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Copyright q 2010 Jinpeng Yu et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

The speed tracking control problem of permanent magnet synchronous motors with parameter
uncertainties and load torque disturbance is addressed. Fuzzy logic systems are used to
approximate nonlinearities, and an adaptive backstepping technique is employed to construct
controllers. The proposed controller guarantees the tracking error convergence to a small
neighborhood of the origin and achieves the good tracking performance. Simulation results clearly
show that the proposed control scheme can track the position reference signal generated by a
reference model successfully under parameter uncertainties and load torque disturbance without
singularity and overparameterization.

1. Introduction

Permanent magnet synchronous motors (PMSMs) are of great interest for industrial
applications requiring dynamic performance due to their high speed, high efficiency, high
power density, and large torque to inertia ratio. Then it is still a challenging problem to
control PMSM to get the perfect dynamic performance because the motor dynamic model
of PMSM is nonlinear and multivariable, the model parameters such as the stator resistance
and the friction coefficient are also not be exactly known. The control of PMSM drivers has
recently received wide attention and become an active research area. Some advanced control
techniques, such as sliding mode control [1, 2], feedback linearization control [3], adaptive
control [2, 4], backstepping principles [5–7], and Fuzzy logic control [8–10], are used to the
problems of speed or position control of PMSMs.
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Table 1: The denotation of the PMSM parameters.

Parameter Denotation Parameter Denotation
ω The rotor angular velocity Rs The stator resistance
id The d axis current iq The q axis current
Ld The d axis stator inductor Lq The q axis stator inductor
ud The d axis voltage uq The q axis voltage
np The pole pair J The rotor moment of inertia
T The electromagnetism torque TL The load torque
B The viscous friction coefficient Φ The magnet flux linkage of inertia

Backstepping is a newly developed technique to control the nonlinear systems with
parameter uncertainty, particularly those systems in which the uncertainty does not satisfy
matching conditions. Though backstepping is successfully applied to the control of PMSM
drivers recently, it usually makes the designed controllers’ structure to be very complex.

Fuzzy logic control (FLC) has been found one of the most popular and conventional
tools in functional approximations. An FLC [11, 12] has strong ability of handling uncertain
information and can be easily used in the control of systems which is ill-defined or too
complex to have a mathematical model. It provides an effective way to design control system
that is one of important applications in the area of control engineering.

In this paper, an adaptive fuzzy control approach is proposed for speed tracking
control of PMSM drive system via the backstepping technique. During the controller design
process, fuzzy logic systems are employed to approximate the nonlinearities, the adaptive
fuzzy controllers are constructed via backstepping. The designed fuzzy controller can track
the reference signal quite well even the existence of the parameter uncertainties and load
torque disturbance. Compared with the existing controller design schemes via backstepping,
the proposed method is very simple and the proposed controller has a simple structure.

2. Mathematical Model of the PMSM Drive System and Preliminaries

In this section, some preparatory knowledge of a PMSM will be introduced. The following
assumptions are made in the derivation of the mathematical model of a PMSM [13].

Assumption 2.1. Saturation and iron losses are neglected although it can be taken into account
by parameter changes.

Assumption 2.2. The back emf is sinusoidal.

The model of a PMSM can be described in the well known (d − q) frame through the
Park transformation as follows. The stator d, q equations in the rotor frame are expressed as
follows [14]:

J
dω

dt
= T − TL − Bω =

3
2
np
[(
Ld − Lq

)
idiq + Φiq

]
− Bω − TL,

Ld
did
dt

= −Rsid + npωLqiq + ud,

Lq
diq

dt
= −Rsiq − npωLdid − npωΦ + uq.

(2.1)

The denotation of the PMSM parameters is shown in Table 1.
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To simplify the previous method mode, the following notations are introduced:

x1 = ω, x2 = iq, x3 = id,

a1 =
3npΦ

2
, a2 =

3np
(
Ld − Lq

)

2
,

b1 = −Rs

Lq
, b2 = −

npLd

Lq
, b3 = −

npΦ
Lq

, b4 =
1
Lq
,

c1 = −Rs

Ld
, c2 =

npLq

Ld
, c3 =

1
Ld
.

(2.2)

By using these notations, the dynamic model of a PMSM motor can be described by the
following differential equations:

ẋ1 =
a1

J
x2 +

a2

J
x2x3 −

B

J
x1 −

TL
J
,

ẋ2 = b1x2 + b2x1x3 + b3x1 + b4uq,

ẋ3 = c1x3 + c2x1x2 + c3ud.

(2.3)

The control objective is to design an adaptive fuzzy controller such that the state variable
x1 tracks the given reference signal xd and all signals of the resulting closed-loop system
are uniformly ultimately bounded. In this paper, we adopt the singleton fuzzifier, product
inference, and the center-defuzzifier to deduce the following fuzzy rules:

Ri : IF x1 is Fi1 and . . . and xn is Fin THEN y is Bi (i = 1, 2, . . . ,N), (2.4)

where x = [x1, . . . , xn]
T ∈ Rn, and y ∈ R are the input and output of the fuzzy system,

respectively, Fji and Bi are fuzzy sets in R. The fuzzy inference engine performs a mapping
from fuzzy sets in Rn to fuzzy set in R based on the IF-THEN rules in the fuzzy rule base and
the compositional rule of inference. The fuzzifier maps a crisp point x = [x1, . . . , xn]

T ∈ Rn

into a fuzzy set Ax in R. The defuzzifier maps a fuzzy set in R to a crisp point in R. Since
the strategy of singleton fuzzification, center-average defuzzification, and product inference
is used, the output of the fuzzy system can be formulated as

y(x) =

∑N
j=1 Wj

∏n
i=1μFji

(xi)
∑N

j=1

[∏n
i=1μFji

(xi)
] , (2.5)

where Wj is the point at which fuzzy membership function μBj (Wj) achieves its maximum
value, and it is assumed that μBj (Wj) = 1. Let pj(x) =

∏n
i=1μFji

(xi)/
∑N

j=1[
∏n

i=1μFji
(xi)] , S(x) =

[p1(x), p2(x), . . . , pN(x)]T and W = [W1, . . . ,WN]T , then the fuzzy logic system above can be
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rewritten as

y(x) =WTS(x). (2.6)

If all memberships are taken as Gussian functions, then the following lemma holds.

Lemma 2.3 (see [15]). Let f(x) be a continuous function defined on a compact set Ω. Then for any
scalar ε > 0, there exists a fuzzy logic system in the form (2.6) such that

sup
x∈Ω

∣∣f(x) − y(x)
∣∣ ≤ ε. (2.7)

3. Adaptive Fuzzy Controller with the Backstepping Technique

For the system (2.3), the backstepping design procedure contains 3 steps. At each design step,
a virtual control function αi (i = 1, 2) will be constructed by using an appropriate Lyapunov
function V . At the last step, a real controller is constructed to control the system. In the
following, we will give the procedure of the backstepping design.

Step 1. For the reference signal xd , define the tracking error variable as z1 = x1−xd . From the
first subsystem of (2.3), the error dynamic system is given by ż1 = (a1/J)x2 + (a2/J)x2x3 −
(B/J)x1 − TL/J − ẋd.

Choose Lyapunov function candidate as V1 = (J/2)z2
1, then the time derivative of V1 is

given by

V̇1 = Jz1ż1 = z1(a1x2 + a2x2x3 − Bx1 − TL − Jẋd). (3.1)

As the parameters B, TL, and J are unknown, they cannot be used to construct the
control signal. Thus, let B̂, T̂L, and Ĵ be their estimations of B, TL, and J , respectively. The
corresponding adaptation laws will be determined later. Now, construct the virtual control
law α1 as

α1(Z1) =
1
a1

(
−k1z1 + B̂x1 + T̂L + Ĵ ẋd

)
, (3.2)

where k1 > 0 is a design parameter and Z1 = [x1, xd, ẋd, B̂, T̂L, Ĵ]
T

. Defining z2 = x2 − α1 and
substituting (3.2) into (3.1) yield

V̇1 = −k1z
2
1 + a1z1z2 + a2z1x2x3 + z1

(
B̂ − B

)
x1 + z1

(
T̂L − TL

)
+ z1

(
Ĵ − J

)
ẋd. (3.3)

Step 2. Differentiating z2 and using the second subsystem of (2.3) give

ż2 = ẋ2 − α̇1 = b1x2 + b2x1x3 + b3x1 + b4uq − α̇1. (3.4)
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Now, choose the Lyapunov function candidate as V2 = V1 + (1/2)z2
2. Obviously, the

time derivative of V2 is given by

V̇2 = V̇1 + z2ż2

= −k1z
2
1 + a2z1x2x3 + z1

(
B̂ − B

)
x1 + z1

(
T̂L − TL

)
+ z1

(
Ĵ − J

)
ẋd + z2

(
f2 + b4uq

)
,

(3.5)

where

α̇1 =
∂α1

∂x1
ẋ1 +

1∑

i=0

∂α1

∂x
(i)
d

x
(i+1)
d

+
∂α1

∂B̂

˙̂B +
∂α1

∂T̂L

˙̂TL +
∂α1

∂Ĵ

˙̂J

=
∂α2

∂x1

(
a1

J
x2 +

a2

J
x2x3 −

B

J
x1 −

TL
J

)
+

1∑

i=0

∂α1

∂x
(i)
d

x
(i+1)
d

+
∂α1

∂B̂

˙̂B +
∂α1

∂T̂L

˙̂TL +
∂α1

∂Ĵ

˙̂J,

f2(Z2) = a1z1 + b1x2 + b2x1x3 + b3x1 − α̇1,

Z2 =
[
x1, x2, x3, xd, ẋd, ẍd, B̂, T̂L, Ĵ

]T
.

(3.6)

Apparently, there are two nonlinear terms in (3.5), that is, a2z1x2x3 and f2, therewithal,
f2 contains the derivative of α̇1. This will make the classical adaptive backstepping design
become very complex and troubled, and the designed control law uq will have the complex
structure. To avoid this trouble in design procedure and simplify the control signal structure,
we will employ the fuzzy logic system to approximate the nonlinear function f2. As shown
later, the design procedure of uq becomes simple and uq has the simple structure. According
to Lemma 2.3, for any given ε2 > 0, there exists a fuzzy logic system WT

2 S2(Z2) such that

f2(Z2) =WT
2 S2(Z2) + δ2(Z2), (3.7)

with δ2(Z) being the approximation error and satisfying |δ2| ≤ ε2. Consequently, a simple
method computing produces the following inequality:

z2f2 = z2

(
WT

2 S2 + δ2

)
≤ 1

2l22
z2

2‖W2‖2S2
2 +

1
2
l22 +

1
2
z2

2 +
1
2
ε2

2. (3.8)

It follows immediately from substituting (3.8) into (3.5) that

V̇2 ≤ −
2∑

i=1

kiz
2
i + a2z1x2x3 + z1

(
B̂ − B

)
x1 + z1

(
T̂L − TL

)

+ z1

(
Ĵ − J

)
ẋd +

1
2l22

z2
2‖W2‖2S2

2 +
1
2
l22 +

1
2
z2

2 +
1
2
ε2

2 + z2b4uq.

(3.9)
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The control input uq is designed as

uq =
1
b4

(

−k2z2 −
1
2
z2 −

1
2l22

z2θ̂S
2
2

)

, (3.10)

where θ̂ is the estimation of the unknown constant θ which will be specified later. Using
equality (3.10), the derivative of V2 becomes as

V̇2 ≤ −
2∑

i=1

kiz
2
i + a2z1x2x3 + z1

(
B̂ − B

)
x1 + z1

(
T̂L − TL

)

+ z1

(
Ĵ − J

)
ẋd +

1
2l22

z2
2

(
‖W2‖2 − θ̂

)
S2

2 +
1
2
l22 +

1
2
ε2

2.

(3.11)

Step 3. At this step, we will construct the control law ud. To this end, define z3 = x3 and
choose the following Lyapunov function candidate as V3 = V2 + (1/2)z2

3. Then the derivative
of V3 is given by

V̇3 = V̇2 + z3ż3 ≤ −
2∑

i=1

kiz
2
i + a2z1x2x3 + z1

(
B̂ − B

)
x1 + z1

(
T̂L − TL

)

+ z1

(
Ĵ − J

)
ẋd +

1
2l22

z2
2

(
‖W2‖2 − θ̂

)
S2

2 +
1
2
l22 +

1
2
ε2

2 + z3
(
f3(Z3) + c3ud

)
,

(3.12)

where f3(Z3) = a2z1x2 + c1x3 + c2x1x2 and Z3 = [x1, x2, x3, xd]
T . Similarly, by Lemma 2.3 the

fuzzy logic system WT
3 S3(Z3) is utilized to approximate the nonlinear function f3 such that

for given ε3 > 0,

z3f3 ≤
1

2l23
z2

3‖W3‖2S2
3 +

1
2
l23 +

1
2
z2

3 +
1
2
ε2

3. (3.13)

Substituting (3.13) into (3.12) gives

V̇3 = V̇2 + z3ż3 ≤ −
2∑

i=1

kiz
2
i +

1
2l22

z2
2

(
‖W2‖2 − θ̂

)
S2

2 +
3∑

i=2

1
2

(
l2i + ε

2
i

)

+ z1

(
B̂ − B

)
x1 + z1

(
T̂L − TL

)
+ z1

(
Ĵ − J

)
ẋd +

1
2l23

z2
3‖W3‖2S2

3 +
1
2
z2

3 + c3z3ud.

(3.14)

Now design ud as

ud =
−1
c3

(

k3z3 +
1
2
z3 +

1
2l23

z3θ̂S
2
3

)

. (3.15)
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Then, define θ = max{‖W2‖2, ‖W3‖2}. Then, combining (3.14) with (3.15) results in

V̇4 ≤ −
3∑

i=1

kiz
2
i +

3∑

i=2

1
2

(
l2i + ε

2
i

)
+ z1

(
B̂ − B

)
x1 + z1

(
T̂L − TL

)

+ z1

(
Ĵ − J

)
ẋd +

3∑

i=2

1
2l2i

z2
i

(
‖Wi‖2 − θ̂

)
STi (Zi)Si(Zi)

≤ −
3∑

i=1

kiz
2
i +

3∑

i=2

1
2

(
l2i + ε

2
i

)
+ z1

(
B̂ − B

)
x1 + z1

(
T̂L − TL

)

+ z1

(
Ĵ − J

)
ẋd +

3∑

i=2

1
2l2i

z2
i S

T
i (Zi)Si(Zi)

(
θ − θ̂

)
.

(3.16)

At the present stage, to estimate the unknown constants B, TL, J , and θ, define the
adaptive variables as follows:

T̃L = T̂L − TL,

B̃ = B̂ − B,

J̃ = Ĵ − J,

θ̃ = θ̂ − θ.

(3.17)

In order to determine the corresponding adaptation laws, choose the following Lyapunov
function candidate:

V = V3 +
1

2r1
T̃2
L +

1
2r2

B̃2 +
1

2r3
J̃2 +

1
2r4

θ̃2, (3.18)

where ri, i = 1, 2, 3, 4 are positive constant. By differentiating V and taking (3.16)–(3.18) into
account, one has

V̇ ≤ −
3∑

i=1

kiz
2
i +

3∑

i=2

1
2

(
l2i + ε

2
i

)
+ z1B̃x1 + z1T̃L

+ z1J̃ ẋd −
3∑

i=2

1
2l2i

z2
i θ̃S

T
i (Zi)Si(Zi) +

1
r1
T̃LT̂L +

1
r2
B̃B̂ +

1
r3
J̃ Ĵ +

1
r4
θ̃θ̂

= −
3∑

i=1

kiz
2
i +

3∑

i=2

1
2

(
l2i + ε

2
i

)
+

1
r1
T̃L
(
r1z1 +

˙̂TL
)

+
1
r2
B̃
(
r2z1x1 +

˙̂B
)
+

1
r3
J̃
(
r3z1ẋd +

˙̂J
)
+

1
r4
θ̃

[

−
3∑

i=2

r4

2l2i
z2
i S

T
i (Zi)Si(Zi) +

˙̂θ

]

.

(3.19)
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According to (3.19), the corresponding adaptive laws are chosen as follows:

˙̂TL = −r1z1 −m1T̃L,

˙̂B = −r2z1x1 −m2B̂,

˙̂J = −r3z1ẋd −m3Ĵ ,

˙̂θ =
3∑

i=2

r4

2l2i
z2
i S

T
i (Zi)Si(Zi) −m4θ̂,

(3.20)

where mi for i = 1, 2, 3, 4 and li for i = 2, 3 are positive constant.

4. Stability Analysis

In this section, the stability analysis of the resulting closed-loop system will be addressed.
Substituting (3.20) into (3.19) yields

V̇ ≤ −
3∑

i=1

kiz
2
i +

3∑

i=2

1
2

(
l2i + ε

2
i

)
− m1

r1
T̃LT̂ −

m2

r2
B̃B̂ − m3

r3
J̃ Ĵ − m4

r4
θ̃θ̂. (4.1)

For the term −T̃LT̂ , one has

−T̃LT̂L = −T̃L
(
T̃L + TL

)
≤ −1

2
T̃2
L +

1
2
T2
L. (4.2)

Similarly, we have

−B̃B̂ ≤ −1
2
B̃2 +

1
2
B2,

−J̃ Ĵ ≤ −1
2
J̃2 +

1
2
J2,

−θ̃θ̂ ≤ −1
2
θ̃2 +

1
2
θ2.

(4.3)

Consequently, by using these inequalities, (4.1) can be rewritten in the following form:

V̇ ≤ −
3∑

i=1

kiz
2
i −

m1

2r1
T̃2
L −

m2

2r2
B̃2 − m3

2r3
J̃2 − m4

2r4
θ̃2

+
3∑

i=2

1
2

(
l2i + ε

2
i

)
+
m1

2r1
T2
L +

m2

2r2
B2 +

m3

2r3
J2 +

m4

2r4
θ2

≤ −a0V + b0,

(4.4)
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where a0 = min{2k1/J, 2k2,2k3,m1, m2, m3, m4} and b0 =
∑3

i=2(1/2)(l2i + ε2
i ) + (m1/2r1)T2

L +
(m2/2r2)B2 + (m3/2r3)J2 + (m4/2r4)θ2. Furthermore, (4.4) implies that

V (t) ≤
(
V (t0) −

b0

a0

)
e−a0(t−t0) +

b0

a0
≤ V (t0) +

b0

a0
, ∀t � t0. (4.5)

As a result, all zi(i = 1, 2, 3) , T̃L, B̃, J̃ and θ̃ belong to the compact set

Ω =
{(

zi, T̃L, B̃, J̃ , θ̃
)
| V ≤ V (t0) +

b0

a0
, ∀t � t0

}
. (4.6)

Namely, all the signals in the closed-loop system are bounded. Especially, from (4.5) we have

lim
t→∞

z2
1 ≤

2b0

a0
. (4.7)

From the definitions of a0 and b0, it is clear that to get a small tracking error we can take ri
large and li and εi small enough after giving the parameters ki and mi.

5. Simulation

To illustrate the effectiveness of the proposed results, the simulation will be done for the
PMSM motor with the parameters:

J = 0.00379 Kgm2, Rs = 0.68Ω, Ld = 0.00315 H,

Lq = 0.00285 H, B = 0.001158 Nm/(rad/s), Φ = 0.1245 Wb, np = 3.
(5.1)

Then, the proposed adaptive fuzzy controllers are used to control this PMSM motor. Given
the reference signal is xd = 30 and the control parameters are chosen as follows:

k1 = 2.5, k2 = k3 = 50, r1 = r2 = r3 = r4 = 2.5,

m1 = m2 = m3 = m4 = 0.0005, l2 = l3 = 5.
(5.2)
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Figure 1: The curve of the rotor speed x1.

The fuzzy membership functions are chosen as

μF1
i
= exp

[
−(x + 5)2

2

]

, μF2
i
= exp

[
−(x + 4)2

2

]

,

μF3
i
= exp

[
−(x + 3)2

2

]

, μF4
i
= exp

[
−(x + 2)2

2

]

,

μF5
i
= exp

[
−(x + 1)2

2

]

, μF6
i
= exp

[
−(x − 0)2

2

]

,

μF7
i
= exp

[
−(x − 1)2

2

]

, μF8
i
= exp

[
−(x − 2)2

2

]

,

μF9
i
= exp

[
−(x − 3)2

2

]

, μF10
i
= exp

[
−(x − 4)2

2

]

,

μF11
i
= exp

[
−(x − 5)2

2

]

.

(5.3)

The simulation is carried out under the zero initial condition for two cases. In the first case,
TL = 1.5 and in the second case,

TL =

⎧
⎨

⎩

1.5, 0 ≤ t ≤ 1,

3, t ≥ 1.
(5.4)
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Figure 2: The curve of the speed tracking error.

0

5

10

15

20

25

30

35

Sp
ee

d
(r

ad
/

s)

0 1 2 3 4 5

Time (s)

x1

Figure 3: The curve of the rotor position x1.

Figures 1 and 2 show the simulation results for case 1, and Figures 3 and 4 show the
simulation results for the second case. From these figures, it is seen clearly that the tracking
performance has been achieved very well. This means that the proposed controller can
track the reference signal satisfactorily even under parameter uncertainties and load torque
disturbance.

6. Conclusion

Based on adaptive fuzzy control approach and backstepping technique, an adaptive fuzzy
control scheme is proposed to control a permanent magnet synchronous motor. The proposed
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Figure 4: The curve of the speed tracking error.

controllers guarantee that the tracking error converges to a small neighborhood of the origin
and all the closed-loop signals are bounded. Simulation results illustrate the effectiveness of
the presented method.

Appendix

The Controller of PMSM Based on Conventional Backstepping

The controller of PMSM based on conventional backstepping technique is briefly reviewed
here. The detailed design procedure is in [7]. The controllers based on conventional
backstepping are shown as follows:

uq =
1
b4

(

−k2z2 + b4

( ˙̂J
a1

(
−k1z1 + F̂x1 + Γ̂ + ẋd

)
+
Ĵ

a1

( ˙̂Fx1 +
˙̂Γ + ẍd + k1ẋd

)

+
(
F̂ − k1

)(
x2 +

a2

a1
x2x3

)
− Ĵ

a1

(
F̂ − k1

)(
F̂x1 + Γ̂

)
− (b1x2 + b2x1x3 + b3x1)

))

,

ud =
1
c3

(

−k3z3 − c1x3 − c2x1x2 −
a2

Ĵ
c3z1x2

)

.

(A.1)

Comparing the presented method with the above controller designed via conventional back-
stepping, it can be seen that the proposed controllers based on adaptive fuzzy backstepping
have a very simple structure. And the simulation results illustrate the effectiveness of the
presented method in this paper.
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