max represented by V, with Xk = τe(xk,hk) for all k ∈ {1, . . . , p}, and let

{(Xk
,X

k
) | k = 1, . . . , p} be the fundamental set of an autoassociative Alpha-Beta memory of type

min represented by Λ, with X
k
= τe(xk,h

k
), for all k ∈ {1, . . . , p}. Then, νij = λij + 1, for all

i ∈ {n + 1, . . . , n + p}, i = n + ri, with ri ∈ {1, . . . , p} and for all j ∈ {1, . . . , n}.
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Proof. Let i ∈ {n + 1, . . . , n + p} and j ∈ {1, . . . , n} be two indexes arbitrarily selected. By
Lemma 3.21, the expressions used to calculate the ijth components of memories V and Λ
take the following values:

νij = α
(

1, Xri
j

)

, λij = α
(

0, X
ri
j

)

. (3.17)

Considering that for all j ∈ {1, . . . , n}, Xri
j = X

ri
j , there are two possible cases.

Case 1 (Xri
j = 0 = X

ri
j ). We have the following values: νij = α(1, 0) = 2 and λij = α(0, 0) = 1,

therefore νij = λij + 1.

Case 2 (Xri
j = 1 = X

ri
j ). We have the following values: νij = α(1, 1) = 1 and λij = α(0, 1) = 0,

therefore νij = λij + 1.
Since both indexes i and j were arbitrarily chosen inside their respective domains, the

result νij = λij + 1 is valid for all i ∈ {n + 1, . . . , n + p} and for all j ∈ {1, . . . , n}.

Lemma 3.23. Let {(Xk
,X

k
) | k = 1, . . . , p} be the fundamental set of an autoassociative Alpha-

Beta memory of type max represented by V, with Xk = τe(xk,hk) for all k ∈ {1, . . . , p}, and let

{(Xk
,X

k
) | k = 1, . . . , p} be the fundamental set of an autoassociative Alpha-Beta memory of type

min represented byΛ, with X
k
= τe(xk,h

k
), for all k ∈ {1, . . . , p}. Also, if we define vector u ∈ Ap as

u =
∑p

i=1 hi, and take a fixed index for all r ∈ {1, . . . , p}, let us consider two noisy versions of pattern
Xr ∈ An+p: vector F = τe(xr ,u) ∈ An+p which is an additive noise altered version of pattern Xr ,
and vector G = τe(xr ,w) ∈ An+p, which is a substractive noise altered version of pattern X

r
, with

w ∈ Ap being a vector whose components take the values wi = ui − 1 for all i ∈ {1, . . . , p}. If during
the recalling phase, G is presented as input to memory Λ and F is presented as input to memory V,
and if also it holds that (Λ∇βG)

t
= 0 for an index t ∈ {n+1, . . . , n+p}, being fixed such that t /=n+r,

then (VΔβF)
t
= 0.

Proof. Due to the way vectors Xr , F and G are built, we have that Ft = 1 is the component in
the vector with additive noise corresponding to component Xr

t , and Gt = 0 is the component
in the vector with subtractive noise corresponding to component X

r

t . Also, since t /=n + r, we
can see that Xr

t /= 1, that is, Xr
t = 0 and X

r

t = 1. There are two possible cases.

Case 1. Pattern F does not contain any component with value 0. That is, Fj = 1 for all j ∈
{1, . . . , n+p}. By Lemma 3.15 νtj /= 0 for all j ∈ {1, . . . , n+p}, then β(νtj , Fj) for all j ∈ {1, . . . , n+
p}, which means that (VΔβF)

t
=
∧n+p
j=1 β(νtj , Fj) = 1. In other words, expression (VΔβF)

t
= 0

is false. The only possibility for the theorem to hold is for expression (Λ∇βG)
t
= 0 to be false

too. That is, we need to show that (Λ∇βG)
t
= 1. According to Corollary 3.20, the latter is true

if for every t ∈ {n + 1, . . . , n + p} with t /=n + r, exists j ∈ {1, . . . , n + p} such hat (Gj = 1
AND λtj /= 0). Now, t /=n + r indicates that ∃s ∈ {1, . . . , p}, s /= r such that t = n + s, and by
Lemma 3.21 α(X

s

t , X
s

j ) ≤ α(X
μ

t , X
μ

j ) for all μ ∈ {1, . . . , p}, for all j ∈ {1, . . . , n + p}, from where

we have λtj =
∧p

j=1α(X
μ

t , X
μ

j ) = α(X
s

t , X
s

j ), and by noting the equality X
s

t = X
s

n+s = 0, it holds
that

λtj = α
(

0, X
s

j

)

∀j ∈
{

1, . . . , n + p
}

. (3.18)
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On the other side, for all i ∈ {1, . . . , n} the following equalities hold: X
r

i = xri = 1 and X
s

i = xsi
and also, taking into account that xr /= xs, it is clear that ∃h ∈ {1, . . . , p} such that xsh /=x

r
h,

meaning xs
h
= 0 = Xs

h
and therefore,

λth = α(0, 0) = 1. (3.19)

Finally, since for all i ∈ {1, . . . , n} it holds that Gi = X
r

i = xri = 1, in particular Gh = 1, then we
have proven that for every t ∈ {n+ 1, . . . , n+p}with t /=n+ r, exists j ∈ {1, . . . , n+p} such that
(Gj = 1 and λtj /= 0), and by Corollary 3.20 it holds that (Λ∇βG)

t
= 1, thus making expression

(Λ∇βG)
t
= 1 be false.

Case 2. Pattern F contains, besides the components with value of 1, at least one component
with value 0. That is, ∃h ∈ {1, . . . , n + p} such that Fh = 0. Due to the way vectors G and F
are built for all i ∈ {1, . . . , n}, Gi = Fi and, also, necessarily 1 ≤ h ≤ n and thus Fh = Gh = 0.
By hypothesis, ∃t ∈ {n + 1, . . . , n + p} being fixed such that t /=n + r and (Λ∇βG)

t
= 0, and by

Lemma 3.19 for all j ∈ {1, . . . , n + p} (Gj = 1 → λtj = 0). Given the way vector G is built we
have that for all j ∈ {n + 1, . . . , n + p}, Gj = 0, thus making the former expression like this: for
all j ∈ {1, . . . , n}(Gj = 1 → λtj = 0). Let J be a set, proper subset of {1, . . . , n}, defined like
this: J = {j ∈ {1, . . . , n} | Gj = 1}. The fact that J is a proper subset of {1, . . . , n} is guaranteed
by the existence of Gh = 0. Now, t /=n+ r indicates that ∃s ∈ {1, . . . , p}, s /= r such that t = n+ s,
and by Lemma 3.21 νtj = α(1, Xs

j ) and λtj = α(0, X
s

j ) for all j ∈ {1, . . . , n + p}, from where we

have that for all j ∈ J, X
s

j = 1, because if this was not the case, λtj /= 0. This means that for each

j ∈ J , X
s

j = 1 = Gj which in turn means that patterns Xr and Xs coincide with value 1 in all
components with index j ∈ J . Let us now consider the complement of set J , which is defined
as Jc = {j ∈ {1, . . . , n} | Gj = 0}. The existence of at least one value j0 ∈ Jc for which Gj0 = 0
and X

s

j0 = 1 is guaranteed by the known fact that xr /= xs. Let us see, if X
s

j = 0 for all j ∈ Jc

then for all j ∈ {1, . . . , n} it holds that X
s

j = Gj , which would mean that xr = xs. Since ∃j0 ∈ Jc

for which Gj0 = 0 and X
s

j0 = 1, this means that ∃j0 ∈ Jc for which Fj0 = 0 and Xs
j0
= 1. Now,

β(νtj0 , Fj0) = β(α(1, X
s
j0
), 0) = β(α(1, 1), 0) = β(1, 0) = 0, and finally

(

VΔβF
)

t
=

n+p
∧

j=1

β
(

νtj , Fj
)

= β
(

νtj0 , Fj0
)

= 0. (3.20)

Lemma 3.24. Let {(Xk
,X

k
) | k = 1, . . . , p} be the fundamental set of an autoassociative Alpha-

Beta memory of type max represented by V, with Xk = τe(xk,hk) for all k ∈ {1, . . . , p}, and let

{(Xk
,X

k
) | k = 1, . . . , p} be the fundamental set of an autoassociative Alpha-Beta memory of type

min represented by Λ, with X
k
= τe(xk,h

k
), for all k ∈ {1, . . . , p}. Also, if we define vector u ∈ Ap

as u =
∑p

i=1 hi, and take a fixed index for all r ∈ {1, . . . , p}, let us consider two noisy versions of
pattern Xr ∈ An+p: vector F = τe(xr ,u) ∈ An+p which is an additive noise altered version of pattern
Xr , and vector G = τe(xr ,w) ∈ An+p, which is a subtractive noise altered version of pattern X

r
, with

w ∈ Ap being a vector whose components take the values wi = ui − 1 for all i ∈ {1, . . . , p}. If during
the recalling phase, G is presented as input to memory Λ and F is presented as input to memory V,
and if also it holds that (VΔβF)

t
= 1 for an index t ∈ {n+1, . . . , n+p}, being fixed such that t /=n+ r,

then (Λ∇βG)
t
= 1.



18 Mathematical Problems in Engineering

Proof. Due to the way vectors Xr , F and G are built, we have that Ft = 1 is the component in
the vector with additive noise corresponding to component Xr

t , and Gt = 0 is the component
in the vector with subtractive noise corresponding to component X

r

t . Also, since t /=n + r, we
can see that Xr

t /= 1, that is, Xr
t = 0 and X

r

t = 1. There are two possible cases.

Case 1. Pattern G does not contain any component with value 1. That is, Gj = 0 for all j ∈
{1, . . . , n + p}. By Lemma 3.18 λtj /= 2 for all j ∈ {1, . . . , n + p}; thus β(λtj , Gj) = 0 for all j ∈
{1, . . . , n + p}, which means that (Λ∇βG)

t
=
∨n+p
j=1 β(λtj , Gj) = 0. In other words, expression

(Λ∇βG)
t
= 1 is false. The only possibility for the theorem to hold is for expression (VΔβF)

t
= 1

to be false too. That is, we need to show that (VΔβF)
t
= 0. According to Corollary 3.17, the

latter is true if for every t ∈ {n + 1, . . . , n + p} with t /=n + r, exists j ∈ {1, . . . , n + p} such that
(Fj = 0 AND νtj /= 2). Now, t /=n + r indicates that ∃s ∈ {1, . . . , p}, s /= r such that t = n + s,
and by Lemma 3.19 α(Xs

t , X
s
j ) ≥ α(X

μ
t , X

μ

j ) for all μ ∈ {1, . . . , p}, for all j ∈ {1, . . . , n+ p}, from

where we have νtj =
∨p

μ=1α(X
μ
t , X

μ

j ) = α(Xs
t , X

s
j ), and by noting the equality Xs

t = Xs
n+s = 1, it

holds that

νtj = α
(

1, Xs
j

)

∀j ∈
{

1, . . . , n + p
}

. (3.21)

On the other side, for all i ∈ {1, . . . , n} the following equalities hold: Xr
i = xri = 0 and Xs

i = xsi
and also, taking into account that xr /= xs, it is clear that ∃h ∈ {1, . . . , p} such that xsh /=x

r
h,

meaning xsh = 1 = Xs
h and therefore,

νth = α
(

1, Xs
h

)

= α(1, 1) = 1. (3.22)

Finally, since for all i ∈ {1, . . . , n} it holds that Fi = Xr
i = xri = 0, in particular Fh = 0, then we

have proven that for every t ∈ {n+ 1, . . . , n+p}with t /=n+ r, exists j ∈ {1, . . . , n+p} such that
(Fj = 0 AND νtj /= 2), and by Corollary 3.17 it holds that (VΔβF)

t
= 0, thus making expression

(VΔβF)
t
= 1 false.

Case 2. Pattern G contains, besides the components with value of 0, at least one component
with value 1. That is, ∃h ∈ {1, . . . , n + p} such that Gh = 1. Due to the way vectors G and F
are built for all i ∈ {1, . . . , n}, Gi = Fi and, also, necessarily 1 ≤ h ≤ n and thus Fh = Gh = 0.
By hypothesis ∃t ∈ {n + 1, . . . , n + p}, being fixed such that t /=n + r and (VΔβF)

t
= 1, and by

Lemma 3.16 for all j ∈ {1, . . . , n + p} (Fj = 0 → νtj = 2). Given the way vector F is built, we
have that for all j ∈ {n + 1, . . . , n + p}, Gj = 1, thus making the former expression like this: for
all j ∈ {1, . . . , n+p} (Fj = 0 → νtj = 2). Let J be a set, a proper subset of {1, . . . , n}, defined like
this: J = {j ∈ {1, . . . , n} | Fj = 0}. The fact that J is a proper subset of {1, . . . , n} is guaranteed
by the existence of Gh = 1. Now, t /=n+ r indicates that ∃s ∈ {1, . . . , p}, s /= r such that t = n+ s,
and by Lemma 3.21 νtj = α(1, Xs

j ) and λtj = α(0, X
s

j ) for all j ∈ {1, . . . , n + p}, from where we
have that for all j ∈ J , Xs

j = 0, because if this was not the case, νtj /= 0. This means that for each
j ∈ J , Xs

j = 0 = Fj which in turn means that patterns Xr and Xs coincide with value 0 in all
components with index j ∈ J . Let us now consider the complement of set J , which is defined
as Jc = {j ∈ {1, . . . , n} | Fj = 1}. The existence of at least one value j0 ∈ Jc for which Fj0 = 1
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and Xs
j0
= 0 is guaranteed by the known fact that xr /= xs. Let us see, if Xs

j = 1 for all j ∈ Jc
then for all j ∈ {1, . . . , n} it holds that Xs

j = Fj , which would mean that xr = xs. Since ∃j0 ∈ Jc

for which Fj0 = 1 and Xs
j0
= 0, this means that ∃j0 ∈ Jc for which Gj0 = 1 and X

s

j0 = 0. Now,

β(λtj0 , Gj0) = β(α(0, X
s

j0), 1) = β(α(0, 0), 1) = β(1, 1) = 1, and finally

(

Λ∇βG
)

t
=

n+p
∨

j=1

β
(

λtj , Gj

)

= β
(

λtj0 , Gj0

)

= 1. (3.23)

Theorem 3.25 (Main Theorem). Let {(Xk
,X

k
) | k = 1, . . . , p} be the fundamental set of an

autoassociative Alpha-Beta memory of type max represented by V, with Xk = τe(xk,hk) for all

k ∈ {1, . . . , p}, and let {(Xk
,X

k
) | k = 1, . . . , p} be the fundamental set of an autoassociative Alpha-

Beta memory of type min represented by Λ, with X
k
= τe(xk,h

k
), for all k ∈ {1, . . . , p}. Also, if we

define vector u ∈ Ap as u =
∑p

i=1 hi, and take a fixed index r ∈ {1, . . . , p}, let us consider two noisy
versions of pattern Xr ∈ An+p: vector F = τe(xr ,u) ∈ An+p, which is an additive noise altered version
of patternXr , and vector G = τe(xr ,w) ∈ An+p, which is a subtractive noise altered version of pattern
X
r
, with w ∈ Ap being a vector whose components take the values wi = ui − 1 for all i ∈ {1, . . . , p}.

Now, let us assume that during the recalling phase, G is presented as input to memory Λ and F is
presented as input to memory V, and patterns S = Λ∇βG ∈ An+p and R = VΔβF ∈ An+p are
obtained. If when taking vector R as argument the contraction vectorial transform r = τc(R, n) ∈ Ap

is done, and when taking vector S as argument the contraction vectorial transform s = τc(S, n) ∈ Ap

is done, then H = (r AND s) will be the kth one-hot vector of p bits, where s is the negated
from of s.

Proof. From the definition of contraction vectorial transform, we have that ri = Ri+n =
(VΔβF)

i+n and si = Si+n = (Λ∇βG)
i+n for 1 ≤ i ≤ p, and in particular, by making i = k we

have rk = Rk+n = (VΔβF)
k+n and sk = Sk+n = (Λ∇βG)

k+n. By Lemmas 3.10 and 3.13 we have

(VΔβF)
n+k = Xk

n+k = 1 and (Λ∇βG)
n+k = X

k

n+k = 0, and thus: Hk = rk AND sk = 1 AND ¬0 = 1
AND 1 = 1.

Now, by Lemma 3.23 we know that if (Λ∇βG)
t
= 0 such that t = i + n is a fixed index

with t /=n + k, then (VΔβF)
t
= 0; thus,

Hi = ri AND si =
(

VΔβF
)

t
AND ¬

(

Λ∇βG
)

t
= 0 ¬ 0 = 0 1 = 0. (3.24)

On the other side, by Lemma 3.24 it is known that if (VΔβF)
q
= 1 for a fixed index q = i + n

such that q /=n + k, then (Λ∇βG)
q
= 1. According to the latter,

Hi = ri AND ¬si =
(

VΔβF
)

q
AND ¬

(

Λ∇βG
)

q
= 1 AND ¬1 = 1 0 = 0. (3.25)

Then Hi = 1 for i = k and Hi = 0 for i /= k. Therefore, and according to Definition 3.3, H will
be the kth one-hot vector of p bits.
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3.3.2. Theoretical Foundation of Stages 2 and 4

In this section is presented the theoretical foundation which serves as the basis for the design
and operation of Stages 2 and 4, whose main element is an original variation of the Linear
Associator.

Let {(xμ,yμ) | μ = 1, 2, . . . , p}with A = {0, 1}, xμ ∈ An and yμ ∈ Am be the fundamental
set of the Linear Associator. The Learning Phase consists of two stages.

(i) For each of the p associations (xμ,yμ) find matrix yμ · (xμ)t of dimensions m × n.

(ii) The p matrices are added together to obtain the memory

M =
p
∑

μ=1

yμ · (xμ)t =
[

mij

]

m×n (3.26)

in such way that the ijth component of memory M is expressed as

mij =
p
∑

μ=1

y
μ

i x
μ

j . (3.27)

The Recalling Phase consists of presenting an input pattern xω to the memory, where ω ∈
{1, 2, . . . , p} and doing operation

M · xω =

⎡

⎣

p
∑

μ=1

yμ · (xμ)t
⎤

⎦ · xω. (3.28)

The following form of expression allows us to investigate the conditions that must be met in
order for the proposed recalling method to give perfect outputs as results:

M · xω = yω ·
[

(xω)t · xω
]

+
∑

μ/=ω
yμ ·

[

(xμ)t · xω
]

. (3.29)

For the latter expression to give pattern yω as a result, it is necessary that two equalities
hold:

(i) [(xω)t · xω] = 1;

(ii) [(xμ)t · xω] = 0 as long as μ/=ω.
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This means that, in order to have perfect recall, vectors xμ must be orthonormal to each
other. If that happens, then, for μ = 1, 2, . . . , p, we have

y1 ·
(

x1
)t

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

y1
1

y1
2

...

y1
m

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

·
(

x1
1, x

1
2, . . . , x

1
n

)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

y1
1 0 0 · · · 0(n)

y1
2 0 0 · · · 0(n)
...

...
... · · ·

...

y1
m 0 0 · · · 0(n)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

y2 ·
(

x2
)t

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

y2
1

y2
2

...

y2
m

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

·
(

x2
1, x

2
2, . . . , x

2
n

)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 y2
1 0 · · · 0(n)

0 y2
2 0 · · · 0(n)

...
...

... · · ·
...

0 y2
m 0 · · · 0(n)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

yp · (xp)t =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

y
p

1

y
p

2

...

y
p
m

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

·
(

x
p

1 , x
p

2 , . . . , x
p
n

)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 · · · yp1 (n)
0 0 0 · · · yp2 (n)
...

...
... · · ·

...

0 0 0 · · · ypm(n)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

(3.30)

Therefore,

M =
p
∑

μ=1

yμ · (xμ)t =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

y1
1 y2

1 y3
1 · · · y

p
n

y1
2 y2

2 y3
2 · · · y

p

2

...
...

... · · ·
...

y1
m y2

m y3
m · · · y

p
m

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (3.31)

Taking advantage of the characteristic shown by the Linear Asssociator when the input
patterns are orthonormal, and given that, by Definition 3.3, one-hot vectors vk with k =
1, . . . , p are orthonormal, we can obviate the learning phase by avoiding the vectorial
operations done by the Linear Associator, and simply put the vectors in order, to form the
Linear Associator.

Stages 2 and 4 correspond to two modified Linear Associators, built with vectors y and
x, respectively, of the fundamental set.

3.3.3. Algorithm

In this section we describe, step by step, the processes required by the Alpha-Beta BAM, in
the Learning Phase as well as in the Recalling Phase (by convention only) in the direction
x → y, the algorithm for Stages 1 and 2.

The following algorithm describes the steps needed by the Alpha-Beta bidirectional
associative memory for the learning and recalling phases to happen, in the direction x → y.
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Learning Phase

(1) For each index k ∈ {1, . . . , p}, do expansion: Xk = τe(xk,hk).

(2) Create an Alpha-Beta autoassociative memory of type max V with the fundamental
set

{(

Xk,Xk
)

| k = 1, . . . , p
}

. (3.32)

(3) For each index k ∈ {1, . . . , p}, do expansion: X
k
= τe(xk,h

k
).

(4) Create an Alpha-Beta autoassociative memory of type min Λ with the fundamental
set

{(

X
k
,X

k
)

| k = 1, . . . , p
}

. (3.33)

(5) Create a matrix consisting of a modified Linear Associator with patterns yk

LAy =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

y1
1 y2

1 · · · y
p

1

y1
2 y2

2 · · · y
p

2

...
... · · ·

...

y1
n y2

n · · · y
p
n

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (3.34)

Recalling Phase

(1) Present, as input to Stage 1, a vector of the fundamental set xμ ∈ An for some index
μ ∈ {1, . . . , p}.

(2) Build vector u ∈ Ap in the following manner:

u =
p
∑

i=1

hi. (3.35)

(3) Do expansion: F = τe(xμ,u) ∈ An+p.

(4) Operate the Alpha-Beta autoassociative memory max V with F, in order to obtain a
vector R of dimension n + p

R = VΔβF ∈ An+p. (3.36)

(5) Do contraction r = τc(R, n) ∈ Ap.

(6) If (∃k ∈ {1, . . . , p} such that hk = r), it is assured that k = μ (based on Theorem 3.11),
and the result is hμ. Thus, operation LAy · r is done, resulting in the corresponding
yμ. STOP. Else {
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(7) Build vector w ∈ Ap in such way that wi = ui − 1, for all i ∈ {1, . . . , p}.
(8) Do expansion: G = τe(xμ,w) ∈ An+p.

(9) Operate the Alpha-Beta autoassociative memory min Λ with G, in order to obtain
a vector S of dimension n + p

S = Λ∇βG ∈ An+p. (3.37)

(10) Do contraction s = τc(Sμ, n) ∈ Ap.

(11) If (∃k ∈ {1, . . . , p} such that h
k
= s), it is assured that k = μ (based on Theorem 3.14),

and the result is hμ. Thus, operation LAy · s is done, resulting in the corresponding
yμ. STOP. Else {.

Do operation t = r ∧ s, where Λ is the symbol of the logical AND. The result of this operation
is hμ (based on Theorem 3.25). Operation LAy ·t is done, in order to obtain the corresponding
yμ. STOP.}}.The process in the contrary direction, which is presenting pattern yk (k = 1, . . . , p)
as input to the Alpha-Beta BAM and obtaining its corresponding xk, is very similar to the one
described above. The task of Stage 3 is to obtain a one-hot vector hk given a yk. Stage 4 is a
modified Linear Associator built in similar fashion to the one in Stage 2.All this theoretical
foundations assure every training pattern to be recalled without imposing any condition in
the nature of patterns, such as linear dependency, Hamming distance, orthogonality, nor the
number of patterns to be trained. The algorithm shows that the method is not iterative but
rather a one-shot algorithm, which is an advantage because our model does not have stability
problems.

4. Experiments and Results

We first use Lindig’s algorithm [5] to generate a concept lattice from a set of objects and
attributes. In the learning phase, each object or subset of objects is associated with their
corresponding attribute or subset of attributes, that is, concepts are stored in a BAM. The
bidirectionality of this associative model enables the system to retrieve a concept from objects
or attributes information. We present an illustrative example to explain our proposal in a
simple way.

Suppose the context of the planets showed in Table 3. From the table, it can be observed
that there are 9 objects corresponding to the number of planets, and there are 7 attributes.
Based on this table a concept lattice is derived from Lindig’s algorithm, which is shown in
Figure 4.

In both forward and reverse directions, the number of objects becomes the number of
elements of vectors x and the number of attributes is the number of elements of vectors y, as
Figure 5 shows.

A software implementation of the Alpha-Beta BAM to store concept lattices derived
from Lindig’s algorithm was developed. The software was programmed with Visual C++6.0.
A result related to the example showed in Figure 4 can be observed in Figure 6.

The first step is to generate the concept lattice. Information about objects and attributes
is read from a txt file, then Lindig’s algorithm is applied and the concept lattice is built.
We have the option to choose objects or attributes; these are selected and the corresponding
concept is showed.
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{Me,V, E,Ma, P} → {ss}

{Me,V, E,Ma} → {ss, dn}

{Me,V, E,Ma, J, S,U,N, P} → {}

{E,Ma, J, S,U,N, P} → {my}

{J, S,U,N, P} → {df,my}

{U,N} → {sm, df,my}
{P} → {ss, df,my}

{E,Ma} → {ss, dn,my} {J, S} → {sl, df,my}

{E,Ma, P} → {ss,my}

{} → {ss, sm, sl, dn, df,my,mn}

{Me,V } → {ss, dn,mn}

Figure 4: Concept lattice for the context of the planets given in Table 3.

x =

Me
V
E

Ma
J

S
U
N
P

−→ y =

ss
sm
sl
dn
df
my
mn

x =

1
1
1
1
0
0
0
0

1
0
0
1
0
0
0

−→ y =

Example:
{Me,V, E,Ma} −→ {ss, dn}

Figure 5: In the learning phase, concepts are stored as associations of objects and attributes.

Figure 6: Example screen of software developed. Object information is provided and attributes are recalled.
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Table 3: Context of planets.

Planet Size Distance from Sun Moon

Small (ss) Medium (sm) Large (sl) Near (dn) Far (df) Yes (my) No (mn)

Mercury (Me) — — — — — — —

Venus (V ) — — — — — — —

Earth (E) — — — — — — —

Mars (Ma) — — — — — — —

Jupiter (J) — — — — — — —

Saturn (S) — — — — — — —

Uranus (U) — — — — — — —

Neptune (N) — — — — — — —

Pluto (P) — — — — — — —

We tested the system introducing each set of objects from each concept, and associated
attributes were recalled. In the same way, sets of attributes from the concept lattice were
presented to the Alpha-Beta BAM and associated objects were recalled. In this manner, we
had perfect recall in the experiment.

In this case, the context has few elements. However, the context could have any
number of objects and attributes and Alpha-Beta BAM will recall every association, that is, it
will show perfect recall. This can be concluded because Alpha-Beta BAM has a mathematical
foundation assuring perfect recall without imposing any condition.

5. Conclusions

Formal Concept Analysis is a tool to represent the way human beings conceptualize the
real world by giving the bases to analyze contexts and to obtain formal concepts. Lindig’s
algorithm takes these formal concepts and builds a concept lattice to represent human
thought. Therefore, this step provides a way to model mental level. On the other hand, Alpha-
Beta Bidirectional Associative Memories are a great tool to store concept lattices because the
model is a one-shot algorithm and all patterns are recalled perfectly in both directions. The
process for storing formal concepts consists in associating every object with its corresponding
attribute using Alpha-Beta operators during the learning phase. The recalling phase of Alpha-
Beta BAM allows retrieving a formal concept by presenting an object or attribute. The main
feature of Alpha-Beta BAM is that it exhibits perfect recall on all fundamental patterns
without any condition in number of patterns or the nature of patterns. This makes our
algorithm an adequate tool to store concepts. Besides, it provides a way to model brain
level.

Our proposed model stores and retrieves concepts from a concept lattice in a suitable
way. This model can be used to create knowledge databases, which is our next goal.
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[26] B. Kosko, “Bidirectional associative memories,” IEEE Transactions on Systems, Man, and Cybernetics,
vol. 18, no. 1, pp. 49–60, 1988.



Mathematical Problems in Engineering 27

[27] J. H. Park, “Robust stability of bidirectional associative memory neural networks with time delays,”
Physics Letters A, vol. 349, no. 6, pp. 494–499, 2006.

[28] M. E. Acevedo, Alpha-beta bidirectional associative memories (In Spanish), Ph.D. thesis, Center for
Computing Research, México, 2006.


