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We establish the existence of periodic solutions of the second order nonautonomous singular
coupled systems x′′ + a1(t)x = f1(t, y(t)) + e1(t) for a.e. t ∈ [0, T], y′′ + a2(t)y = f2(t, x(t)) + e2(t) for
a.e. t ∈ [0, T]. The proof relies on Schauder’s fixed point theorem.

1. Introduction

Some classical tools have been used in the literature to study the positive solutions for two-
point boundary value problems of a coupled system of differential equations. These classical
tools include some fixed point theorems in cones for completely continuous operators and
Leray-Schauder fixed point theorem; for examples, see [1–3] and literatures therein.

Recently, Schauder’s fixed point theorem has been used to study the existence of
positive solutions of periodic boundary value problems in several papers; see, for example,
Torres [4], Chu et al. [5, 6], Cao and Jiang [7], and the references contained therein. However,
there are few works on periodic solutions of second-order nonautonomous singular coupled
systems. In these papers above, there are the major assumption that their associated Green’s
functions are positive. Since Green’s functions are positive, in the paper, we continue to study
the existence of periodic solutions to second-order nonautonomous singular coupled systems
in the following form:

x′′ + a1(t)x = f1
(
t, y(t)

)
+ e1(t) for a.e. t ∈ [0, T],

y′′ + a2(t)y = f2(t, x(t)) + e2(t) for a.e. t ∈ [0, T],
(1.1)
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with a1, a2, e1, e2 ∈ L1[0, T], f1, f2 ∈ Car([0, T] × (0,+∞), (0,+∞)). Here we write f ∈
Car([0, T]× (0,+∞), (0,+∞)) if f : [0, T]× (0,+∞) → (0,+∞) is an L1-caratheodory function,
that is, the map x �→ f(t, x) is continuous for a.e. t ∈ (0, 1) and the map t �→ f(t, x) is
measurable for all x ∈ (0,+∞), and for every 0 < r < s there exists hr,s ∈ L1(0, T) such
that |f(t, x)| ≤ hr,s(t) for all x ∈ [r, s] and a.e. t ∈ [0, T]; here “for a.e.” means “for almost
every”.

This paper is mainly motivated by the recent papers [4–6, 8, 9], in which the periodic
singular problems have been studied. Some results in [4–6, 9] prove that in some situations
weak singularities may help create periodic solutions. In [6], the authors consider the periodic
solutions of second-order nonautonomous singular dynamical systems, in which the scalar
periodic singular problems have been studied by Leray-Schauder alternative principle, a
well-known fixed point theorem in cones, and Schauder’s fixed point theorem, respectively.

The remaining part of the paper is organized as follows. In Section 2, some preliminary
results will be given. In Sections 3–5, by employing a basic application of Schauder’s fixed
point theorem, we state and prove the existence results for (1.1) under the nonnegative of
the Green’s function associated with (2.1)-(2.2). Our view point sheds some new light on
problems with weak force potentials and proves that in some situations weak singularities
may stimulate the existence of periodic solutions, just as pointed out in [9] for the scalar case.

To illustrate our results, for example, we can select the system

x′′ + a1(t)x = y−α1 + e1(t),

y′′ + a2(t)y = x−α2 + e2(t),
(1.2)

with a1, a2, e1, e2 ∈ C[0, T], 0 < αi < 1, i = 1, 2. Here we emphasize that in the new results
e1, e2 do not need to be positive.

Let us fix some notation to be used in the following: given a ∈ L1(0, 1), we write a � 0
if a ≥ 0 for a.e. t ∈ [0, 1] and it is positive in a set of positive measures. For a given function
p ∈ L1[0, T], we denote the essential supremum and infimum by p∗ and p∗, if they exist. The
usual Lp-norm is denoted by ‖·‖p. The conjugate exponent of p is denoted by p̃ : 1/p + 1/p̃ = 1.

2. Preliminaries

We consider the scalar equation

x′′ + ai(t)x = ei(t), i = 1, 2, (2.1)

with periodic boundary conditions

x(0) = x(T), x′(0) = x′(T). (2.2)

In this paper, we assume that the following standing hypothesis is satisfied.
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(H1) The Green functionGi(t, s), associated with (2.1)-(2.2), is nonnegative for all (t, s) ∈
[0, T] × [0, T], i = 1, 2.

In other words, the (strict) antimaximum principle holds for (2.1)-(2.2). Under the
conditions (H1), the solution of (2.1)-(2.2) is given by

x(t) =
∫T

0
Gi(t, s)ei(s)ds. (2.3)

For a nonconstant function a(t), there is an Lp-criterion proved in [9], which is given in
the following lemma for the sake of completeness. Let K(q) denote the best Sobolev constant
in the following inequality:

C‖u‖2q ≤
∥
∥u′∥∥2

2, ∀u ∈ H1
0(0, T). (2.4)

The explicit formula for K(q) is

K
(
q
)
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2π
qT1+2/q

(
2

2 + q

)1−2/q( Γ
(
1/q

)

Γ
(
1/2 + 1/q

)

)2

if 1 ≤ q < ∞,

4
T

if q = ∞,

(2.5)

where Γ is the Gamma function. See [10].

Lemma 2.1. For each i = 1, 2, assume that ai(t) � 0 and ai ∈ Lp[0, T] for some 1 ≤ p ≤ ∞. If

‖ai‖p ≤ K
(
2p̃
)
, (2.6)

then the standing hypothesis (H1) holds.

We define the function γi : R → R by

γi(t) =
∫T

0
Gi(t, s)ei(s)ds, i = 1, 2, (2.7)

which is the unique T -periodic solution of

x′′ + ai(t)x = ei(t). (2.8)

Throughout this paper, we use the following notations:

γi∗ = min
i,t

γi(t), γ∗i = max
i,t

γi(t). (2.9)
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3. The Case γ1∗ ≥ 0, γ2∗ ≥ 0

Theorem 3.1. Assume that (H1) is satisfied; furthermore, we assume that there exist bi � 0, b̂i � 0,
and 0 < αi < 1 such that

(H2)

0 ≤ b̂i(t)
xαi

≤ fi(t, x) ≤ bi(t)
xαi

, ∀x > 0, a.e. t ∈ (0, T), i = 1, 2. (3.1)

If γ1∗ ≥ 0, γ2∗ ≥ 0, then there exists a positive T -periodic solution of (1.1).

Proof. A T -periodic solution of (1.1) is just a fixed point of the completely continuous map
A(x, y) = (Ax,Ay) : CT × CT → CT × CT defined as

(Ax)(t) :=
∫T

0
G1(t, s)

[
f1
(
s, y(s)

)
+ e1(s)

]
ds

=
∫T

0
G1(t, s)f1

(
s, y(s)

)
ds + γ1(t),

(
Ay
)
(t) :=

∫T

0
G2(t, s)

[
f2(s, x(s)) + e2(s)

]
ds

=
∫T

0
G2(t, s)f2(s, x(s))ds + γ2(t).

(3.2)

By a direct application of Schauder’s fixed point theorem, the proof is finished if we
prove that A maps the closed convex set defined as

K =
{(

x, y
) ∈ CT × CT : r1 ≤ x(t) ≤ R1, r2 ≤ y(t) ≤ R2, ∀t ∈ [0, T]

}
, (3.3)

into itself, where R1 > r1 > 0, R2 > r2 > 0 are positive constants to be fixed properly. For
convenience, we introduce the following notations:

βi(t) =
∫T

0
Gi(t, s)bi(s)ds, β̂i(t) =

∫T

0
Gi(t, s)b̂i(s)ds, i = 1, 2. (3.4)

Given (x, y) ∈ K, by the nonnegative sign of Gi and fi, i = 1, 2, we have

(Ax)(t) =
∫T

0
G1(t, s)f1

(
s, y(s)

)
ds + γ1(t)

≥
∫T

0
G1(t, s)

b̂1(s)
yα1(s)

ds ≥
∫T

0
G1(t, s)

b̂1(s)
Rα1

2

ds ≥ β̂1∗ · 1
Rα1

2

,

(3.5)
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and note for every (x, y) ∈ K that

(Ax)(t) =
∫T

0
G1(t, s)f1

(
s, y(s)

)
ds + γ1(t)

≤
∫T

0
G1(t, s)

b1(s)
yα1(s)

ds + γ∗1 ≤
∫T

0
G1(t, s)

b1(s)
rα1
2

ds + γ∗1 ≤ β∗1 ·
1
rα1
2

+ γ∗1 .

(3.6)

Also, follow the same strategy,

(
Ay
)
(t) =

∫T

0
G2(t, s)f2(s, x(s))ds + γ2(t)

≥
∫T

0
G2(t, s)

b̂2(s)
xα2(s)

ds ≥
∫T

0
G2(t, s)

b̂2(s)
Rα2

1

ds ≥ β̂2∗ · 1
Rα2

1

,

(
Ay
)
(t) =

∫T

0
G2(t, s)f2(s, x(s))ds + γ2(t)

≤
∫T

0
G2(t, s)

b2(s)
xα2(s)

ds + γ∗2 ≤
∫T

0
G2(t, s)

b2(s)
rα2
1

ds + γ∗2 ≤ β∗2 ·
1
rα2
1

+ γ∗2 .

(3.7)

Thus (Ax,Ay) ∈ K if r1, r2, R1, and R2 are chosen so that

β̂1∗ · 1
Rα1

2

≥ r1, β∗1 ·
1
rα1
2

+ γ∗1 ≤ R1,

β̂2∗ · 1
Rα2

1

≥ r2, β∗2 ·
1
rα2
1

+ γ∗2 ≤ R2.

(3.8)

Note that β̂i∗, βi∗ > 0 and taking R = R1 = R2, r = r1 = r2, r = 1/R, it is sufficient to find R > 1
such that

β̂1∗ · R1−α1 ≥ 1, β∗1 · Rα1 + γ∗1 ≤ R,

β̂2∗ · R1−α2 ≥ 1, β∗2 · Rα2 + γ∗2 ≤ R,
(3.9)

and these inequalities hold for R being big enough because αi < 1.
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4. The Case γ1∗ < 0 < γ ∗1 , γ2∗ < 0 < γ ∗2

Theorem 4.1. Assume (H1) and (H2) are satisfied. If γ1∗ < 0 < γ∗1 , γ2∗ < 0 < γ∗2 , and

γ1∗ ≥ r10 − β̂1∗ ·
rα1α2
10(

β∗2 + γ∗2 r
α2
10

)α1
,

γ2∗ ≥ r20 − β̂2∗ ·
rα1α2
20(

β∗1 + γ∗1 r
α1
20

)α2
,

(4.1)

where 0 < r10 < +∞ is a unique positive solution of the equation

r1−α1α2
1

(
β∗2 + γ∗2 · rα2

1

)1+α1 = α1α2β
∗
2β̂1∗, (4.2)

and 0 < r20 < +∞ is a unique positive solution of the equation

r1−α1α2
2

(
β∗1 + γ∗1 · rα1

2

)1+α2 = α1α2β
∗
1β̂2∗, (4.3)

then there exists a positive T -periodic solution of (1.1).

Proof. We follow the same strategy and notation as in the proof of ahead theorem. In this case,
to prove that A : K → K, it is sufficient to find r1 < R1, r2 < R2 such that

β̂1∗
Rα1

2

+ γ1∗ ≥ r1,
β∗1
rα1
2

+ γ∗1 ≤ R1, (4.4)

β̂2∗
Rα2

1

+ γ2∗ ≥ r2,
β∗2
rα2
1

+ γ∗2 ≤ R2. (4.5)

If we fix R1 = β∗1/r
α1
2 + γ∗1 , R2 = β∗2/r

α2
1 + γ∗2 , then the first inequality of (4.5) holds if r2

satisfies

γ2∗ ≥ g(r2) := r2 − β̂2∗ ·
rα1α2
2(

β∗1 + γ∗1 · rα1
2

)α2
. (4.6)

According to

g ′(r2) = 1 − β̂2∗ · 1
(
β∗1 + γ∗1 · rα1

2

)2α2

·
[
α1α2r

α1α2−1
2

(
β∗1 + γ∗1 · rα1

2

)α2 − rα1α2
2 α2

(
β∗1 + γ∗1 · rα1

2

)α2−1α1γ
∗
1 r

α1−1
2

]

= 1 − β̂2∗α1α2r
α1α2−1
2(

β∗1 + γ∗1 · rα1
2

)α2

[

1 − rα1
2 γ∗1

β∗1 + γ∗1 · rα1
2

]

= 1 − α1α2β
∗
1β̂2∗r

α1α2−1
2

(
β∗1 + γ∗1 · rα1

2

)−1−α2 ,

(4.7)
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we have g ′(0) = −∞, g ′(+∞) = 1; then there exists r20 such that g ′(r20) = 0, and

g ′′(r2) = −
[
α1α2β

∗
1β̂2∗(α1α2 − 1)rα1α2−2

2

(
β∗1 + γ∗1 · rα1

2

)−1−α2

+α1α2β
∗
1β̂2∗r

α1α2−1
2 (−1 − α2)

(
β∗1 + γ∗1 · rα1

2

)−2−α2γ∗1α1r
α1−1
2

]
> 0.

(4.8)

Then the function g(r2) possesses a minimum at r20, that is, g(r20) = minr2ε(0,+∞) g(r2). Note
g ′(r20) = 0; then we have

1 − α1α2β
∗
1β̂2∗r

α1α2−1
21

(
β∗1 + γ∗1 · rα1

21

)−1−α2 = 0, (4.9)

or equivalently,

r1−α1α2
20

(
β∗1 + γ∗1 · rα1

20

)1+α2 = α1α2β
∗
1β̂2∗. (4.10)

Similarly,

γ1∗ ≥ g(r1) := r1 − β̂1∗ ·
rα1α2
1(

β∗2 + γ∗2 · rα2
1

)α1
. (4.11)

g(r10) = minr1ε(0,+∞)g(r1), and

r1−α1α2
10

(
β∗2 + γ∗2 · rα2

10

)1+α1 = α1α2β
∗
2β̂1∗. (4.12)

Taking r1 = r10 and r2 = r20, then the first inequality in (4.4) and (4.5) holds if γ1∗ ≥
g(r10), γ2∗ ≥ g(r20), which are just condition (4.1). The second inequalities hold directly by
the choice of R1 and R2, and it would remain to prove that r10 < R1 and r20 < R2. This is easily
verified through elementary computations

R1 =
β∗1
rα1
20

+ γ∗1 =
β∗1 + γ∗1 · rα1

20

rα1
20

=

(
α1α2β

∗
1β̂2∗

)1/(1+α2) · r(α1α2−1)/(1+α2)
20

rα1
20

=
(
α1α2β

∗
1β̂2∗

)1/(1+α2) · r−(1+α1)/(1+α2)
20 .

(4.13)

The proof is the same as that in R1,R2 = (α1α2β
∗
2β̂1∗)

1/(1+α1) · r−(1+α2)/(1+α1)
10 .
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Next,we will prove r10 < R1, r20 < R2, or equivalently,

r10r
(1+α1)/(1+α2)
20 <

(
α1α2β

∗
1β̂2∗

)1/(1+α2)
,

r20r
(1+α2)/(1+α1)
10 <

(
α1α2β

∗
2β̂1∗

)1/(1+α1)
.

(4.14)

Namely,

r1+α2
10 r1+α1

20 < α1α2β
∗
1β̂2∗, r1+α1

20 r1+α2
10 < α1α2β

∗
2β̂1∗. (4.15)

On the other hand,

r1−α1α2
20

(
β∗1
)1+α2 ≤ α1α2β

∗
1β̂2∗. (4.16)

Then

r20 ≤
(
α1α2

(
β∗1
)−α2 β̂2∗

)1/(1−α1α2)
. (4.17)

Similarly,

r10 ≤
(
α1α2

(
β∗2
)−α1 β̂1∗

)1/(1−α1α2)
. (4.18)

By (4.17) and (4.18),

r1+α2
10 r1+α1

20 ≤
(
α1α2

(
β∗2
)−α1 β̂1∗

)(1+α2)/(1−α1α2)(
α1α2

(
β∗1
)−α2 β̂2∗

)(1+α1)/(1−α1α2)
. (4.19)

Now if we can prove

(
α1α2

(
β∗2
)−α1 β̂1∗

)(1+α2)/(1−α1α2)(
α1α2

(
β∗1
)−α2 β̂2∗

)(1+α1)/(1−α1α2)
< α1α2β

∗
1β̂2∗, (4.20)

then

r1+α2
10 r1+α1

20 < α1α2β
∗
1β̂2∗. (4.21)

In fact,

(α1α2)(2+α2+α1−1)/(1−α1α2) ·
(

β̂1∗
β∗1

)(1+α2)/(1−α1α2)

·
(

β̂2∗
β∗2

)α1(1+α2)/(1−α1α2)

< 1, (4.22)

since β̂i∗ ≤ β∗i , i = 1, 2. Similarly, we have r1+α1
20 r1+α2

10 < α1α2β
∗
2β̂1∗; we omit the details. Now we

can obtain r10 < R1, r20 < R2. The proof is complete.
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5. The Case γ ∗1 ≤ 0, γ2∗ < 0 < γ ∗2 (γ ∗2 ≤ 0, γ1∗ < 0 < γ ∗1 )

Theorem 5.1. Assume (H1) and (H2) are satisfied. If γ∗1 ≤ 0, γ2∗ < 0 < γ∗2 , and

γ2∗ ≥
(
1 − 1

α1α2

)[

α1α2
β̂2∗
(
β∗1
)α2

]1/(1−α1α2)

,

γ1∗ ≥ r11 − β̂1∗ ·
rα1α2
11(

β∗2 + γ∗2 r
α2
11

)α1
,

(5.1)

where 0 < r11 < +∞ is a unique positive solution of the equation

r1−α1α2
1

(
β∗2 + γ∗2 · rα2

1

)1+α1 = α1α2β
∗
2β̂1∗, (5.2)

then there exists a positive T -periodic solution of (1.1).

Proof. In this case, to prove that A : K → K, it is sufficient to find r1 < R1, r2 < R2 such that

β̂1∗
Rα1

2

+ γ1∗ ≥ r1,
β∗1
rα1
2

≤ R1,

β̂2∗
Rα2

1

+ γ2∗ ≥ r2,
β∗2
rα2
1

+ γ∗2 ≤ R2.

(5.3)

If we fix R1 = β∗1/r
α1
2 , R2 = β∗2/r

α2
1 + γ∗2 , then the first inequality of (6.4) holds if r2

satisfies

γ2∗ ≥ r2 −
β̂2∗
Rα2

1

= r2 −
β̂2∗
(
β∗1
)α2

· rα1α2
2 , (5.4)

or equivalently

γ2∗ ≥ f(r2) := r2 −
β̂2∗
(
β∗1
)α2

· rα1α2
2 . (5.5)

Then the function f(r2) possesses a minimum at

r21 =

[

α1α2 ·
β̂2∗
(
β∗1
)α2

]1/(1−α1α2)

, (5.6)

that is, f(r21) = minr2ε(0,+∞)f(r2).
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On the analogy of (5.4), we obtain

γ1∗ ≥ r1 − β̂1∗ ·
rα1α2
1(

β∗2 + γ∗2 r
α2
1

)α1
, (5.7)

or equivalently,

γ1∗ ≥ h(r1) := r1 − β̂1∗ ·
rα1α2
1(

β∗2 + γ∗2 r
α2
1

)α1
. (5.8)

According to

h′(r1) := 1 − α1α2β
∗
2β̂1∗r

α1α2−1
1

(
β∗2 + γ∗2 r

α2
1

)−1−α1 , (5.9)

we have h′(0) = −∞, h′(+∞) = 1; then there exists r11 such that h′(r11) = 0, and

h′′(r1) = −
[
α1α2β

∗
2β̂1∗(α1α2 − 1)rα1α2−2

1

(
β∗2 + γ∗2 · rα2

1

)−1−α1

+α1α2β
∗
2β̂1∗r

α1α2−1
1 (−1 − α1)

(
β∗2 + γ∗2 · rα2

1

)−2−α1γ∗2α2r
α2−1
1

]
> 0.

(5.10)

Then the function h(r1) possesses a minimum at r11, that is, h(r11) = minr1ε(0,+∞)f(r1).
Note h′(r11) = 0; then we have

1 − α1α2β
∗
2β̂1∗r

α1α2−1
11

(
β∗2 + γ∗2 · rα2

11

)−1−α1 = 0. (5.11)

Namely,

r1−α1α2
11

(
β∗2 + γ∗2 · rα2

11

)1+α1 = α1α2β
∗
2β̂1∗. (5.12)

Taking r2 = r21 and r1 = r11, then the first inequality in (5.3) hold if γ2∗ ≥ h(r21) and γ1∗ ≥ h(r11)
which are just condition (5.1). The second inequalities hold directly by the choice of R2 and
R1, so it would remain to prove that R1 = β∗1/r

α1
21 > r11, R2 = β∗2/r

α2
11 + γ∗2 > r21.Now we turn to

prove that R1 > r11, R2 > r21.



Mathematical Problems in Engineering 11

First,

R1 =
β∗1
rα1
21

=
β∗1{[

α1α2 · β̂2∗/(β∗1)α2
]1/(1−α1α2)

}α1

=
β∗1

[
α1α2 · β̂2∗/

(
β∗1
)α2
]α1/(1−α1α2)

=

(
β∗1
)1+(α1α2)/(1−α1α2)

(
α1α2 · β̂2∗

)α1/(1−α1α2)

=

(
β∗1
)1/(1−α1α2)

[(
α1α2 · β̂2∗

)α1
]1/(1−α1α2)

=

⎡

⎢
⎣

β∗1(
α1α2 · β̂2∗

)α1

⎤

⎥
⎦

1/(1−α1α2)

=

⎡

⎢
⎣

1
(α1α2)α1

· β∗1(
β̂2∗
)α1

⎤

⎥
⎦

1/(1−α1α2)

>

[

α1α2 ·
β̂1∗
(
β∗2
)α1

]1/(1−α1α2)

= r11,

(5.13)

since β̂i∗ ≤ β∗i , i = 1, 2.
On the other hand,

R2 =
β∗2
rα2
11

+ γ∗2 =
β∗2 + γ∗2 · rα2

11

rα2
11

. (5.14)

By (5.2), we have

β∗2 + γ∗2 · rα2
11 =

(
α1α2β

∗
2β̂1∗

)1/(1+α1)
r
(α1α2−1)/(1+α1)
11 . (5.15)

Combing (5.14) and (5.15),

R2 =
(
α1α2β

∗
2β̂1∗

)1/(1+α1)
r
−(1+α2)/(1+α1)
11 . (5.16)

In what follows, we will verify that R2 > r21. In fact,

(α1α2)(2+α2+α1)/(1−α1α2)−1 ·
(

β̂2∗
β∗2

)(1+α1)/(1−α1α2)

·
(

β̂1∗
β∗1

)α2(1+α1)/(1−α1α2)

< 1, (5.17)

since β̂i∗ ≤ β∗i , i = 1, 2. Thus

(
α1α2β

∗(−α2)
1 β̂2∗

)(1+α1)/(1−α1α2) ·
(
α1α2β

∗(−α1)
2 β̂1∗

)(1+α2)/(1−α1α2)
< α1α2β

∗
2β̂1∗. (5.18)
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On the other hand,

r1−α1α2
21 β

∗(1+α2)
1 ≤ α1α2β

∗
1β̂2∗,

r1−α1α2
11 β

∗(1+α1)
2 ≤ α1α2β

∗
2β̂1∗.

(5.19)

Thus one can see easily that

r21 ≤
(
α1α2β

∗(−α2)
1 β̂2∗

)1/(1−α1α2)
,

r11 ≤
(
α1α2β

∗(−α1)
2 β̂1∗

)1/(1−α1α2)
.

(5.20)

From (5.20),

r1+α2
11 r1+α1

21 ≤
(
α1α2β

∗(−α1)
2 β̂1∗

)(1+α2)/(1−α1α2)(
α1α2β

∗(−α2)
1 β̂2∗

)(1+α1)/(1−α1α2)
. (5.21)

Combing (5.18) and (5.21),

r1+α2
11 r1+α1

21 < α1α2β
∗
2β̂1∗. (5.22)

Therefore,

r21r
(1+α2)/(1+α1)
11 <

(
α1α2β

∗
2β̂1∗

)1/(1+α1)
. (5.23)

Recall (5.16), we obtain r21 < R2 immediately. The proof is complete.

Similarly, we have the following theorem.

Theorem 5.2. Assume (H1) and (H2) are satisfied. If γ∗2 ≤ 0, γ1∗ < 0 < γ∗1 , and

γ1∗ ≥
(
1 − 1

α1α2

)
·
[

α1α2
β̂1∗
(
β∗2
)α1

]1/(1−α1α2)

,

γ2∗ ≥ r21 − β̂2∗ ·
rα1α2
21(

β∗1 + γ∗1 r
α1
21

)α2
,

(5.24)

where 0 < r21 < +∞ is a unique positive solution of the equation

r1−α1α2
2

(
β∗1 + γ∗1 · rα1

2

)1+α2 = α1α2β
∗
1β̂2∗, (5.25)

then there exists a positive T -periodic solution of (1.1).
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6. The Case γ1∗ ≥ 0, γ2∗ < 0 < γ ∗2 (γ2∗ ≥ 0, γ1∗ < 0 < γ ∗1 )

Theorem 6.1. Assume (H1) and (H2) are satisfied. If γ1∗ ≥ 0, γ2∗ < 0 < γ∗2 , and

γ2∗ ≥ r22 − β̂2∗ ·
rα1α2
22(

β∗1 + γ∗1 r
α1
22

)α2
, (6.1)

where 0 < r22 < +∞ is a unique positive solution of the equation

r1−α1α2
2

(
β∗1 + γ∗1 · rα1

2

)1+α2 = α1α2β
∗
1β̂2∗, (6.2)

then there exists a positive T -periodic solution of (1.1).

Proof. The following proof is the same as the proof of ahead theorem. In this case, to prove
that A : K → K, it is sufficient to find r1 < R1, r2 < R2 such that

β̂1∗
Rα1

2

≥ r1,
β∗1
rα1
2

+ γ∗1 ≤ R1, (6.3)

β̂2∗
Rα2

1

+ γ2∗ ≥ r2,
β∗2
rα2
1

+ γ∗2 ≤ R2. (6.4)

If we fix R1 = β∗1/r
α1
2 + γ∗1 , R2 = β∗2/r

α2
1 + γ∗2 , then the first inequality of (6.4) satisfies

β̂2∗ ·
(

β∗1
rα1
2

+ γ∗1

)−α2

+ γ2∗ ≥ r2, (6.5)

or equivalently

γ2∗ ≥ l(r2) := r2 −
β̂2∗

(
β∗1 + γ∗1 r

α1
2

)α2
· rα1α2

2 . (6.6)

Then the function l(r2) possesses a minimum at r22, that is, l(r22) = minr2ε(0,+∞)l(r2).
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Note l′(r22) = 0; then we have

1 − α1α2β
∗
1β̂2∗r

α1α2−1
22

(
β∗1 + γ∗1 · rα1

22

)−1−α2 = 0. (6.7)

Therefore,

r1−α1α2
22

(
β∗1 + γ∗1 · rα1

22

)1+α2 = α1α2β
∗
1β̂2∗. (6.8)

Note that β̂i∗, βi∗ > 0, i = 1, 2. And taking r2 = r22, R1 = β∗1/r
α1
22 + γ∗1 , r1 = 1/R2, it is sufficient to

find r1 < R1, r2 < R2 such that

Rα1−1
2 ≤ β∗1, Rα2

2 β∗2 + γ∗2 ≤ R2, (6.9)

and these inequalities hold for R2 being big enough because αi < 1. The proof is completed.

Similarly, we have the following theorem.

Theorem 6.2. Assume (H1) and (H2) are satisfied. If γ2∗ ≥ 0, γ1∗ < 0 < γ∗1 , and

γ1∗ ≥ r12 − β̂1∗ ·
rα1α2
12(

β∗2 + γ∗2 r
α2
12

)α1
, (6.10)

where 0 < r12 < +∞ is a unique positive solution of the equation

r1−α1α2
1

(
β∗2 + γ∗2 · rα2

1

)1+α1 = α1α2β
∗
2β̂1∗, (6.11)

then there exists a positive T -periodic solution of (1.1).
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