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In experimental science and engineering, least squares are ubiquitous in analysis and digital
data processing applications. Minimizing sums of squares of some quantities can be interpreted
in very different ways and confusion can arise in practice, especially concerning the optimality
and reliability of the results. Interpretations of least squares in terms of norms and likelihoods
need to be considered to provide guidelines for general users. Assuming minimal prerequisites,
the following expository discussion is intended to elaborate on some of the mathematical
characteristics of the least-squares methodology and some closely related questions in the analysis
of the results, model identification, and reliability for practical applications. Examples of simple
applications are included to illustrate some of the advantages, disadvantages, and limitations
of least squares in practice. Concluding remarks summarize the situation and provide some
indications of practical areas of current research and development.

1. Introduction

Least squares go back to Gauss and Legendre in the late 1790s. The first important
publication on the topic was authored by Legendre in 1806 with the title “New Methods for
Determination of a Comet’s Orbit” and had a supplement entitled “On the method of least
squares”. Gauss’s first publication on least squares appeared in 1809 at the end of his Theoria
motus. He mentioned there in passing that Legendre had presented the method in his work
of 1806, but that he himself had already discovered it in 1795. Gauss’s correspondence and
the papers found after his death proved that he was certainly the first to make the discovery,
but since Legendre was first to publish it, priority rights belong to the latter. Obviously, as
both of them reached the result independently of each other, both deserve the honour [1].

In these astronomical applications, “least squares” was a method of obtaining the
best possible average value for a measured magnitude, given several observations of the
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magnitude, when the measurements are found to be unavoidably different due to (random)
errors. Of course, long before the theory of errors ever saw the light of day, common sense
had chosen the arithmetic average value as the most probable value, hence the dichotomy
in numerous situations: independently of the nature of the errors involved, a least-squares
procedure gives the arithmetic mean, or more generally some weighted average value,
which may or may not be the most likely value in the probabilistic sense (see, e.g., [2] for
more general discussions). These two very different interpretations of least squares, now
technically often referred to as the Best Approximation Estimate (BAE) in terms of quadratic
norms, and the Maximum Likelihood Estimate (MLE) in terms of distributions, respectively,
are widely used in functional analysis, inference analysis, and all kinds of application areas.
Notice that in general, BAEs in terms of arbitrary norms can be very different from MLEs
in terms of distributions. However, it is well known that in general, BAEs for p norms and
MLEs for exponential distributions coincide with most interesting implications in practice
(see, e.g., [3]). The following discussions will concentrate on the fundamental characteristics
of the least-squares methodology and related implementation aspects.

Least-squares parameter estimation can be applied to underdetermined just as to
overdetermined linear problems. In fact, underdetermined prediction problems are generally
more common than overdetermined filtering and adjustment problems. With observations
and unknown parameters of unequal weights modeled using some empirical or theoretical
covariance (or correlation) functions, more sophisticated estimation methods such as Kriging
and least-squares collocation are employed. Correspondingly, Radial Basis Functions (RBFs)
and related strategies are used for interpolations of spatially scattered data and other
approximations as BAEs.

The preceding implicit assumption of model linearity is essential for practical reasons.
In practice, just about any engineering problem nonlinear in terms of its unknown parameters
can be linearized as follows:

(a) Using a Taylor expansion about an appropriate point or parameter value, the linear
term can be used to approximate the model in the neighborhood of the expansion
point.

(b) Using differentiation in terms of the unknown parameters, the total derivative of
the function is linear in terms of the differentials corresponding to the unknown
parameters, and hence differential corrections to the unknown parameters can be
evaluated as a linear problem.

These two strategies for nonlinear least squares then imply iterative procedures for
differential correction estimates to the unknown parameters. Convergence of such iterative
procedures is usually ensured for well-chosen parametrization, and the general situation has
been discussed by Pope [4] and others in the estimation literature. Obviously, in general,
there are numerous types of nonlinear complex problems that cannot be treated with such
simplistic strategies but for the purposes of the following discussions, linearity in terms of
the unknown parameters will be assumed from here on.

From an application perspective, one exceptional class of separable nonlinear least-
squares problems deserves mention in this context. These are problems for which the
mathematical model function is a linear combination of nonlinear functions. Specifically, one
can assume that there are two sets of unknown parameters where one set is dependent on
the other and can be explicitly eliminated. The method of variable projections has proven
very appropriate for such nonlinear problems in several application areas [5]. General
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nonlinear least-squares estimation is still the object of current research (see, e.g., [6] for
further discussions and references).

The intrinsic linearity of least-squares computations implies that these can be done
simultaneously or in a stepwise manner to obtain exactly the same estimation results. In other
words, at the limit, one unknown parameter can be estimated at a time, or one observation
or measurement can be processed at a time. This characteristic of linear computations is most
useful in least-squares procedures and has led to numerous formulations such as summation
of normals, and sequential adjustments. Furthermore, the quadratic computations can be
avoided in critical numerically sensitive situations using orthogonal methods such as Givens
rotations, Householder’s reflections, and others.

2. Least Squares and Alternatives

Consider a system of M linear algebraic nonhomogeneous equations with N unknowns x1,
x2, x3,. . ., xN , where M is not necessarily equal to N,

a11x1 + a12x2 + a13x3 + · · · + a1NxN = f1,

a21x1 + a22x2 + a23x3 + · · · + a2NxN = f2,

a31x1 + a32x2 + a33x3 + · · · + a3NxN = f3,

...

aM1x1 + aM2x2 + aM3x3 + · · · + aMNxN = fM

(2.1)

with corresponding matrix representation

Ax = f, (2.2)

and assuming f/= 0 for simplicity. When M = N without any rank deficiencies in the matrix
A, that is, with A nonsingular, then the unique solution is simply

x = A−1f, (2.3)

which can be evaluated in practice by Gaussian elimination or any other solution method for
simultaneous linear equations. Notice that such solution methods are usually more efficient
than the direct matrix inversion method, which is a consideration in numerous application
contexts.

When the system is overdetermined with M > N, that is, more equations than
unknowns, then one could use the first N equations, or some other selection of N equations,
and assuming no rank deficiency, proceed as in the previous case of M =N. However, this is
not appropriate for most applications as all the observations should somehow contribute to
some “optimal” solution. Hence, rewriting the given system of equations with an error term
e, that is, Ax = f + e, to emphasize that there may not exist one x value that would satisfy
Ax = f exactly, one obvious strategy is to minimize some norm of e, that is, some acceptable
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measure of the “length” of the vector e. In practical terms, this norm of e can simply be its
Euclidean length, that is,

‖e‖2 =
(
e2

1 + e
2
2 + e

2
3 + · · · + e

2
M

)1/2

=
(
|e1|2 + |e2|2 + |e3|2 + · · · + |eM|2

)1/2
,

(2.4)

but more generally, using p norms, denoted by Lp,

‖e‖p =
(

M∑
i=1

|ei|p
)1/p

(2.5)

for p = 1, 2, . . . ,∞. The solution x for a specified value of p, if one exists, is called an Lp
BAE of x. For p = 2, the L2 estimate is the familiar least-squares estimate of x, which is
going to be discussed below. When p = 1, the L1 estimate is a least-magnitude estimate of
x, a generalization of the median, and is well known in robust estimation. When p = ∞,
the L∞ estimate is a least-maximum or min-max estimate of x. For other values of p, some
BAEs are possible but not often used in practice, except perhaps for 1 < p < 2 in multifacility
location-allocation problems (e.g., [7]). Notice that for p /= 2, the BAE does not necessarily
exist and when it does exist, it is not necessarily unique, which can greatly complicate matters
in applications.

When p = 2, the least-squares estimate always exists for a finite set of linear equations,
assuming linearly independent columns, and its unique value is easily obtained using basic
calculus:

‖e‖2
2 = eTe = e2

1 + e
2
2 + e

2
3 + · · · + e

2
M (2.6)

using matrix notation and to minimize eTe = (Ax − f)T (Ax − f),

∂

∂x

(
eTe
)
=

∂

∂x

(
(Ax − f)T (Ax − f)

)
= 0, (2.7)

which gives the familiar normal equations

ATAx = AT f, (2.8)

where the square matrix ATA is easily seen to be symmetric and positive definite. The least-
squares estimate is then written as

x̂ =
(
ATA

)−1
AT f (2.9)
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which is easily verified to correspond to a minimum as

∂2

∂x2

(
eTe
)
=

∂2

∂x2

(
(Ax − f)T (Ax − f)

)
= 2ATA > 0. (2.10)

The previous matrix inequality simply means that, as the matrix ATA is symmetric and
positive definite, it has positive real eigenvalues and hence the situation corresponds to a
minimum of eTe, as desired.

For the corresponding underdetermined system Ax = f, f/= 0, assuming linearly
independent rows, there are obviously infinitely many solutions in general. For an optimal
solution x̂ with minimum quadratic norm, the easiest approach is to use unknown correlates
x = ATy which imply by substitution

Ax = AATy = f (2.11)

and assuming no rank deficiency as before, AAT is nonsingular and hence

y =
(
AAT

)−1
f, (2.12)

which gives by substitution

x̂ = AT
(
AAT

)−1
f. (2.13)

To see the appropriateness of this estimate x̂, consider

x − x̂ = x −AT
(
AAT

)−1
f

= x −AT
(
AAT

)−1
Ax

=
[
I −AT

(
AAT

)−1
A
]
x

= NAx,

(2.14)

with NA usually called the nullspace projector corresponding to A. More explicitly,

(i) for a vector z with Az = 0, NAz = z, and conversely;

(ii) ANAz = 0 for all vector z.

Therefore, for any vector z,

A(x̂ +NAz) = Ax̂ +ANAz = f (2.15)

but for a minimum quadratic norm estimate x̂, only z ≡ 0 is acceptable.
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The previous result can readily be generalized to the quadratic norm with weight
matrices for correlated observations or measurements of different quality as follows. Let f
denote an M nonzero vector and A an M × N matrix with linearly independent columns.

Then there is a unique N vector x̂ which minimizes {(f −Ax)TP(f −Ax)}1/2
over all x, for

some appropriate weight matrix P. Furthermore, x̂ = (ATPA)−1ATPf.
More generally, the unknowns themselves may have different relevance or other

characteristics requiring weight matrices such as for regularization. Letting f denote an M
nonzero vector and A an M × N matrix with linearly independent columns, then there is

a unique N vector x̂ which minimizes {(f −Ax)TP(f −Ax) + xTQx}1/2
over all x, for some

appropriate weight matrices P and Q. Furthermore, x̂ = (ATPA +Q)−1ATPf and when P and
Q are nonsingular, x̂ =Q−1AT (AQ−1AT + P−1)−1f, by algebraic duality.

The proof of this last statement is a straightforward generalization of the previous
situation involving the weighted observational errors and prior information about the
unknown parameters. Using the Matrix Inversion Lemma (also called the Schur Identity),
one can write

x̂ =
(
ATPA +Q

)−1
ATPf

= Q−1AT
(
AQ−1AT + P−1

)−1
f,

(2.16)

when the inverses of the weight matrices exist. Notice that the first RHS expression is in terms
of the weight matrices while the second is in terms of their inverses, and that the preceding
least-squares estimates are obtained with P = I and Q = 0 for a simple overdetermined system,
and with Q−1 = I and P−1 = 0 for a simple underdetermined system.

There is also an extensive theory dealing with the cases of rank deficiency in the matrix
A implying a singular matrix ATA or AAT in the above expressions. In such cases, special
precautions are required to reduce the number of parameters to be estimated or constrain
their estimation. In general, the singular value decomposition discussed in the next section
provides the best general strategy for linear problems with rank deficiencies.

In geometrical terms, the least-squares approach corresponds to an approximation
using a normal (i.e., orthogonal) projection, and as a BAE, it does not necessarily involve
any statistical information. In other words, as shown explicitly above, in all cases of
underdetermined, determined, and overdetermined situations, even with weights associated
with the observations and parameters, the least-squares solution is simply a weighted
average of the observations for each unknown parameter. This is the reason for considering
the least-squares approach basically as a mathematical approximation procedure which
turns out to be most appropriate for statistical applications (see, e.g., [2] for more general
discussions).

However, when interpreting the measurements or observations with finite first and
second moments as a Gaussian sample, the average and hence the least-squares estimate
becomes the unbiased minimum-variance estimate or the MLE. This is because any sample
with finite first and second moments may be identified with a Gaussian sample as the
Gaussian or normal distribution is fully specified by the first two moments. This statistical
interpretation of least-squares estimates is really useful for error analysis and reliability
considerations as in addition to Gaussian implications for the first moment, the second
moment information behaves as a Chi-Square (χ2) distribution. Gaussian statistics are widely



Mathematical Problems in Engineering 7

used in the analysis of least-squares estimates largely because of the well-developed theory
and wide-ranging practical experience.

The previously introduced weight matrices P and Q are usually interpreted in the
statistical sense as inversely proportional to the covariance matrices of the measurements
and unknown parameters, respectively. Using unit proportionality factors, these are explictly

P =
{
E
[
(e − e0)(e − e0)T

]}−1
, Q =

{
E
[
(x − x0)(x − x0)T

]}−1
, (2.17)

in which the zero subscript corresponds to the mean or expected value. Notice that e0 = E[e]
= 0 for unbiasedness while x0 = E[x] is not necessarily zero in general applications. Using the
well-known covariance propagation law; that is, for any linear transformation z = Rx, one has
for the corresponding second moment

E
[
(z − zo)(z − zo)T

]
= RE

[
(x − x0)(x − x0)T

]
RT (2.18)

then the variance of the estimated parameters is readily obtained as

E
[
(x̂ − x0)(x̂ − x0)

T
]
=
(
ATPA +Q

)−1

= Q−1 −Q−1AT
(
AQ−1AT + P−1

)−1
AQ−1,

(2.19)

which again shows a formulation in terms of the weights P and Q, and a dual formulation
in terms of their inverses. In practical applications, these two equivalent formulations can be
exploited to minimize the computational efforts either in terms of weight (or information)
matrices or in terms of covariance matrices. Notice that adding a diagonal term to an
arbitrary matrix can be interpreted in several different ways to numerically stabilize the
matrix inversion such as, for example, in ridge estimation [8], Tikhonov regularization [9],
and variations thereof.

All nonzero covariance matrices and their inverses, the nonzero weight (or infor-
mation) matrices, are symmetric and positive definite in least-squares estimation. The
optimality of the estimates in the sense of minimum variances requires such symmetry and
positive definiteness for all the nonzero weight and covariance matrices involved. In some
applications, it may be required to control the dynamic range and spectral shape of the
covariance of the estimation error and to that end, such methods as Covariance Shaping
Least-Squares Estimation [10] can be used advantageously in practice.

For illustration purposes, consider the following situation. Given five measurements
{(1, 5), (2, 7), (3, 13), (4, 8), (5, 6)} with some a priori information about a desired quadratic
regression model, that is, y = a+bx+cx2, with unknown parameters a, b, and c, the preceding
least-squares formulations can be used to provide the estimates for the quadratic polynomial
in the interior of the interval spanned by the observations used (see Table 1) for interpolation
purposes. Notice that the mathematical model, namely, the quadratic polynomial, was
assumed from the context of the experiment or exercise. In general, the model identification
needs to be resolved and the situation will be briefly discussed in Section 6.
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Table 1: Estimation of quadratic polynomials for interpolation purposes.

Observations Used Estimated quadratic polynomial
(1, 5) p̂1(x) = 1.66667 + 1.66667x + 1.66667x2 near x = 1
(1, 5), (2, 7) p̂2(x) = 3.00000 + 2.00000x + 0.00000x2 for x in (1, 2)
(1, 5), (2, 7), (3, 13) p̂3(x) = 7.00000 − 4.00000x + 2.00000x2 for x in (1, 3)
(1, 5), (2, 7), (3, 13), (4, 8) p̂4(x) = −4.25000 + 10.25000x − 1.75000x2 for x in (1, 4)
(1, 5), (2, 7), (3, 13), (4, 8), (5,6) p̂5(x) = −2.60000 + 8.44286x − 1.35714x2 for x in (1, 5)

3. Least-Squares Interpolation and Prediction

Simple linear interpolation consists in an arithmetic mean of N quantities, that is,

û =
1
N

N∑
i=1

ui =
N∑
i=1

λiui (3.1)

with all the coefficients λi ≡ 1/N. In a more general context, the coefficients λi would be
estimated to optimize the interpolation or prediction. For instance writing f0 = f(x0) and for
the observations, fi = f(xi), i = 1,N, one has the general interpolation formula

f0 =
N∑
i=1

pifi, assuming
N∑
i=1

pi = 1, (3.2)

that is, with normalized weights p1, . . . , pN . In the presence of correlations between the
observations, using the usual matrix notation,

f0 =
(
1 · · · 1

)
⎛
⎜⎝

p11 · · · p1N
...

...
...

pN1 · · · pNN

⎞
⎟⎠

⎛
⎜⎝

f1
...
fN

⎞
⎟⎠

=
(
1 · · · 1

)
⎛
⎜⎝

c11 · · · c1N
...

...
...

cN1 · · · cNN

⎞
⎟⎠

−1⎛
⎜⎝

f1
...
fN

⎞
⎟⎠,

(3.3)

assuming the weight matrix P = [pij] corresponds to the inverse of the covariance matrix C =
[cij].

Correspondingly, the least-squares prediction formula

f̂0 =
(
c01 · · · c0N

)
⎛
⎜⎝

c11 · · · c1N
...

...
...

cN1 · · · cNN

⎞
⎟⎠

−1⎛
⎜⎝

f1
...
fN

⎞
⎟⎠, (3.4)
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in which the quantities cij are defined in terms of the correlations between fi and fj , including
f0, assuming the expected value of f to be zero, E[f (x)] = 0. Notice that this expression is
of the form of the least-squares solution to an underdetermined linear problem as discussed
before. For prediction applications, the correlation terms are often modelled empirically using
correlation functions of the separation distance dij = ‖xi − xj‖, i, j = 0, . . . ,N.

When E[f(x)] is an unknown constant α, the normal equations for the unknown
coefficients λ1, . . . , λN and α are written explicitly as

⎛
⎜⎜⎜⎝

c11 · · · c1N 1
...

...
...

...
cN1 · · · cNN 1

1 · · · 1 0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

λ1
...
λN
α

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

f1
...
fN
0

⎞
⎟⎟⎟⎠ (3.5)

for some unknown Lagrange multiplier α. In general when E[f(x)] is modelled as a kth
degree polynomial, these normal equations become

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c11 · · · c1N 1 · · · xk
...

...
...

...
...

...
cN1 · · · cNN 1 xk

1 · · · 1 0 · · · 0
...

...
...

...
...

...
xk · · · xk 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ1
...
λN

α0
...
αk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f1
...
fN

0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.6)

for some unknown coefficients α0, . . . , αk.
Least-squares prediction problems can be classified differently depending on

application and other considerations. In different contexts, deterministic and probabilistic
interpretations are used and hence the inferences are different. Three methodologies are
mentioned here.

(a) Kriging methods with variograms or generalized covariance functions such as,
Cov(d) = −d or d3 for spatial distance d (see [11] for details).

(b) Radial Basis Function (RBF) methods with empirical RBFs as weighing functions,
such as, RBF(r) = r2 log r or (r2 + c2)1/2 for radial distance r and constant c (see,
e.g., [12] for more details).

(c) Least-Squares Collocation (LSC) methods with ordinary covariance functions C ≡
Cs + Cn with Cs denoting the signal part and Cn denoting the noise part of the
covariance matrix C.

Furthermore, generalized covariance functions (that is with positive power spectra) include
ordinary covariance functions and empirical RBFs that can often be interpreted as covariance
or correlation functions. Notice that the nonsingularity of the normal equation matrices is
always assumed to guarantee a solution without additional constraints.
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4. Solution Methodology for Normal Equations

The normal equation matrices ATA or AAT and the like are positive definite symmetric
matrices that lend themselves to LTL or LLT decompositions in terms of lower triangular
matrices L. The best known decomposition algorithm for such a matrix is the Cholesky
square-root algorithm which is usually applied simultaneously to the normal equation matrix
C and right-hand side vector (or column matrix) F as follows:

⎛
⎜⎜⎜⎜⎝

c11 c12 · · · c1N f1

c21 c22 · · · c2N f2
...

...
...

...
...

cN1 cN2 · · · cNN fN

⎞
⎟⎟⎟⎟⎠

Cholesky’s
square-root
−−−−−−−−−−−−−−−→

⎛
⎜⎜⎜⎜⎝

c′11 c′12 · · · c′1N f ′1

0 c′22 · · · c′2N f ′2
...

...
...

...
...

0 0 · · · c′NN f ′N

⎞
⎟⎟⎟⎟⎠
. (4.1)

The solution is then obtained as a back substitution in the resulting upper triangular system of
equations. The computational effort forN normal equations is approximately 1/3 of the effort
O(N3) required using inverse matrix strategies. Furthermore in the case of least-squares
adjustments of blocks of stereomodels, photographs and networks of geodetic stations, the
normal equation matrix is usually banded to B � N and the Cholesky’s algorithm only
requires O(NB2) in such cases. This is really advantageous and has been used in large
geodetic network, photogrammetric block adjustments, and most other similar least-squares
applications.

Furthermore, in the Cholesky square-root reduction of a normal equation matrix to an
upper (or lower) triangular matrix, the numerical conditioning is usually monitored by the
magnitude of the computed diagonal elements as these should remain positive for a positive
definite symmetric matrix. In some applications, the procedure of monitoring the magnitude
of the diagonal elements of the triangular matrix is used to decide on an optimal order for a
polynomial model which may be in terms of complex variables. Other similar strategies for
numerical analysis of least squares problems based on the triangular decomposition of the
normal equations matrix will be mentioned below.

However as mentioned in the previous section, the least-squares prediction problems
have a “normal” matrix of the general form

(
C D F
DT 0 0

)
(4.2)

with the matrix C symmetric and positive definite, D rectangular, and 0 denoting a zero
matrix. Such a “normal” matrix is obviously nonpositive definite and hence is not really
appropriate for the previous triangular matrix representation. However, the Cholesky’s
square-root procedure can be applied to the first N equations and then Givens rotations
can be applied to transform the remaining M rows into the upper triangular form. Givens
rotations are applied to two row vectors at any one time to eliminate the first nonzero element
of the second row vector thus transforming the system of equations into an upper triangular
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system for back substitution at any time. Explicit implementation details can be found in [13]
and elsewhere. Graphically, the situation is as follows:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c11 c12 · · · c1N d11 · · · d1M f1

c21 c22 · · · c2N d21 · · · d2M f2
...

...
...

...
...

...
...

...
cN1 cN2 · · · cNN dN1 · · · dNM fN

d11 d21 · · · dN1 0 · · · 0 0
...

...
...

...
...

...
...

...
d1M d2M · · · dNM 0 · · · 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Cholesky’s
square-root
−−−−−−−−−−−−−−−→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c′11 c′12 · · · c′1N d′11 · · · d′1M f ′1
0 c′22 · · · c′2N d′21 · · · d′2M f ′2
...

...
...

...
...

...
...

...
0 0 · · · c′NN d′N1 · · · d

′
NM f ′N

d11 d21 · · · dN1 0 · · · 0 0
...

...
...

...
...

...
...

...
d1M d2M · · · dNM 0 · · · 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Givens’
Rotations
−−−−−−−−−−−−→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c′′11 c′′12 · · · c′′1N d′′11 · · · d′′1M f ′′1
0 c′′22 · · · c′′2N d′′21 · · · d′′2M f ′′2
...

...
...

...
...

...
...

...
0 0 · · · c′′NN d′′N1 · · · d

′′
NM f ′′N

0 0 · · · 0 e′′11 · · · e′′1M g ′′1
...

...
...

...
...

...
...

...
0 0 · · · 0 0 · · · e′′MM g ′′M

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(4.3)

Notice that Givens rotations could be applied to the full N +M equations but the preceding
strategy is superior in terms of computational efficiency. Givens rotations have excellent
numerical stability characteristics but often require slightly more computational efforts than
the alternatives.

5. Singular Value Decomposition

For indepth analysis of least-squares results and other related applications, the Singular
Value Decomposition (SVD) approach is essential in practice and a brief overview follows.
Considering the preceding (rectangular M ×N) matrix A, its SVD gives

A = UΛVT , (5.1)
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where U is the matrix of (unit) eigenvectors of AAT , V is the matrix of (unit) eigenvectors of
ATA, and Λ is an M ×N matrix with diagonal elements (called the singular values) equal
to the square roots of the nonzero eigenvalues of ATA or AAT . By substitution, one readily
obtains

AAT =
(
UΛVT

)(
UΛVT

)T

= UΛVTVΛTUT

= U
(
ΛΛT

)
UT ,

ATA =
(
UΛVT

)T(
UΛVT

)

= VΛTUTUΛVT

= V
(
ΛTΛ

)
VT ,

(5.2)

where ΛΛT and ΛTΛ denote the diagonal matrices of the squares of the singular values of A
and dimensions M ×M and N ×N, respectively. The last step in both derivations follows
from the orthogonality of the (unit) eigenvectors in U and V, respectively. Their inverses are,
respectively,

(
AAT

)−1
= U
(
ΛΛT

)−1
UT ,

(
ATA

)−1
= V
(
ΛTΛ

)−1
VT ,

(5.3)

as matrix inversion does not change the eigenvectors in the SVD of a symmetric matrix.
The previous least-squares solution for the overdetermined system Ax = f is simply

x̂ =
(
ATA

)−1
AT f

= V
(
ΛTΛ

)−1
VTVΛTUT f

= V
(
ΛTΛ

)−1
ΛTUT f

= VΛ−UT f

(5.4)
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with the special notation Λ− = (ΛTΛ)
−1
ΛT and for the underdetermined case

x̂ = AT
(
AAT

)−1
f

= VΛTUTU
(
ΛΛT

)−1
UT f

= VΛT
(
ΛΛT

)−1
UT f

= VΛ+UT f

(5.5)

with the special notation Λ+ = ΛT (ΛΛT )
−1

. These Λ− and Λ+ are usually called generalized
inverses of Λ.

From a computational perspective, for an overdetermined system with M � N, it
may be more efficient to first perform a QR factorization of A with Q as an M ×N matrix
with orthogonal columns and an upper triangular matrix R of order N, and then compute
the SVD of R, since if A = QR and R = UΛVT , then the SVD of A is given by A = (QU)
ΛVT . Similarly, for an underdetermined system with M � N, it may be more efficient to
first perform an LQ factorization of A with a lower triangular matrix L of order M and an
M ×N matrix Q with orthogonal rows, and then compute the SVD of L, since if A = LQ and
L = UΛVT , then the SVD of A is given by A = UΛ(QTV)T . The SVD approach is often used
in spectral analysis and computing a minimum norm solution for (possibly) rank-deficient
linear least-squares and related problems. More discussion of the computational aspects can
be found, for example, in [14].

In practice, the SVD of a matrix has been described as “one of the most elegant
algorithms in numerical algebra for exposing quantitative information about the structure of
a system of linear equations” [15]. In current data assimilation and prediction research using
spatiotemporal processes such as in global change and other environmental applications, the
SVD approach has become very important for at least three problem areas.

First, considering sequences of discrete data x = (x1, x2, x3, . . . , xN) with zero mean
for simplicity associated with discrete times t1, t2, . . . , tM, and written in matrix form as

X =

⎛
⎜⎜⎜⎜⎜⎝

x1
1 x2

1 . . . xM1

x1
2 x2

2 . . . xM2
...

...
...

...
x1
N x2

N . . . xMN

⎞
⎟⎟⎟⎟⎟⎠

(5.6)

in which the superscripts correspond to the times t1, t2, . . . , tM. Such a convention with
columns corresponding to the data sequences at discrete times is quite common in
environmental applications. Then a SVD of this data matrix X yields X = UΛVT , as discussed
above. The columns of U are the Empirical Orthogonal Functions (EOFs) for the data matrix X
while the columns of V are the corresponding principal components. The data transformation
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UTx or more generally U∗x for a (complex) data vector x is usually called a Karhunen-Loève
transformation. Such resulting data sequences z = UTx are easily seen to be uncorrelated as

E
[
zzT
]
= E
[
UTxxTU

]
= UTE

[
xxT
]
U

= UT CxU = UTUΛUTU = Λ
(5.7)

which is most useful in practical applications. It is also important to notice that the EOFs can
be described as eigenvectors of the corresponding covariance matrix of the available data.
These are often called normal modes of the measured spatiotemporal process [16]. Since the
(power) spectrum of a data sequence is well known to correspond to the spectrum of its
(auto) covariance matrix, such normal modes have interesting interpretations in the context
of dynamical systems driven by noise (e.g., [17]). Further discussions can be found in [18]
and the references therein. An example of simulated application is shown in Figure 1(a) with
a spatial pattern of a box followed by two cones over a sinusoidal path, with the resulting time
series in Figure 1(b) of 20 occurrences of the pattern of 36 observations. Figure 1(c) shows the
first modal (spatial) pattern and the corresponding first singular values which are identical
to the input information except for the different scaling in amplitude and sign convention
of Mathematica 7 [19]. Analogous simulations can readily be done in two dimensions with
various patterns (see [20]). Such simulations show the potential of this methodology in the
analysis of environmental and other geophysical time series.

Second, in numerical conditioning analysis for any linear algebraic system of
equations, the singular values of the matrix give most relevant information about the
propagation of numerical errors from observations to estimated unknown parameters. For
instance, considering some symmetric and positive definite matrix B, consider the linear
algebraic system

Bu = v, (5.8)

and for some small perturbations δu and δv such that

Bδu = δv, (5.9)

then using the spectral norm, it is well known that

‖δu‖
‖u‖ ≤ ‖B‖ ·

∥∥B−1∥∥ · ‖δv‖‖v‖ =
λmax(B)
λmin(B)

· ‖δv‖‖v‖ , (5.10)

in which λmax(B)/λmin(B) ≡ κ(B) is the condition number of the matrix B in terms of its
maximum and minimum eigenvalues, λmax(B) and λmin(B), respectively. This provides a
powerful tool for the analysis of relative changes in the unknown parameters implied by
some relative perturbations in the observations.

Third, as the nonzero eigenvalues of ATA and AAT are identical, computations, and
numerical analysis in filtering and smoothing can take advantage of this fact in using the
smaller matrix in the least-squares computations. In several areas of environmental research,
enormous quantities of data and complex mathematical models lead to very large normal
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Figure 1: EOF application to template times sinusoidal trend function and extraction thereof.
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equation systems that require much computational efforts. Substantial reductions in the
Kalman filtering and data assimilation computations are implied by the proper choice of
covariance/information formulations but for indepth error analysis of the results, SVD-based
techniques become critical (see, e.g., [21]).

6. Model Identification and Reliability Considerations

As previously mentioned, alternatives to least squares (L2), such as the least magnitude
(L1) and least maximum (L∞), have advantages and disadvantages. First, the contributions
of errors and especially outliers will increase in the estimation procedure from L1 to L∞.
Therefore, in the absence of outliers, L∞ would be best while in the presence of large
errors, L1 or robust estimation is more appropriate. However considering the linear normal
equations with least squares, least squares are selected for most practical applications.
Outliers are a well-known problem with least squares and much literature exists to mitigate
the implications.

Furthermore, in numerous application contexts, assuming an algebraic formulation,
one has to decide on degrees and orders in regression modeling such as in curve fitting
and spectrum estimation. Considering a simple set of measurements or observations
{(ti, f(ti)); i = 1, 2, 3, . . . , N} to be modelled using an algebraic polynomial of the form
f(t) = a0 + a1t + a2t

2 + · · · . If the degree of the polynomial is unknown, then the least-squares
approach to estimating a0, a1, a2, . . . can always achieve a perfect fit to the measurements by
selecting the polynomial degree equal to N − 1. Actually, the variance of the residuals will
decrease with higher and higher degrees to become zero for degree N − 1. Hence, the least-
squares approach cannot be used to decide on the polynomial degree for such regression
applications. Furthermore, the approach alone can hardly be used to decide on some other
possible mathematical models such as f(t) = b0 + b1 cos(t) + b2 sin(t) + · · · as additional
information is necessary for model identification. Such model identification problems have
been studied extensively by Akaike [22, 23] and others (see [24] for further discussions and
references).

For example, the sample measurements {(1, 5), (2, 7), (3, 13), (4, 8), (5, 6)} with an
algebraic polynomial of the form y = a + bx + cx2 + · · · would lead to an exact fit for
degree 4. However, such high degree would likely be unacceptable because of the oscillations
between the data points which would imply uncertainty in any prediction. Considering the
least-squares estimates for degrees 0, 1, 2, 3, and 4,

q̂0(x) = 7.8,

q̂1(x) = 6.9 + 0.3x,

q̂2(x) = −2.6 + 8.44286x − 1.35714x2,

q̂3(x) = −1.2 + 6.47619x − 0.60714x2 − 0.08333x3,

q̂4(x) = 51.0 − 91.9167x + 59.2917x2 − 14.5833x3 + 1.20833x4

(6.1)

with corresponding error variances

σ̂2
0 = 9.7, σ̂2

1 = 9.475, σ̂2
2 = 3.02857, σ̂2

3 = 3.00357, σ̂2
4 = 0.0. (6.2)
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However, considering the (normalized) Akaike Information Criterion (AIC), defined as

AIC = log σ̂2 +
2M + 3
N

(6.3)

for approximating M (model) parameters using N measurements, one obtains

3.27213, 3.64866, 2.90809, 3.2998, (6.4)

corresponding to each degree 0, 1, 2, and 3, respectively, implying an optimal degree 2 for the
modeling as 2.90809 is the minimum AIC value. Other examples can be found in [24] and the
references therein.

In this context of least squares, the assumption of finite first and second moments
with Gaussian statistics interpretation have implications in terms of expected moments for
the estimated parameters. Essentially, assuming a given mathematical model, the given
variances for the measurements and/or observations and a priori variances for the unknown
parameters can be propagated using the variance propagation law into the estimated
parameters and interpreted at some confidence level such as 95%. This is the familiar
approach in geomatics with error ellipses reflecting the accuracy of measurements and/or
observations and the geometrical strength of a network in positioning.

For example, given positional information at two discrete points P1 and P2 with a
variance σ2, the mid point located by the arithmetic average of the coordinates of P1 and
P2 has a predicted variance σ2/2 when a linear model is known for any intermediate point.
However, when the location and/or definition of the mid point is ambiguous or unknown,
such as along some fuzzy line, its predicted uncertainty is likely to be much more than σ2/2.
In other words, the uncertainty in any estimation results is attributable to uncertainty in the
assumed mathematical model and in the observational information used.

Another illustrative example is in the prediction of some quantity g, such as gravity,
as a function of known data at the discrete points P1 and P2 with observational variance
σ2. At the mid point between P1 and P2, the average g value, that is, [g(P1) + g(P2)]/2, is
usually an adequate prediction of the g value there but its variance is likely to be greater
than σ2/2. Otherwise, why bother with measurements! It should be noticed that in nonlinear
and/or non-Gaussian situations, the error propagation is much more complex, and only
numerical Monte Carlo simulations offer a general strategy for uncertainty modeling (see
[25] for further details and references).

7. Concluding Remarks

Least squares are ubiquitous in applied science and engineering data processing. From a
mathematical perspective, a least-squares estimate is a (weighted) mean solution which may
be interpreted differently depending on the application context. Furthermore, any linear finite
problem, even an ill-posed one, has a unique solution in the “average sense”. Such a solution
is a BAE using a minimum quadratic norm or minimum variance, with the flexibility of
possible statistical interpretation as MLE for optimal and reliable predictions.

Advantages of the least-squares approach are essentially in the simple assumptions
(i.e., finite first and second moments), the unique estimates from linear normal equations,
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with excellent computational and applicability characteristics. Disadvantages of the least-
squares approach are mainly in terms of oversmoothing properties (such as in curve or
surface fitting) and relative overemphasis of outlier observations or measurements.

In terms of numerical computations, the least-squares approach has excellent
characteristics in terms of stability and efficiency. This is best seen using the SVD approach
for any indepth analysis of least-squares results. The readjustment of the geodetic networks
in the North American Datum of 1983 has demonstrated that nearly one million unknowns
can be handled reliably with only 32 bit arithmetic on conventional computer platforms (see
[26, 27]). A better numerical approach would be difficult to find!

Furthermore, it is also important to emphasize that least squares are not appropriate
for all types of estimation problems as there are numerous application contexts where a best
observation or measurement value needs to be selected among the available ones (as the most
frequent value or the one with minimum error). In other application contexts when dealing
with observations or measurements likely to be affected by outliers, a more robust estimate
such as a median value or L1 estimate may be preferable. No single estimation method can be
considered best or optimal for all applications as data characteristics and desired estimates
need to be considered.

Finally, some areas of current research and development in least squares and
computational analysis include multiresolution analysis and synthesis, data regularization
and fusion, EOFs of multidimensional time sequences, RBFs, and related techniques for
optimal data assimilation and prediction, especially in spatiotemporal processes. With
scientific data generally considered to be increasing faster than computational power, real
challenges in the analysis of current observations and measurements abound and strategies
have to become more sophisticated.
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