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We give a counter example to the comparison principle for the multipoint BVPs (by Xuxin Yang,
Zhimin He, and Jianhua Shen, in Mathematical Problems in Engineering, Volume 2009, Article
ID 258090, doi:10.1155/2009/258090). Then we suggest and prove a corrected version of the
comparison principle.

1. Introduction and Preliminaries

Consider the following multipoint BVPs [1]:

−u′′(t) = f(t, u(t), u(θ(t))), t /= tk, t ∈ J = [0, 1],

Δu′(tk) = Ik(u(tk)), k = 1, 2, . . . , m,

u(0) − au′(0) = cu
(
η
)
, u(1) + bu′(1) = du(ξ),

(1.1)

where 0 ≤ θ(t) ≤ t, θ ∈ C(J), 0 = t0 < t1 < t2 < · · · < tk < · · · < tm < tm+1 = 1, f
is continuous everywhere except at {tk} × R2; f(t+k, ·, ·) and f(t−k, ·, ·) exist with f(t−k, ·, ·) =
f(tk, ·, ·); Ik ∈ C(R,R), and Δu′(tk) = u′(t+k) − u′(t−k), a ≥ 0, b ≥ 0, 0 ≤ c ≤ 1, 0 ≤ d ≤ 1,
a + c > 0, b + d > 0, 0 < η, ξ < 1.

Let PC(J) = {x : J → R;x(t) be continuous everywhere expect for some tk at which
x(t+k) and x(t−k) exist and x(tk) = x(t−k), k = 1, 2, . . . , m}; PC1(J) = {x ∈ PC(J) : x′(t)
is continuous everywhere expect for some tk at which x′(t+

k
) and x′(t−

k
) exist and x′(tk) =
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x′(t−k), k = 1, 2, . . . , m}. Let J− = J \ {tk, k = 1, 2, . . . , m}, and E = PC1(J, R) ∩ C2(J−, R). a
function x ∈ E is called a solution of BVPS (1.1) if it satisfies (1.1).

The purpose of this note is to point out that the results basing on the comparison
principle [1, Theorem 2.1] are not true. Then we give a new comparison principle.

2. Problem and Statement

The authors [1] proved some existence results for multipoint BVPs (1.1) by use of the
following comparison principle [1, Theorem 2.1].

Assume that u ∈ E satisfies

−u′′(t) +Mu(t) +Nu(θ(t)) ≤ 0, t /= tk, t ∈ J = [0, 1],

Δu′(tk) ≥ Lku(tk), k = 1, 2, . . . , m,

u(0) − au′(0) ≤ cu
(
η
)
, u(1) + bu′(1) ≤ du(ξ),

(2.1)

where a ≥ 0, b ≥ 0, 0 ≤ c ≤ 1, 0 ≤ d ≤ 1, a + c > 0, b + d > 0, 0 < η, ξ < 1, Lk ≥ 0, and constants
M,N satisfy

M > 0,N ≥ 0,
M +N

2
+

m∑

k=1

Lk ≤ 1. (2.2)

Then u(t) ≤ 0 for t ∈ J .
However, the comparison principle above is not true.

A Counter Example

Let

u(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

3
2
t2 + 20, t ∈

[
0,

1
2

]
,

5
2
t2 + 3, t ∈

(
1
2
, 1
]
.

(2.3)
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Then

u′(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

3t, t ∈
[
0,

1
2

]
,

5t, t ∈
(
1
2
, 1
]
,

u′′(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

3, t ∈
[
0,

1
2

]
,

5, t ∈
(
1
2
, 1
]
.

(2.4)

And let M = N = 1/1000, a = b = c = d = 1, m = 1, t1 = 1/2, L1 = 1/1000, θ(t) = (1/2)t, η =
1/3, and ξ = 1/6. When t ∈ [0, 1/2), then

1
1000

(
3
2
t2 + 20

)
+

1
1000

(
3
2
× t2

4
+ 20

)

≤ 3. (2.5)

When t ∈ (1/2, 1], then

1
1000

(
5
2
t2 + 3

)
+

1
1000

(
5
2
× t2

4
+ 3

)

≤ 5. (2.6)

Hence −u′′(t) +Mu(t) +Nu(θ(t)) ≤ 0.

Δu′
(
1
2

)
= u′
(
1
2
+
)
− u′
(
1
2

)
= 5 × 1

2
−
(
3 × 1

2

)
= 1, (2.7)

1
1000

u

(
1
2

)
=

1
1000

(
3
2
× 1
4
+ 20

)
=

1
1000

× 163
8

. (2.8)

Hence Δu′(t1) ≥ L1u(t1).

u(0) − u′(0) = 20, u

(
1
3

)
=

3
2
× 1
9
+ 20. (2.9)

Hence u(0) − au′(0) ≤ cu(1/3).

u(1) + u′(1) =
5
2
+ 3 + 5 =

21
2
, u

(
1
6

)
=

3
2
× 1
36

+ 20. (2.10)
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Hence u(1) + bu′(1) ≤ du(1/6).

M +N

2
+

m∑

k=1

Lk =
2

1000
< 1. (2.11)

But we easily show that u(t) > 0, for all t ∈ [0, 1], which is a contradiction with (Theorem 2.1)
in [1]. In fact, we can correct Theorem 2.1 in [1] as follows.

Theorem 2.1. Suppose u ∈ E ∩ C(J) such that

−u′′(t) +Mu(t) +Nu(θ(t)) ≤ 0 t /= tk, t ∈ J = [0, 1],

Δu′(tk) ≥ Lku(tk), k = 1, 2, . . . , m,

u(0) − au′(0) ≤ cu
(
η
)
, u(1) + bu′(1) ≤ du(ξ),

(2.12)

where a ≥ 0, b ≥ 0, 0 ≤ c ≤ 1, 0 ≤ d ≤ 1, 0 < η, ξ < 1, a + c > 0, b + d > 0, Lk > 0, and constants
M,N satisfy

M > 0,N ≥ 0,
M +N

2
+

m∑

k=1

Lk ≤ 1. (2.13)

Then u(t) ≤ 0 for t ∈ J .

Remark 2.2. In this Theorem, we have to add u ∈ C(J).

Proof. Suppose to contrary that there exist some t ∈ J , such that u(t) > 0.
If u(1) = maxt∈Ju(t) > 0, we have u′(1) ≥ 0, u(1) ≥ u(ξ), and

du(ξ) ≤ u(1) ≤ u(1) + bu′(1) ≤ du(ξ). (2.14)

Therefore, d = 1 and u(ξ) is maximum value.
If u(0) = maxt∈Ju(t) > 0, we have u′(0) ≤ 0, u(0) ≥ u(η), and

cu
(
η
) ≤ u(0) ≤ u(0) − au′(0) ≤ cu

(
η
)
. (2.15)

Therefore, c = 1 and u(η) is maximum value.
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So there is a δ ∈ (0, 1) such that

u(δ) = max
t∈J

u(t) > 0, by Δu = 0, then u′(δ+) ≤ 0, u′(δ−) ≥ 0. (2.16)

It is obvious to see that δ /∈ {tk, k = 1, 2, . . . , m} by

Δu′(δ) = u′(δ+) − u′(δ) ≥ Lku(δ) > 0 (2.17)

which is a contradiction because of (2.16).

(i) Suppose that u(t) ≥ 0 for t ∈ [0, δ].

By u(δ) = maxt∈Ju(t) > 0, we get δ ∈ J−, u′′(δ) ≤ 0. On the other hand, by (2.12), we
have

0 < Mu(δ) +Nu(θ(t)) ≤ u′′(δ) (2.18)

which is a contradiction.

(ii) Suppose there exists t∗ ∈ [0, δ] such that u(t∗) = mint∈[0,δ)u(t) < 0. By (2.12), we get

u′′(t) ≥ (M +N)u(t∗), t ∈ [0, δ), t /= tk,

Δu(tk) = 0,

Δu′(tk) ≥ Lku(tk), k = 1, 2, . . . , m.

(2.19)

Integrating from s(t∗ ≤ s ≤ δ) to δ, we get

u′(δ) − u′(s) ≥
∫δ

s

(M +N)u(t∗)ds +
∑

s<tk<δ

Lku(tk)

= (δ − s)(M +N)u(t∗) +
∑

s<tk<δ

Lku(tk)

≥ (δ − s)(M +N)u(t∗) +
m∑

k=1

Lku(t∗).

(2.20)

Hence

−u′(s) ≥ (δ − s)(M +N)u(t∗) +
m∑

k=1

Lku(t∗), t∗ ≤ s ≤ δ. (2.21)
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Then integrate from t∗ to δ to obtain

−u(t∗) < u(δ) − u(t∗)

≤
∫δ

t∗
(M +N)u(t∗)(s − δ)ds −

m∑

k=1

Lku(t∗)(δ − t∗)

= (M +N)u(t∗)

[

− (t∗ − δ)2

2

]

−
m∑

k=1

Lku(t∗)(δ − t∗)

≤ −
[
M +N

2
(δ − t∗)

2 +
m∑

k=1

Lk

]

u(t∗)

≤ −
(

M +N

2
+

m∑

k=1

Lk

)

u(t∗).

(2.22)

By (2.13), we get u(t∗) > 0 which is a contradiction. We complete the proof.

This implies that in order to get the existence results of the multipoint BVPs [1], we
have to require an additional continuity hypotheses on the function space.
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