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We study the equation (∂/∂t)u(x, t) = c2⊕k
Bu(x, t) with the initial condition u(x, 0) = f(x) for

x ∈ R+
n. The operator ⊕k

B is the operator iterated k-times and is defined by ⊕k
B = ((

∑p

i=1 Bxi
)4 −

(
∑p+q

j=p+1 Bxi
)4)k , where p + q = n is the dimension of the R

+
n, Bxi

= ∂2/∂x2
i + (2vi/xi)(∂/∂xi), 2vi =

2αi + 1, αi > −1/2, i = 1, 2, 3, . . . , n, and k is a nonnegative integer, u(x, t) is an unknown function
for (x, t) = (x1, x2, . . . , xn, t) ∈ R+

n × (0,∞), f(x) is a given generalized function, and c is a positive
constant. We obtain the solution of such equation, which is related to the spectrum and the kernel,
which is so called Bessel heat kernel. Moreover, such Bessel heat kernel has interesting properties
and also related to the kernel of an extension of the heat equation.

1. Introduction

It is well known that for the heat equation

∂

∂t
u(x, t) = c2Δu(x, t) (1.1)

with the initial condition

u(x, 0) = f(x), (1.2)

where Δ =
∑n

i=1 ∂
2/∂x2

i is the Laplace operator and (x, t) = (x1, x2, . . . , xn, t) ∈ R
n × (0,∞),

we obtain

u(x, t) =
1

(4c2πt)n/2

∫

Rn

exp

(

−
∣
∣x − y

∣
∣2

4c2t

)

f
(
y
)
dy (1.3)
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as the solution of (1.1). Equation (1.3) can be written as

u(x, t) = E(x, t) ∗ f(x), (1.4)

where

E(x, t) =
1

(4c2πt)n/2
exp

(

− |x|2
4c2t

)

. (1.5)

E(x, t) is called the heat kernel, where |x|2 = x2
1 +x2

2 + · · ·+x2
n and t > 0 (see [1, pages 208-209]).

In 2004, Yildirim et al. [2, 3] first introduced the Bessel diamond operator ♦k
B iterated

k-times, defined by

♦k
B =

⎛

⎜
⎝

(
p∑

i=1

Bxi

)2

−
⎛

⎝
p+q∑

j=p+1

Bxj

⎞

⎠

2
⎞

⎟
⎠

k

, (1.6)

where Bxi = ∂2/∂x2
i + (2υi/xi)(∂/∂xi), 2υi = 2αi + 1, αi > −1/2, xi > 0. The operator ♦k

B can be
expressed by ♦k

B = Δk
B�k

B = �k
BΔ

k
B, where

Δk
B =

(
p∑

i=1

Bxi

)k

, (1.7)

�k
B =

⎛

⎝
p∑

i=1

Bxi −
p+q∑

j=p+1

Bxj

⎞

⎠

k

. (1.8)

And, Yildirim et al. [2, 3] have shown that the solution of the convolution form

u(x) = (−1)kS2k(x) ∗ R2k(x) (1.9)

is a unique elementary solution of ♦k
B that is

♦k
B

(
(−1)kS2k(x) ∗ R2k(x)

)
= δ. (1.10)

Now, the purpose of this work is to study the following equation:

∂

∂t
u(x, t) = c2

k⊕

B

u(x, t) (1.11)

with the initial condition

u(x, 0) = f(x), for x ∈ R+
n, (1.12)
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where the operator ⊕k
B is first introduced by Satsanit and Kananthai [4] and is defined by

k⊕

B

=

⎛

⎜
⎝

(
p∑

i=1

Bxi

)4

−
⎛

⎝
p+q∑

j=p+1

Bxi

⎞

⎠

4
⎞

⎟
⎠

k

=

⎛

⎜
⎝

(
p∑

i=1

Bxi

)2

−
⎛

⎝
p+q∑

j=p+1

Bxi

⎞

⎠

2
⎞

⎟
⎠

k⎛

⎜
⎝

(
p∑

i=1

Bxi

)2

+

⎛

⎝
p+q∑

j=p+1

Bxi

⎞

⎠

2
⎞

⎟
⎠

k

.

(1.13)

Let us denote the operator

�k
B =

⎛

⎜
⎝

(
p∑

i=1

Bxi

)2

+

⎛

⎝
p+q∑

j=p+1

Bxj

⎞

⎠

2
⎞

⎟
⎠

k

. (1.14)

By (1.7)we obtain

�k
B =

⎡

⎢
⎣

(
p∑

i=1

Bx2
i

)2

+

⎛

⎝
p+q∑

j=p+1

Bx2
j

⎞

⎠

2
⎤

⎥
⎦

k

=

[(
ΔB + �B

2

)2

+
(
ΔB − �B

2

)2
]k

=

(
Δ2

B + �2
B

2

)k

.

(1.15)

Thus, (1.13) can be written as

k⊕

B

= ♦k
B�k

B, (1.16)

where ♦k
B and �k

B are defined by (1.6) and (1.15), respectively, p + q = n is the dimension
of the R+

n = x : x = (x1, x2, . . . , xn, t), xi > 0, i = 1, 2, 3, . . . , n, u(x, t) is an unknown function,
Bxi = ∂2/∂x2

i +(2υi/xi)(∂/∂xi), 2υi = 2αi+1, αi > −1/2, f(x) is the given generalized function,
k is a positive integer, and c is a constant.

Moreover, Bessel heat kernel has interesting properties and also related to the kernel
of an extension of the heat equation. We obtain the solution in the classical convolution form

u(x, t) = E(x, t) ∗ f(x), (1.17)
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where the symbol ∗ is the B-convolution in (2.3), as a solution of (1.11), which satisfies (1.12),
and

E(x, t) = Cv

∫

Ω+
ec

2t[(y2
1+···+y2

p)
4−(y2

p+1+···+y2
p+q)

4]
k n∏

i=1

Jvi−1/2
(
xi, yi

)
y2υi

i dy, (1.18)

and Ω+ ⊂ R+
n is the spectrum of E(x, t) for any fixed t > 0 and Jvi−1/2(xi, yi) is the normalized

Bessel function.
Before going into details, the following definitions and some important concepts are

needed.

2. Preliminaries

The shift operator according to the law remarks that this shift operator connected to the Bessel
differential operator (see [2, 3, 5]):

T
y
x ϕ(x)=C∗

v

∫π

0
· · ·
∫π

0
ϕ

(√
x2
1+y

2
1−2x1y1 cos θ1, . . . ,

√

x2
n+y2

n−2xnyn cos θn
)

×
(

n∏

i=1

sin2vi−1θi

)

dθ1 · · ·dθn,
(2.1)

where x, y ∈ R+
n, C

∗
v =
∏n

i=1Γ(vi+1)/Γ(1/2)Γ(vi) . We remark that this shift operator is closely
connected to the Bessel differential operator (see [4]):

d2U

dx2
+
2v
x

dU

dx
=

d2U

dy2
+
2v
y

dU

dy
,

U(x, 0) = f(x), Uy(x, 0) = 0.

(2.2)

The convolution operator determined by the Ty
x is as follows:

(
f ∗ ϕ)(y) =

∫

R+
n

f
(
y
)
T
y
x ϕ(x)

(
n∏

i=1

y2vi

i

)

dy. (2.3)

Convolution (2.3) is known as a B-convolution. We note the following properties of the B-
convolution and the generalized shift operator.

(1) Ty
x · 1 = 1.

(2) T0
x · f(x) = f(x).

(3) If f(x), g(x) ∈ C(R+
n), g(x) is a bounded function for all x > 0, and

∫∞
0 |f(x)|

(
∏n

i=1x
2vi

i )dx<∞, then
∫
R+
n
T
y
x f(x)g(y) (

∏n
i=1y

2vi

i )dy =
∫
R+
n
f(y)Ty

x g(x) (
∏n

i=1y
2vi

i )dy.

(4) From (3),we have the following equality for g(x) = 1 :
∫
R+
n
T
y
x f(x)(

∏n
i=1y

2vi

i )dy =
∫
R+
n
f(y)(

∏n
i=1y

2vi

i )dy.

(5) (f ∗ g)(x) = (g ∗ f)(x).
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The Fourier-Bessel transformation and its inverse transformation are defined as follows:

(FBf
)
(x) = Cv

∫

R+
n

f
(
y
)
(

n∏

i=1

Jvi−1/2
(
xi, yi

)
y2υi

i

)

dy, (2.4)

(
F−1

B f
)
(x) =

(FBf
)
(−x), Cv =

(
n∏

i=1

2υi−1/2Γ
(

υi +
1
2

))−1
, (2.5)

where Jvi−1/2(xi, yi) is the normalized Bessel function which is the eigenfunction of the Bessel
differential operator. The following equalities for Fourier-Bessel transformation are true (see
[5–7]):

FBδ(x) = 1, (2.6)

FB

(
f ∗ g)(x) = FBf(x) · FBg(x). (2.7)

Definition 2.1. The spectrum of the kernel E(x, t) of (1.18) is the bounded support of the
Fourier Bessel transform FBE(y, t) for any fixed t > 0.

Definition 2.2. Let x = (x1, x2, . . . , xn) be a point in R
+
n and denote by

Γ+ =
{
x ∈ R

+
n : x2

1 + x2
2 + · · · + x2

p − x2
p+1 − x2

p+2 − · · · − x2
p+q > 0, ξ1 > 0

}
(2.8)

the set of an interior of the forward cone, and Γ+ denotes the closure of Γ+.

Let Ω+ be spectrum of E(x, t) defined by (1.18) for any fixed t > 0 and Ω ⊂ Γ+. Let
FBE(y, t) be the Fourier Bessel transform of E(x, t),which is defined by

FBE
(
y, t
)
=

⎧
⎪⎨

⎪⎩

ec
2t[(y2

1+···+y2
p)

4−(y2
p+1+···+y2

p+q)
4]

k

for ξ ∈ Ω+,

0 for ξ /∈Ω+.
(2.9)

Lemma 2.3 (Fourier Bessel transform of �k
B operator). One has

FB�k
Bu(x) = (−1)kV k

1 (x)FBu(x), (2.10)

where

V k
1 (x) =

⎛

⎝
p∑

i=1

x2
i −

p+q∑

j=p+1

x2
j

⎞

⎠

k

. (2.11)

Proof. See [8].
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Lemma 2.4 (Fourier Bessel transform of Δk
B operator). One has

FBΔk
Bu(x) = (−1)k|x|2kFBu(x), (2.12)

where

|x|2k =
(
x2
1 + x2

2 + · · · + x2
n

)k
. (2.13)

Proof. See [8].

Lemma 2.5 (Fourier Bessel transform of ⊕k
B operator). One has

FB

k⊕

B

u(x) = V k(x)FBu(x), (2.14)

where

V k(x) =

⎛

⎜
⎝

(
p∑

i=1

x2
i

)4

−
⎛

⎝
p+q∑

j=p+1

x2
j

⎞

⎠

4
⎞

⎟
⎠

k

. (2.15)

Proof. We can use the mathematical induction method; for k = 1, we have

FB

(
⊕

B

u

)

(x) = Cv

∫

R+
n

(
⊕

B

u
(
y
)
)(

n∏

i=1

Jvi−1/2
(
xi, yi

)
y2υi

i

)

dy

= Cv

∫

R+
n

(♦B�Bu
(
y
))
(

n∏

i=1

Jvi−1/2
(
xi, yi

)
y2υi

i

)

dy

= Cv

∫

R+
n

(
Δ2

B + �2
B

)

2
g
(
y
)
(

n∏

i=1

Jvi−1/2
(
xi, yi

)
y2υi

i

)

dy, g
(
y
)
= ♦Bu

(
y
)

= FB

(
Δ2

Bg + �2
Bg
)

2
(x)

=

(

(−1)2(x2
1 + · · · + x2

n

)2 + (−1)2
(
x2
1 + · · · + x2

p − x2
p+1 − · · · − x2

p+q

)2
)

2
FBg(x)

=
((

x2
1 + x2

2 + · · · + x2
p

)2
+
(
x2
p+1 + · · · + x2

p+q

)2
)

FB♦Bu(x)
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=

⎛

⎜
⎝

(
p∑

i=1

x2
i

)2

+

⎛

⎝
p+q∑

j=p+1

x2
j

⎞

⎠

2
⎞

⎟
⎠ ·

⎛

⎜
⎝

(
p∑

i=1

x2
i

)2

−
⎛

⎝
p+q∑

j=p+1

x2
j

⎞

⎠

2
⎞

⎟
⎠FBu(x)

=
((

x2
1 + x2

2 + · · · + x2
p

)4 −
(
x2
p+1 + · · · + x2

p+q

)4
)

FBu(x)

= V (x)FBu(x),

(2.16)

where V (x) = (x2
1 + x2

2 + · · · + x2
p)

4 − (x2
p+1 + · · · + x2

p+q)
4
. Then, from inverse Fourier transform

we obtain

⊕

B

u(x) = F−1
B V (x)FBu(x). (2.17)

Assume that the statement is true for k − 1, that is,

k−1⊕

B

u(x) = F−1
B V k−1(x)FBu(x). (2.18)

Then, we must prove that is also true for k ∈ N. So we have

k⊕

B

u(x) =
⊕

B

(
k−1⊕

B

u(x)

)

= F−1
B V (x)FBF−1

B V k−1(x)FBu(x)

= F−1
B V k(x)FBu(x).

(2.19)

This completes the proof.

Lemma 2.6. For t, v > 0 and x, y ∈ R
n, one has

∫∞

0
e−c

2x2tx2υdx =
Γ(υ)

2c2υ+1tυ+1/2
,

∫∞

0
e−c

2x2tJυ−1/2
(
xy
)
x2υdx =

Γ(υ + 1/2)

2(c2t)υ+1/2
e−y

2/4c2t,

(2.20)

where c is a positive constant.

Proof. See [9].

Lemma 2.7. Let the operator L be defined by

L =
∂

∂t
− c2

k⊕

B

, (2.21)
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where ⊕k
B is the operator iterated k-times and is given by

k⊕

B

=

⎛

⎜
⎝

(
p∑

i=1

Bxi

)4

−
⎛

⎝
p+q∑

j=p+1

Bxi

⎞

⎠

4
⎞

⎟
⎠

k

,

Bxi =
∂2

∂x2
i

+
2vi

xi

∂

∂xi
,

(2.22)

p + q = n is the dimension R
+
n, k is a positive integer, (x1, x2, . . . , xn) ∈ R

+
n, and c is a positive

constant. Then

E(x, t) = Cv

∫

Ω+
ec

2t[(y2
1+···+y2

p)
4−(y2

p+1+···+y2
p+q)

4]
k n∏

i=1

Jvi−1/2
(
xi, yi

)
y2υi

i dy (2.23)

is the elementary solution of (2.21) in the spectrum Ω+ ⊂ R+
n for t > 0.

Proof. Let LE(x, t) = δ(x, t), where E(x, t) is the elementary solution of L and δ is the Dirac-
delta distribution. Thus

∂

∂t
E(x, t) − c2

k⊕

B

E(x, t) = δ(x)δ(t). (2.24)

Applying the Fourier Bessel transform, which is defined by (2.4) to the both sides of the above
equation and using Lemma 2.5 by considering FBδ(x) = 1, we obtain

∂

∂t
FBE(x, t) − c2

[(
x2
1 + x2

2 + · · · + x2
p

)4 −
(
x2
p+1 + · · · + x2

p+q

)4
]k
FBE(x, t) = δ(t). (2.25)

Thus, we get

FBE(x, t) = H(t)ec
2t[(x2

1+x
2
2+···+x2

p)
4−(x2

p+1+···+x2
p+q)

4]
k

, (2.26)

where H(t) is the Heaviside function, because H(t) = 1 holds for t ≥ 0.
Therefore,

FBE(x, t) = ec
2t[(x2

1+x
2
2+···+x2

p)
4−(x2

p+1+···+x2
p+q)

4]
k

, (2.27)

which has been already defined by (2.7). Thus from (2.5), we have

E(x, t) = Cv

∫

R
+
n

ec
2t[(y2

1+···+y2
p)

4−(y2
p+1+···+y2

p+q)
4]

k n∏

i=1

Jvi−1/2
(
xi, yi

)
y2υi

i dy, (2.28)
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where Ω+ is the spectrum of E(x, t). Thus, we obtain

E(x, t) = Cv

∫

Ω+
ec

2t[(y2
1+···+y2

p)
4−(y2

p+1+···+y2
p+q)

4]
k n∏

i=1

Jvi−1/2
(
xi, yi

)
y2υi

i dy (2.29)

as an elementary solution of (2.21) in the spectrum Ω+ ⊂ R+
n for t > 0.

3. Main Results

Theorem 3.1. Let us consider the equation

∂

∂t
u(x, t) − c2

k⊕

B

u(x, t) = 0 (3.1)

with the initial condition

u(x, 0) = f(x), (3.2)

where ⊕k
B is the operator iterated k-times and is defined by

k⊕

B

=

⎛

⎜
⎝

(
p∑

i=1

Bxi

)4

−
⎛

⎝
p+q∑

j=p+1

Bxi

⎞

⎠

4
⎞

⎟
⎠

k

,

Bxi =
∂2

∂x2
i

+
2vi

xi

∂

∂xi
,

(3.3)

p + q = n is the dimension R
+
n, k is a positive integer, u(x, t) is an unknown function for (x, t) =

(x1, x2, . . . , xn, t) ∈ R
+
n × (0,∞), f(x) is the given generalized function, and c is a positive constant.

Then

u(x, t) = E(x, t) ∗ f(x) (3.4)

is a solution of (3.1), which satisfies (3.2), where E(x, t) is given by (2.23). In particular, if one puts
k = 1 and q = 0 in (3.1), then (3.1) reduces to the equation

∂

∂t
u(x, t) − c2Δ4

Bu(x, t) = 0, (3.5)

which is related to the Bessel heat equation.
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Proof. Taking the Fourier Bessel transform, which is defined by (2.4), of both sides of (3.1) for
x ∈ R

+
n and using Lemma 2.5, we obtain

∂

∂t
FBu(x, t) = c2

((
x2
1 + · · · + x2

p

)4 −
(
x2
p+1 + · · · + x2

p+q

)4
)k

FBu(x, t). (3.6)

Thus, we consider the initial condition (3.2); then we have the following equality for (3.6):

u(x, t) = f(x) ∗ F−1
B ec

2t[(x2
1+···+x2

p)
4−(x2

p+1+···+x2
p+q)

4]
k

. (3.7)

Here, if we use (2.4) and (2.5), then we have

u(x, t) = f(x) ∗ F−1
B ec

2t[(y2
1+···+y2

p)
4−(y2

p+1+···+y2
p+q)

4]
k

=
∫

R
+
n

F−1
B ec

2t[(y2
1+···+y2

p)
4−(y2

p+1+···+y2
p+q)

4]
k

T
y
x f(x)

(
n∏

i=1

y2υi

i

)

dy

=
∫

R
+
n

(

Cv

∫

R
+
n

ec
2tV k(z)

n∏

i=1

Jυi−1/2
(
yi, zi
)
z2υi

i dz

)

T
y
x f(x)

(
n∏

i=1

y2υi

i

)

dy,

(3.8)

where V (z) = (z21 + z22 + · · · + z2p)
4 − (z2p+1 + z2p+2 + · · · + z2p+q)

4
. Set

E(x, t) = Cv

∫

R
+
n

ec
2t[(y2

1+···+y2
p)

4−(y2
p+1+···+y2

p+q)
4]

k n∏

i=1

Jvi−1/2
(
xi, yi

)
y2υi

i dy. (3.9)

Since the integral in (3.9) is divergent, therefore we choose Ω+ ⊂ R
+
n to be the spectrum of

E(x, t), and by (2.21), we have

E(x, t) = Cv

∫

R
+
n

ec
2t[(y2

1+···+y2
p)

4−(y2
p+1+···+y2

p+q)
4]

k n∏

i=1

Jvi−1/2
(
xi, yi

)
y2υi

i dy

= Cv

∫

Ω+
ec

2t[(y2
1+···+y2

p)
4−(y2

p+1+···+y2
p+q)

4]
k n∏

i=1

Jvi−1/2
(
xi, yi

)
y2υi

i dy.

(3.10)

Thus (3.8) can be written in the convolution form

u(x, t) = E(x, t) ∗ f(x). (3.11)
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Moreover, since E(x, t) exists, we can see that

lim
t→ 0

E(x, t) = Cv

∫

Ω+

n∏

i=1

Jvi−1/2
(
xi, yi

)
y2vi

i dy

= Cv

∫

R
+
n

n∏

i=1

Jvi−1/2
(
xi, yi

)
y2vi

i dy

= δ(x), for x ∈ R
+
n,

(3.12)

hold (see [8]). Thus for the solution u(x, t) = E(x, t) ∗ f(x) of (3.1), then we have

lim
t→ 0

u(x, t) = u(x, 0) = δ ∗ f(x) = f(x), (3.13)

which satisfies (3.2). This completes the proof.

Theorem 3.2. The kernel E(x, t) defined by (3.10) has the following properties.

(1) E(x, t) ∈ C∞-the space of continuous function for x ∈ R
n, t > 0 with infinitely

differentiable.

(2) (∂/∂t − c2⊕k
B)E(x, t) = 0 for all x ∈ R

+
n, t > 0.

(3) lim
t→ 0

E(x, t) = δ for all x ∈ R
+
n.

Proof. (1) From (3.10) and

∂n

∂tn
E(x, t) = Cv

∫

R
+
n

∂n

∂tn
ec

2t[(y2
1+···+y2

p)
4−(y2

p+1+···+y2
p+q)

4]
k n∏

i=1

Jvi−(1/2)
(
xi, yi

)
y2υi

i dy. (3.14)

we have E(x, t) ∈ C∞ for x ∈ R
+
n, t > 0.

(2) We have u(x, t) = E(x, t) since u(x, t) = E(x, t) ∗ f(x) holds. Note here that we use
the fact f(x) = δ(x) by the Fourier Bessel transformation. Then, we obtain

(
∂

∂t
− c2

k⊕

B

)

E(x, t) = 0 (3.15)

by direct computation.
(3) This case is obvious by (3.12).
In particular, if we put k = 1 and q = 0 in (3.1), then (3.1) reduces to the equation

∂

∂t
u(x, t) − c2Δ4

Bu(x, t) = 0, (3.16)

and we obtain the solution of (3.16) in the convolution form

u(x, t) = E(x, t) ∗ f(x), (3.17)
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where E(x, t) is defined by (2.23) with k = 1 which is related to Bessel heat equation. This
completes the proof.
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