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This paper deals with the digital complex representation of a DNA sequence and the analysis of
existing correlations by wavelets. The symbolic DNA sequence is mapped into a nonlinear time
series. By studying this time series the existence of fractal shapes and symmetries will be shown.
At first step, the indicator matrix enables us to recognize some typical patterns of nucleotide
distribution. The DNA sequence, of the influenza virus A (HIN1), is investigated by using the
complex representation, together with the corresponding walks on DNA; in particular, it is shown
that DNA walks are fractals. Finally, by using the wavelet analysis, the existence of symmetries is
proven.

1. Introduction

The main task of this paper is to show the existence of hidden geometries which underly the
structure of a DNA sequence. Moreover, it will be shown that this geometry is fractal. In order
to achieve this goal the fundamental steps are

(1) the choice of the digital representation of the symbolic sequence of DNA,

(2

3

(4) the cluster analysis of wavelet coefficients.

the definition of the indicator matrix,

)
)
) the construction of walks on DNA,
)

In this paper it will be shown that the distribution of nucleotides A, C, G, T along
the sequence must fulfill some hidden geometrical rules, thus implying that the biological
activity depends on these geometrical rules. The understanding of the underlying biological

function from a possible interpretation of the given sequence of nucleotides [1-6] is still under
investigation.
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The existence of hidden law, periodicities, and statistical correlations [2, 7-9] might
help us to characterize each DNA sequence in order to construct a possible (functional)
classification.

From mathematical point of view the DNA sequence is a symbolic sequence (of
nucleotides) with some empty spaces (no coding regions). In order to get some numerical
information from this sequence it must be transformed into a digital sequence. When the
symbolic sequence of A, C, G, T is digitalized into one or more sequences of digits one may
benefit from the statistical analysis of the digitalized time series, so that the genome can be
characterized by the classical statistical parameters like variance, deviation, or nonclassical
like complexity, fractal dimension, or long range dependence.

There follows that the symbolic sequence is transformed into a very large time series
(from half million of digits, for the primitive organisms such as fungus and eukaryotes and,
to several millions, as for mammals, like the nearly 1.5billion of nucleotides for the humans
DNA). However, these large sequences look like some random sequences, from where it
seems to be quite impossible to single out any single correlation (see, e.g., [8] and references
therein).

In any case the arbitray choice of the representative digital time series (discrete time
signal) for the symbolic sequence of the genome, so that the representation would be the most
suitable for the statistical-mathematical analysis, is a difficult task, that was approached with
some interesting preliminary results by using a complex representation [10, 11].

The easiest mathematical model for the transformation of a symbolic string into a
numerical string is based on the Voss indicator function [12, 13] which is a discrete binary
function. In the following a suitable generalization is given and it will be shown that the
graphical representation gives rise to some featuring patterns. The existence of patterns and
symmetries is shown also through the cluster analysis of the wavelet coefficients [14, 15].

The analysis of DNA by wavelets [7, 9, 16], as seen in [9, 16-19], is an expedient
tool to single out local behavior and to characterize singularities as local spikes and jumps
[7, 14] or to express the scale invariance of coefficients [20] and thus the multifractal nature
of the time series [21-23]. However, as shown below, the wavelet transform features also
a decorrelation of the sequence, so that it allows the emergence of the basic rules of the
uncorrelated sequence. We will see that the wavelet coefficients of the short Haar wavelet
transform are quantized. This can be achieved by a decomposition of the sequence into short
segments of equal length and by a wavelet transform to be applied to each segment.

The long range-correlation in the digital representation of the DNA sequence [12, 13,
24-34] is a fundamental problem in DNA analysis. Correlation in a digital signal can be
roughly linked with the concept of dependence, in a statistical sense, of elements which are
far away from each other. The existence of correlation in DNA has been explained with the
so-called process of duplication-mutation. According to [29, 35] in the evolutionary model
the actual DNA sequence results from an original short-length chain that was duplicating
and modifying some pieces of the sequence. Due to this there followed the characterizing
1/ f power law decay [13, 26, 27]. The power law for long-range correlations is a measure
of the scaling law, showing the existence of self-similar structures similar to the physics of
fractals. The long-range correlation, which can be detected by the autocorrelation function,
implies the scale independence (scale invariance) which is typical of fractals.

The power law for long-range correlations is a measure of the scaling law, showing
the existence of self-similar structures similar to the physics of fractals. The long-range
correlation, which can be detected by the autocorrelation function [12, 13, 30-32, 36, 37],
implies the scale independence (scale invariance) which is typical of fractals. However, the
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preliminary results in this topics were disputed [26, 27, 38] because of the limited number
of available data and because of different approaches to this analysis. On the other hand
the existence of patchiness and correlation would imply some important understanding of
DNA organization. Therefore, in the following we will discuss the correlation of a DNA virus
sequence, roughly 2000 base pairs (bp), with the undertsanding that a well-defined concept
of correlation holds only on a long sequence of the order higher than 10°. However, the most
important are the fractal properties and symmetries which are well defined even for a short
sequences. The identification (and classifications) of these patches could be the key point for
understanding the large-scale structure of DNA.

Due to the recent outbreak of 2009 HIN1 Flu Virus (Swine Flu) in humans, this paper
will focus on the DNA influenza virus (for similar results on a mammalian and a fungus see
[10, 11, 20]) with particular regards to the A (HIN1) variant provided by the National Center
for Biotechnology Information [3-6]:

(1) influenza A virus (A/Puerto Rico/8/34(HIN1)) segment 1, complete sequence,
2341bp,

(2) influenza A virus (A/Mexico City/MCIG01/2009(H1N1)) segment 4 sequence,
submitted 13-Jan-2010, 1719 bp,

(3) influenza A virus (A/Nagasaki/HA-46/2009(HIN1)) segment 4, HA gene for
hemagglutinin, complete cds, submitted 07-Jan-2010, 1701 bp,

(4) influenza A virus (A/Tver/IIV2969/2009(H1N1)) segment 4 hemagglutinin (HA)
gene, complete cds, submitted 13-Jan-2010, 1744 bp,

(5) influenza A virus (A/Novosibirsk/02/2009(H1IN1)) segment 4 hemagglutinin
(HA) gene, complete cds, submitted 10-Jan-2010, 1752 bp,

(6) influenza A virus (A/Rio Grande do Sul/7108/2009(H1N1)) segment 4 sequence,
submitted 08-Jan 2010, 1701 bp,

(7) influenza A virus (A/Rio de Janeiro/5090/2009(H1IN1)) segment 4 sequence,
submitted 08-Jan 2010, 1701 bp,

(8) influenza A virus (A/Ankara/03/2009(H1IN1)) segment 4 hemagglutinin (HA)
gene, complete cds, submitted 04-Jan-2010, 1701 bp.

It will be shown that as the dog and candida DNA the influenza virus is characterized
by DNA walks with fractal shape. The most amazing is that the same symmetries seen on the
wavelet coefficients of the DNA walks for dog and candida holds true also for viruses. The
fractal dimension of the indicator matrix for this virus is 2.03 much higher than dog’s [11];
moreover some difference in the DNA walks for segment 4 will be highlighted.

This paper is organized as follows. Section 2 deals with some preliminary remarks on
flu epidemiology; DNA and DNA representation together with the indicator matrix is given
in Section 3. Here the global fractal estimate is computed and the existence of fractal patterns
is shown. The complex (cardinal) representation is given in Section 4 and the DNA (complex)
walks are analysed in Section 5. It is proven that DNA complex walks are fractals and they
are compared with walks on pseudorandom and deterministic complex sequences. Section 6
deals with correlation, power spectrum, and complexity of DNA. Sections 7 and 8 deal with
wavelets analysis and show the existence of simmetries in the wavelet coefficients.
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2. Flu Epidemiology

Flu epidemics cause morbidity and mortality worldwide. Each year, only in the USA, more
than 200000 patients are infected by influenza and there are approximately 36000 deaths due
to influenza virus. Of the three types of influenza virus—A, B and C—the A and B types
can cause flu epidemics. Influenza A virus is found not only in humans but also in many
other animals. There are over hundreds of subtypes of Influenza A virus. All subtypes have
been detected in wild birds, which are considered the source of influenza A viruses in all
other animals. For example, pigs may be infected with influenza A viruses from different
species (e.g., ducks and humans) at the same time, which may allow the genes of these viruses
to mix, creating new variants of the hemagglutinin and/or neuraminidase proteins on the
surface of the virus (antigenic shift). If these variants spread to humans, then they would
not be recognized by the immune system and so can cause seasonal epidemics of flu. In
addition, influenza viruses undergo mutations when they spread from place to place and
therefore introduce gradual changes in the hemagglutinin and/or neuraminidase proteins
(antigenic drift). It will be shown however, that even if there are some variants of the same
virus at different places, still the DNA structure remains the same (at least in the indicator
matrix, see below), without significant variations. In other words the DNA sequence might
apparently show some differences, but when we pass to the digital representation and the
indicator matrix, these differences vanish.

Each year, it is essential to identify new flu virus variants and produce vaccines against
them to avoid flu epidemics. Therefore the investigation of DNA sequence of variants might
help to better understand the intrinsic nature of variation.

The Centers for Disease Control and Prevention (CDC) and other health organizations
are actively investigating the recent outbreak of 2009 HIN1 Flu Virus (Swine Flu) in humans.
First cases were reported at the beginning of 2009. CDC has determined that this swine
influenza A (HIN1) virus is contagious and is spreading from human to human. Swine
Influenza is a respiratory disease of pigs (swine) caused by type A influenza virus that
regularly causes outbreaks of flu in pigs. Like all influenza viruses, swine flu viruses change
constantly. Pigs can be infected by avian influenza and human influenza viruses as well as
swine influenza viruses. When influenza viruses from different species infect pigs, the viruses
can reassort (i.e., swap genes) and new viruses that are a mix of swine, human, and/or
avian influenza viruses can emerge. There are four main influenza type A virus subtypes that
have been isolated in pigs: HIN1, HIN2, H3N2, and H3N1, but most of the recently isolated
influenza viruses from pigs have been HIN1 viruses. While swine flu viruses do not normally
infect humans, sporadic human infections with swine flu have occurred. Most commonly,
these cases occur in persons with direct exposure to pigs; human-to-human transmission of
swine flu can also occur, as is the case with the 2009 outbreak.

An influenza A virion is composed of the nucleocapsid, a surrounding layer of the
matrix protein (M1) and the membrane envelope. The envelope contains two major surface
glycoproteins, that is, hemagglutinin (HA) and neuraminidase (NA), and a minor membrane
protein M2. The nucleocapsid consists of individual ribonucleoproteins (VRNPs). Each vRNP
contains one of the 8 genomic negative sense RNA segments (VRNA), multiple copies of
the major structural protein NP, and a few copies of the RNA dependent-RNA-polymerase
complex. All 8 vVRNA species must be present in an infectious virion.

A virion attaches to the host cell membrane via HA and enters the cytoplasm
by receptor-mediated endocytosis, thereby forming an endosome. A cellular trypsin-like
enzyme cleaves HA into products HA1 and HA2. HA2 promotes fusion of the virus
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envelope and the endosome membranes. A minor virus envelope protein M2 acts as an
ion channel thereby making the inside of the virion more acidic. As a result, the major
envelope protein M1 dissociates from the nucleocapsid and vRNPs are translocated into
the nucleus via interaction between NP and cellular transport machinery. In the nucleus,
the viral polymerase complexes transcribe and replicate the vVRNAs. Newly synthesized
mRNAs migrate to cytoplasm where they are translated. Posttranslational processing of HA,
NA, and M2 includes transportation via Golgi apparatus to the cell membrane. NP, M1,
NS1 (nonstructural regulatory protein), and NEP (nuclear export protein, a minor virion
component) move to the nucleus, where bind freshly synthesized copies of vRNAs. The
newly formed nucleocapsids migrate into the cytoplasm in an NEP-dependent process and
eventually interact via M1 with a region of the cell membrane, where HA, NA, and M2 have
been inserted. Then the newly synthesized virions bud from infected cell. NA destroys the
sialic acid moiety of cellular receptors, thereby releasing the progeny virions.

3. Patterns on the Indicator Matrix

The DNA of each organism of a given species is a long sequence of a specific (large) number
of base pairs (bp). The size of the DNA might range from 10° to 10° number of base pairs.
Each base pair is defined on the 4 elements alphabet of nucleotides:

A = adenine, C =cytosine, G =guanine, T =thymine. (3.1)
Let
def

JEA C G T) (3.2)

be the finite set (alphabet) of nucleotides and x € </ any member of the alphabet.
A DNA sequence is the finite symbolic sequence

S=Nxdof (3.3)
so that
def
S = {xnlpa,.,ns N<oo (3.4)
being
X, E (h,x) =x(h), (h=12,...,N; x€) (3.5)

the value x at the position h.
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3.1. Indicator Matrix

The 2D indicator function, based on the 1D-definition given in [12], is the map

u:SxS8—1{0,1} (3.6)
such that
aef |1 ifxy = xx,
u(xh/ xk) = . (xh € -S/ Xk € -S)/ (37)
0 ifxp#xk,
being
u(xp, xk) = u(xk, xn), u(xn, xp) =1 (3.8)

According to (3.7), the indicator of an N-length sequence can be easily represented by
the N x N sparse symmetric matrix of binary values {0,1} which results from the indicator
matrix

we g (), (xheS, xeShk=0,...,N-1), (3.9)
being, explicitly,

G/|0Oo1 0000O0O0OO0OT1:-
c(oo001000O0OT1O0-
A1 000101100 -
A1 000101100 -
T|1001001000O0O0-
A0 00OO0O1TO0O0T1TO0FO0- (3-10)
c/f0oo001000O0OT1O0-
T(0010010O0©O0O0-
G/|0Oo1 0000O0O0O0T1:-
A1 000100100 :-
u|AGT CATAACG -

This squared matrix can be plotted in 2 dimensions by putting a black dot where
(Figure 1) upx = 1 and white spot when up = 0.

3.2. Indicator Matrix for the Influenza Virus A HIN1

The data, under investigation, refer to influenza virus A (HIN1) segment 1 (Puerto
Rico) and segment 4 recently submitted (January 2010) in different world regions: Russia
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Figure 1: Indicator matrix Influenza A virus (HIN1).
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(Tver, Novosibirsk), Japan (Nagasaki), America (Mexico City, Rio Grande do Sul, Rio de
Janeiro) and Turky (Ankara).
The plots of indicator matrix (Figure 1) show that

(1) there are some motifs which are repeated at different scales like in a fractal;

(2) empty spaces are more distributed than filled spaces, in the sense that the matrix
upx is a sparse matrix (having more zeroes than ones);

(3) it seems that there are some square-like islands where black spots are more
concentrated;

(4) some indicator matrix can be grouped into different sets like, (a) Tver, Novosibirsk;
(b) Nagasaki, Rio GRande do Sul, Rio De Janeiro, Ankara; and (c) Mexico City.

From the analyis of Figure 1 we can also notice that even if there is a big distance
among different places, the corresponding virus does not change (Nagasaki, Rio do Janeiro
and Ankara are nearly the same).

3.3. Fractal Dimension

From the indicator matrix we can have an idea of the “fractal-like” distribution of nucleotides.
The fractal dimension for the graphical representation of the indicator matrix plots can be
computed as the average of the number p(n) of “1” in the randomly taken n x n minors of the
N x N correlation matrix up:

(3.11)

The fractal dimension of the influenza virus A (HIN1) is 2.30+0.1 while that for the dog DNA
and candida was 1.66 +0.01 (see, e.g., [11]). However some interesting coinciding values can
be observed in the following table where the fractal dimension up to 102 shows the same
groups already seen in the matrix shapes of Figure 1:

Puerto Rico 2.322

Mexico City 2.307

Nagasaki 2.302

Tver 2.328

Novosibirsk 2.323 (3.12)
Rio Grande do Sul 2.302

Rio de Janeiro 2.299

Ankara 2.307

4. Complex Representation

The (digital) representation of a DNA sequence is defined as the map of .S into R?, ¢ > 1. The
embedding space of representation is based on the 4 vectors

X,: A — R, (xed, €21) (4.1)
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in the real space R?, or almost equivalently in the complex space C¥,

Xy:of —Cl (xeot, €>1) (4.2)

so that X(x) = Xy is a £-ple which is associated with the symbol x € 4.
There follows that the basic elements of the representation are

Xa = (XA1,X42,...,XA¢),

XC = (xCl/ XC2y++s xCﬂ)/
(€>1). (4.3)
Xc = (xG1,xG2, .-, XGe),

Xr = (x11,X12, ..., XT¢C)

The digital representation in R® or C® of a N-length DNA sequence is the map R :
N x o — R’ or, for a complex representation, R : N x o/ — C¢ so that for each x,, € Sitis

xn = Y(n), (xn €3 Y(n)e R"), (4.4)

being

Y1) © y(x,) L Y(x(n)) (4.5)

defined as follows. Each element of the DNA sequence can be considered [39] as the linear
combination:

Y(n) € u(A, x,)Xa + u(C, x2)Xc + u(G, x,)XG + u(T, )Xz, (m=1,...,N). (4.6)
The graph of Y,, = Y(n) is G and if we define

def
a, =

n n n n
Su(Ax), e SuCx), gn = DuGxi), t = Dulxi) (47)
i=1 i=1 i=1

i=1
itis

apn+cp+gn+tp=n, (4.8)
so that, as a consequence of (4.6) and the definition (4.7), the following identity holds:

nY(n) = aXa + cuXc + guXg + £, Xr. (4.9)
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We have a degeneracy (or a loop, circuit, or periodicity) if it is (see, e.g., [40]) Y(n) = O or,
equivalently,

anXa + cnXc + gnXc + taXr = 0. (4.10)

If, we do not have a degeneracy, then there is a one-to-one correspondence between
the DNA sequence S and G, thatis, S < G.

4.1. Cardinal Complex Representation

In the remaining part of the paper we consider the cardinal representation [11] in C!,
so that the DNA digital representation is the N-length one-dimensional complex signal
{Yu}uzo,., N-1- In this case, from (4.6) we have

Y, =u(A, x,) —u(C,x,)i —u(G, x,) + u(T, x,)i

(4.11)
= [u(A, x4) = (G, )] + [(T, ) = u(C, x)]i
or
Yo = &t tais (&l + [1n] = 1, &t = 0 (4.12)
with
b = (A, x) ~u(Gxn), = u(T, ) - u(C,x), (4.13)

so that the representation is a map . — C! and the time series Y(n) is a sequence of complex
numbers:

Yabuoo..N-1r Yo =n+ i (4.14)

,,,,

5. DNA Walks

DNA walk is defined as the series

>, n=0,.,N-1, (5.1)

which is the cumulative sum on the DNA sequence representation:

n-1 N-1
{YO,YO+Y1,...,ZYS,...,ZYS}. (5.2)
s=0 s=0
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Taking into account (4.7), (4.11), for the complex cardinal representation, it is

s=0 s=0 (53)

so that the DNA walk is the complex values signal {Z,},_, x_; with
Zn = (an - gn) + (tn - Cn)i/ (54)

where the coefficients a,, gu, tn, cn given by (4.7) and fulfil condition (4.8).
The DNA walk (DNA series) on a complex cardinal representation is a complex series
as well. If we map the points

P, = (R[Z,],3[Z,]) = (an— gn, th—cn), n=0,...,N-1 (5.5)

whose coordinates are the real and the imaginary coefficients of each term of the DNA walk
sequence, we obtain a cluster showing the existence of some patches or some kind of self-
similarity (Figures 2 and 3).

Both figures for the influenza virus (Figures 2 and 3) show that there exists a fractal
behavior of the random walk on DNA sequence. Moreover, focussing on some segments of
the DNA walks it can be seen that there are some featuring patterns (see, e.g., Figure 3, with
respect to the base pairs between 200 and 500).

Let us now compare the DNA walks with walks on pseudorandom and deterministic
sequences.

A pseudorandom (white noise) complex sequence similar to the cardinal complex
representation (4.11) can be defined as follows:

R, & (—=1)mien (5.6)
with r,,, s, being random integers and it looks like
{-1,i,1,1,-i,i,-1,-i,i,1,-i,i,-1,i,1,-i,-i,-i,-1,...}. (5.7)
Its random walk is

> (=1, (5.8)

A deterministic walk can be (Figure 4(c))

Sz, S iy sin% +1 (5.9)



12

80

40

80

40

80

40

Puerto Rico

100

(a)

Tver

Nagasaki

100
(e)

Rio de Janeiro

200

100
(8)

200

80

40

80

40

80

40

Mathematical Problems in Engineering

Mexico City

100 200
(b)

Novosibirsk

100 200

(d)
Rio Grande do Sul
100 200
)
Ankara
100 200
(h)
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Mathematical Problems in Engineering 13

Mexico City
Puerto Rico

N

!'ITLI [
50 60

(a) (b)

Tver Novosibirsk

%
%

50 60 50 60
() (d)
Rio Grande do Sul
Nagasaki
E 1 1
EI 50 60 50 60
(e) ()
Rio de Janeiro Ankara

¥
i

50 60 50 60
(8) (h)

Figure 3: DNA walk of the influenza virus A, on the bp of the interval (200,500).



14 Mathematical Problems in Engineering

—
—

!

Jul

(c) (d)

Figure 4: Walks on random (a), flu DNA (b), and deterministic sequences (c, d).

or, more similar to a DNA sequence (Figure 4(d)),

Sz, E i1, (5.10)

It can be seen (Figure 4) how the fractal shape of DNA walk is completely different from
corresponding walks on random and deterministic sequences.

6. Statistical Correlations in DNA

For a given sequence {Y;,Y1,...,Yn-1} the variance is

s iy (1% 2 (6.1)
TN& N& )7 ’
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and the variance at the distance N — k is
w1 Nk 1 Nok-1 2
o-i < —_k Yiz _ <—_k Y1> . (62)

From the variance follows immediately the standard deviation
o= \/ ()'2. (63)

The autocorrelation at the distance k, (k =0,..., N —1) is the sequence (see, e.g., [36])

dof 1 ( N-k-1 N-k-1 N-k-1 )
&k E — YiYi — Y; Yiik (6.4)
k i=0 (N k)2 i=0 i=0

withk=0,...,N - 1.
A simplified definition of correlation, in the fragment F — N has been given [41] as
follows:

defN 1-k
. I 6-5
e N — uxl (x1+1+k) ( )

with the indicator given by (3.7).
The power spectrum can be computed as the Fourier transform of c:

N-1
Sk def & Ck = che‘z”i"k/N. (6.6)

n=0

If cx = 0, there is no linear correlation, cx > 0 means that there is a strong (linear)
correlation (anticorrelation when ¢, < 0), while ¢y = 1 does not give any information about
correlations. A true random process has a vanishing correlation ¢, = 6o, and its power
spectrum Sy, is constant. Its integral gives the Brownian motion (random walk) whose power
spectrum is proportional to 1/k>.

It has been shown [24, 34, 42] that correlations in DNA are linear. However, the main
problem of this measure is that it strongly depends on the representation, on the length of the
sequence, and, for nonbinary representation, it is affected by spurious results [36]. Moreover,
the definition (6.4) holds only for real values of the representation.

6.1. Power Spectrum

Let {Yy},-0, ~n-1 be a given series; the discrete Fourier is the sequence

N 1 N-1 .
Y, = ﬁZYne—krms/N, s=0,...,N-1. (67)
n=0
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521
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Figure 5: Power spectrum for influenza virus A DNA walk.

,,,,,

is defined as [43]

def "o 12
Sk = DY (6.8)

The power spectrum of a stationary sequence gives an indirect measure of the
autocorrelation. A long-range correlation can be detected if the fluctuations can be described
by a power law so that

k
Sk 2a———, 1<k <kna 6.9
, amaxlsksk [ak] (69)

max

with a > 1/2.
The fluctuation exponent a, with its values, characterizes a sequence as
(1) anticorrelated: a« < 1/2,
(2) uncorrelated (white noise): a £1/2,
(€]
4

correlated (long range correlated): & > 1/2,
1/f noise: a =1,
(5) nonstationary, random-walk like: a > 1

)
)
)
)
)
)

(6) Brownian noise: « = 3/2.

For the human DNA there was observed [44] a long range correlation, only for coding
regions, with & = 0.61. However, the same value can be seen also for dog’s and candida DNA
[11] for the complete sequence (coding and noncoding regions), even if, by including the
noncoding regions, this value is a little bit higher being a = 0.65 for the dog’s, and a = 0.62
for the candida’s DNA, respectively. For the Influenza virus A it is instead a = 0.02 (Figure 5).
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When the power spectrum is a power-law function

S(k) = Sk kl (6.10)

then this function is scale invariant (like fractals), that is, f(Ax) = A f(x). It can be shown
(see, e.g., [29]) that for the power-law functional dependence, in the N — oo limit, it is

S(Ak) « A174S(k), S(k) = % (6.11)

with k = 1 — a, and a being related to the so-called Hurst exponent. In other words, for a
power-law function the power spectrum is scale-invariant (like a fractal).

In particular, from Equation (6.11) there follows that when b = 1 and a = 0, the
correlation function has a slow decay to zero and the spectrum is more properly called
1/ f-noise (or white noise). This spectrum appears in many natural phenomena (noise in
electronic devices, traffic flow, signals, radio-antenna, turbolence).

The power spectrum 1/k has been observed in DNA sequences [30, 37], however it is
not yet clear how the correlation function should be (step-function, power law decay, white-
noise), and in particular if there exists a single length scale or a multilength scale [29]. This
scale-dependence (or self-similarity) of DNA cannot yet been explained from biological point
of views. A possible explanation could be the dynamic process of the evolution or maybe
the functional activity inside constrained domain (like the fractal shape of brain, lungs, etc.)
which might have some influence on the spatial geometry [38].

The biological explanation of long-range correlations can be explained by the existence
of heterogeneity in DNA (i.e., different density distribution of bases). The main questioning
is about the power law spectrum: 1/k [35] or 1/k? [29]. Indeed it has been observed that the
the power spectrum is nearly flat for low and high frequencies and only for the central part
has a power low decay.

However, [29, 30] the existence of long range correlation in DNA should be intended
from statistical point of view in the sense that far away base pairs tend to have similar
variation. In other words, this correlation should be understood as a periodic distribution
of base pairs without a causality law between base pairs located at different segments far
away from each other.

6.2. Complexity

The existence of repeating motifs, periodicity, and patchiness can be considered as a simple
behavior of sequence, while nonrepetitiveness or singularity is taken as a characteristic
feature of complexity. In order to have a measure of complexity, for an n-lenght sequence,
[44] the following has been proposed:

K =log Q'/" (6.12)



18 Mathematical Problems in Engineering

1.5

50 100

Figure 6: Complexity for the first 100 base pairs of influenza virus A DNA.

with

n!
Q= An!Cn!Qnltn! (613)

By using a sliding n-window [44] over the full DNA sequence one can visualize the
distribution of complexity on partial fragment of the sequence. For the whole sequence the
asymptotic constant value is (Figure 6)

K=13, (6.14)

that has been observed also for other DNA sequences [11].
Moreover, as can be seen from Figure 6, initially Tver and Novosibirsk DNA shows a
lower complexity (see also Figure 1).

7. Wavelet Analysis

Wavelet analysis can be considered as a good tool [19, 24, 29, 42] for studying the
heterogeneity in a time series and in particular in a DNA sequence. Heterogeneity can be
shortly described as follows: in some fragments of DNA there exists a higher concentration
of nucleotides C, G with poor distribution of A, T while, on the contrary, other fragments are
more rich of A, T and poor of C, G (see Figure 1). Thus a fundamental problem is to make a
partition of a DNA sequence into homogenous segments. This segmentation can be done by
minimizing the variance (or maximizing the entropy [36]).

The wavelet transform expresses the signal in terms of dilated and scaled instances
of the wavelet basis functions. If we call W[f], the wavelet transform of the signal f(x)
computed in x = xp at the scale 27 and h(xg) the local Holder exponent, it is [24]
WIfl,, = 27", Therefore, wavelet transform is one of the most expedient tools for
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detecting singularities. It can be used to define a generalization of box-counting method, the
so-called wavelet transform modulus maxima, in order to focus on scaling behavior [24] and
to visualize the multifractal property.

In this section some fundamentals on Haar wavelet theory will be given and applied
to the analysis of DNA sequences.

7.1. Haar Wavelet Basis

The Haar scaling function ¢(x) is the characteristic function on [0, 1]; its family of translated
and dilated scaling functions is defined as

ol(x) T 229" x—k), (0<n, 0<k<2'-1),

@x—k) =Y X Qnd_ef[k k+1> 71
y S lo, xgor TR [2v 2n )
The Haar wavelet family {7} (x)} is the orthonormal basis for the L*(R) functions [45]:
n def 5p n n
g0 = 222" = k), o) =1,
( [ 1
k+=
_1r X € 2%/ 2n2 7
n def n
g"x-k) = < k+§ k+1 (0<n 0<k<2"-1),
1, xe ,
2 2
L0 elsewhere,

7.2. Discrete Haar Wavelet Transform

LetY={Y;},(i=0,...,2M-1, M= N<oo, M€ N) be a real and square summable time-
series Y € KN C 2 (where K is a real field), sampled at the dyadic points x; = i/(2M - 1), in
the interval restricted, for convenience and without restriction, to & = [0, 1]. The discrete Haar
wavelet transform is the N x N matrix 0N : KN ¢ ¢2 — KN c ¢2 which maps the vector Y
into the vector of wavelet coefficients By, = {a, B} }:

ONY = ﬁN/
def -
B E g, 0] (7.3)

Y v, vi,. .., Yna) (2M = N).
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Let the direct sum of matrices A, B be defined as

A®B-= <’3 g), (7.4)

being 0 the matrix of zero elements. The N x N matrix 7y can be computed by the recursive
product [14, 15]

M
oy & [H((sz @ Ipm_ox ) (Hox @ IzM—zk))]/ N =2M (7.5)
k=1

of the direct sum of the following elementary matrices.

(1) Identity:

1 0
= —— | (7.6)
2k
0 1
which is equivalent to
I 0
L=(}" Li=ho---ol= (7.7)
2= 01) 2k = 12 2= —— . .
Y k
0 I

(2) Shuffle:

I =1
1000 I = 1
/10 (o010 | - 1 —
P2=<0 1>’ P=lo100) D7 o1 (7.8)
0001 | = 1
| -

The arbitrary shuffle matrix Py = (a;j);i,j = 1,... ,2k can be defined as Ai1j42 =
1,i=1,...,2, j=1,.,2c-3 i=2k1__.2ck_1,j=0,...,25-2and zero
elsewhere.
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(3) Lattice (derived from the recursive inclusion formulas see, e.g., [14, 15]):
1 1
— — 0 0
[ V2 V2 \
1 1 11 0 0
HzE \/12 \1@ , H4=H269H2= \/E ﬁ 1 1 PR (79)
- 0 0 — —
V2 V2 V2 V2
1 1
0 0 —— —
\ 2 2/
and in general
H, 0
Hy=H,® @ H, = "y . (7.10)
k
g 0 H,

For example, with N = 4, M = 2, assuming the empty set I, " 0 as the neutral term
for the direct sum @ so that A® [y = Iy @ A = A, it follows from(7.5)

Wy = [ [[(Por @ Lioe) (Hox @ I_px)]

k=12 (7.11)
=[(PreL)(H2® L)) [(Pe® Io) (Hs ® Io) |0,
that is,
1 1 1 1
/ 2 2 2 2 A
1 1 1 1
2 2 2 2
W, = 1 1 (7.12)
—— — 0 0
V2 V2
1 1

7.3. Haar Wavelet Coefficients and Statistical Parameters

From (7.3) with M =2, N = 4, by explicit computation, we have

a= }I(YO +Y1+ Y, + Yg,) (713)
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and [10, 11, 20]

1
By = E(Yz—YoJrYs -Y1),

1

po = M-, (7.14)
1
pi = \72(1”3 -Y).

When the wavelet coefficients are given, the above equations can be solved with respect to
the original data. With M =2, N = 4, we have, for example,

0+ V26 0 — V2B,

YO:“_Mr lea_u’
0 /g 0, g0 (7.15)
-V2 +v2

Y2:a+ul Y3:a+ﬂoTﬂl.

Thus the first wavelet coefficient a represents the average value of the sequence and
the other coefficients f the finite differences. The wavelet coefficients f’s, also called details
coefficients, are strictly connected with the first-order properties of the discrete time-series.

7.4. Hurst Exponent

Concerning the variance, from definition (6.1) we obtain by a direct computation its
expression in terms of wavelet coefficients:

—
N

"1

B’ (N = ZM)- (7.16)

1 M5

N n=0 k=0

o’ =

It has been observed [25] that for scale invariant functions the standard deviation (6.3),
as a function of the scale n, is

oc(2") = 0(20)2"““) (7.17)
with H being Hurst exponent, so that in a log-log plot
log,o(2") = [n(H -1)+ 10g20<20>] (7.18)

we obtain a straight line whose slope gives an estimate of H.
The Hurst exponent, in terms of wavelet coefficients, can be evaluated by the following
[11].
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Theorem 7.1. The Hurst exponent is given by

2n-1 f gny 2] 12
1 " [Zk:o (ﬁk)] . (7.19)
H=_+logyy| —————
2 ]
Proof. Taking into account (6.3) and (7.16), definition (7.17) become:
IRESPT v 0|Hn(H-1
2n/2[ (PO ] = |ﬁ0 2",
k=0
" (7.20)
=
log,q 57z | 2 B[ | ~logy || = n(H - 1),
- k=0
that is,
g, o]1/2
1 og 1 [Zizol (ﬂk)Z] S (H-1)
n 22n/2 |ﬂ8| 4 (7 21)
21 any2] V2 .
loe.2 + 11 1 [Zk:o (ﬂk)] H
08,2+ ~log, = g =
R g
from where (7.19) follows. O

8. Algorithm of the Short Haar Discrete Wavelet Transform

In order to reduce the computational complexity of the wavelet transform (7.3), (7.5), the
sequence Y can be sliced into subsequences and the wavelet transform is applied to each
slice. With the reduced Haar transform [10, 11, 20] it is possible to reduce the number of basis
functions and the computational complexity.

Algorithm 8.1. Let Y = {Y;},,o. n-1 of N data, segmented into 0 = N/p, (1 < ¢ < N)
segments of p = 2™ data:

Yz{Yi}i:O ,,,,, N-1 =@YS/ YSE{Ysp/Ysp+1/-'-/Ysp+p—1} (5=O/---/N_P} 1SPSN)/
(8.1)
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and the p-parameters short (reduced or windowed) discrete Haar wavelet transform 70P°Y
of Y is defined as

—

o-1 o—
=P, Y=Y,
s=0

S

W0POY = (é}l wP>Y - <é§1 10’“Y5>, (82)
s=0

Il
o

5=0
2 0(s) 0(s) gl(s) 41(s) -1(s)
W Ys:{txos,ﬂos, OS, 15,..., ;71751} (2m:p)

For example, the reduced wavelet transform 70*? (to be compared with ¥0®) is

W2 =W e W, (8.3)
that is,
S I
Sl o
—%\%o 0 0 0 0 0
1 1
e 0 0 %5 7 0 0 0 0 o
o o o o L+ 1 11
2 2 2 2
1 1 1 1
00 0 0 5 3 3 3
1 1
0 0 0 0—EE 0 o0
1 1
\0 0 0 0 0 O—EE/

8.1. Clusters of Wavelet Coefficients
Significant information on a time-series can be derived not only from the wavelet coefficients

but also from clusters of wavelet coefficients.

For the N = 2M-length real vector Y the wavelet transform JONY represents a point in
the N-dimensional Euclidean space

RN . (a, BB, é\,’&i}%) (8.5)

of the wavelet coefficients.
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For the N = 2M-length complex vector Y the wavelet transform is applied to the real
JINR(Y) and to the imaginary part J0NJ(Y) and gives either 1 point in

N 2N . 0 1 M-1 0 1 M-1
CcN =R .(a,ﬂo,ﬁo,...,ﬁzM,Ll,a*, 0B ;M,Ll) (8.6)
or 2 points in
N N . 0 1 M-1 * %0 2%l *M—-1
RN xRN (a, B, B, B ) x (o B0, B3 B, ) (8.7)

or a cluster of N points in the product of 2 dimensional spaces:
N
TTR?: () x (B, 6:°) x (B B5') -+ x (BMELy B2, (8.8)
i=1

where the star denotes the wavelet coefficients of J(Y). In each 2-dimensional (phase) space
R? there is only one point and these single points do not give any significant information
about the existence of some autocorrelation of data. By using, instead, the p-parameter short
Haar wavelet transform we can analyse the cluster of points

(WPR(Y®), WPI(Y?)), s5=0,...,0= % (8.9)

in the 2p-dimensional space R? x RP, that is,
(), (BB, (B B50). (8.10)
For a complex sequence {Yi}io n-1 = {xk+iYklp_y n.1 We can consider the

,,,,,

.....

This algorithm enables us to construct clusters of wavelet coefficients and to study the
correlation between the real and imaginary coefficients of the DNA representation and DNA
walk, as given in the following section.

8.2. Cluster Analysis of the Wavelet Coefficients of
the Complex DNA Representation

The cluster algorithm of Table 1, applied to the complex representation sequence (4.11),
which is in the form

{(-1,i,1,1,-i,i,-1,-i,i,1,-,i,-1,i,1,-i,-i,-i,-1,...} (8.11)

shows that the values of the wavelet coefficients belong to some discrete finite sets (Figure 7).
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Figure 7: Cluster analysis of the 4th short Haar wavelet transform of the complex representation of
the DNA influenza virus A HIN1 (Mexico City) in the planes: (a) (a,a%); (b) (85, 8); (c) (B, B)); (d)

(B1, B
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Figure 8: Cluster analysis of the 4th short Haar wavelet transform of the pseudo-random sequence (5.6)

(n <1200): (a) (a,a"); (b) (Y, By"); (<) (B, 1) () (Br, B)-
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Figure 9: Cluster analysis of the 4th short Haar wavelet transform of the walk on (whole sequence) DNA
for the influenza virus A HIN1 (Mexico City) in the planes: (a) (a,a%); (b) (B),;); () (Bo,B"); (d)

(B, ).
Table 1
Yo, Y1,.... Y} & {Ypur, Ypuo, ..., Yop} @+ Complex values sequence
(A
xi =RY:), yi=3IY5) Real values sequences
U
{0, 21,0, 200} @ (X1, Xpu, oo Xgp} B > Real sequences
{yO/ylr'--/yp} @ {yp+1/yp+2/'“/y2p} -
N2
Jop P
{x0, 1., xp} ® WP {Xps1, Xpaz, ..o, Xop} @ > Wavelet transform
WPYo, Y1+ Y} @ WP Ypst, Ypss - Yoy} @
U
0 gl gl 0 g1 gl
{a, Py, Pos Brs- -3y @ A, By By Py -1, @ > Wavelet coefficients
{a*, 30, 61, Il,...}l @ {a*, 30, 61, Il,...}z @
I3

{(a,a’)}y @ {(a,a")}, @ {(a,a%)}5 -
(B B}y @ (B, )}, @ (8D, By by
{Bo By @ (B B Y, @ { By, By s

Clusters
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Figure 10: Cluster analysis of the 4th short Haar wavelet transform of the random walk (n < 1200) of the
random sequence (5.6) in the planes: (a) (a, a*); (b) (ﬂg,ﬂao),‘ () (ﬂ(l), 51); (d) (ﬁ%, Il).

For each complex DNA representation there are 2 sets of wavelet coefficients which
correspond to the real and complex coefficient of the complex values of (5.1) and (5.4).
However, even if the real and complex coefficients of the DNA walk show some nonlinear
patterns (Figures 2 and 3 the detail coefficients range in some discrete sets of values. It can
be seen by a direct computation that the jumps from one value to another belong to some
discrete sets (see, e.g., Figure 7).

If we compare the clusters of Figure 7 with the clusters (Figure 8) of the pseudoran-
dom sequence (5.6), which is similar to the above sequence, we can see that the set of wavelet
coefficients is larger (still discrete) than the set for the DNA although the detail coefficients
have (more or less) the same values.

As can be seen from Figure 7, the real and imaginary coefficients of the complex
DNA representation increase with a given law and the distribution of the nucleotides must
follow this rule. Moreover, it should be noticed that all wavelet coefficients are distributed
on symmetric grids (Figure 7). Even if the DNA representation looks like the pseudorandom
sequence (5.6), the wavelet (detail) coefficients are quantized and symmetrically distributed
in the sense that the detail coefficients of both the representation and the DNA walks (see
[11]) have discrete finite values (Figure 7), being, in particular,

Iﬁg + | <2. (8.12)

This is not true for the pseudorandom series, because the wavelet coefficients of the
sequence are still quantized (see Figure 8) while the wavelet coefficients of the corresponding
random walk are randomly distributed in the phase plane (Figure 10). It is very interesting to
compare also the DNA walk (Figure 9) with the random walk (Figure 10) and random walk
on deterministic sequence. DNA walk shows a clear symmetry which is missing in the others.
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Figure 11: Cluster analysis of the 4th short Haar wavelet transform of the walk (n < 1200) of the
deterministic sequence (5.9) in the planes: (a) (a, a*); (b) (ﬂg, 50); (c) (ﬂé, 81); (d) (ﬂ%, 1‘1).

9. Conclusion

In this paper some fractal shapes and symmetries in DNA sequences and DNA walks have
been shown and compared with random and deterministic complex series. DNA sequences
are structured in such a way that there exists some fractal behavior which can be observed
both on the correlation matrix and on the DNA walks. Wavelet analysis confirms by a
symmetrical clustering of wavelet coefficients the existence of scale symmetries.
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