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We consider a nonlinear Volterra-Fredholm integral equation (NVFIE) of the second kind. The
Volterra kernel is time dependent, and the Fredholm kernel is position dependent. Existence and
uniqueness of the solution to this equation, under certain conditions, are discussed. The block-by-
block method is introduced to solve such equations numerically. Some numerical examples are
given to illustrate our results.

1. Introduction

Different methods are used to solve integral equations which are investigated from many
physical applications such as the mixed problems in the theory of elasticity. Popov [1]
applied the orthogonal polynomials method to solve the mixed problem in the mechanics
of continuous media. Badr [2] applied Toeplitz matrix method to solve a NVFIE. Abdou et al.
[3] discussed the solution of Harmmerstein-Volterra integral equation of the second kind. In
[4], Haci obtained, numerically, the solution of a system of Harmmerstein integral equations
in the space L,([a, b]). The equivalence between Volterra integral equation with degenerate
kernel and a linear system of differential equations is mentioned by Cochran [5]. Although
there are some works on Hermite-type collocation method for the second-kind VIEs with
smooth kernels, not too many studies have dealt with weakly singular kernel. For example,
Papatheodorou and Jesanis [6] used the collocation method and obtained the solution of
Volterra integrodifferential equation with weakly singular kernels. More information about
different analytical and numerical solutions of Volterra equations can be found in Davis [7],
Linz [8], Volterra [9], and Wolkenfelt [10].
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In this paper, we consider the following NVFIE:

t b
Px, t) = f(x, t) + )Lf —of i Ft,)K(x,v)y(t,y,¢(y,7))dydr, 0<t<T<1l. (1L1)

The existence of a unique solution for the above equation, under certain conditions, is granted
using fixed point theorem, where K(x, y) is the Fredholm kernel and F(t,7) is the Volterra
kernel. f(x,t) is called the free term, and the unknown function, ¢(x, t), is called the potential
function in the applied mathematics, and it will be determined. Both two functions ¢(x,t)
and f(x,t) are assumed in the same space. The parameter A has many physical meanings.
A numerical method is applied to this equation, and it is reduced it to a system of Volterra
integral equations of the second kind. Finally, the block-by-block method is used to obtain
the numerical solution of this system. Some examples are stated to illustrate the results.

2. Existence and Uniqueness of Solution

To guarantee the existence and uniqueness of solution to (1.1), we write (1.1) in the integral
operator form

Wo(x,t) = f(x,t) + Wo(x, 1), (2.1)

where
t pb
Witet) =1 [ [ F@okG ), p(y,7)dydr 22)

Also, we assume the following conditions:

(i) k(x,y) € L2([a,b] x [a,b]) and satisfies, in general, the condition {Ll: Ll: |k (x,
y)|2dxdy}1/2 = ¢* (¢* is a constant).

(ii) F(t,7) € C([0,T] x [0,T]), 0 <7 <t < T and satisfies 0 < F(t,7) < M, where M is a
constant.

(iii) The given function f(x,t) with its partial derivatives with respect to position and
time is continuous in the space L,([a, b] x [0,T]), and its norm is defined as || f|| =

/
max; x| fé {IZ |f(x,’r)|2dx}1 2d7‘| = H (H is a constant).
(iv) The known function y(7, v, $(y, 7)) satisfies the following conditions:
@) ly(my, ¢, T)llLo((abixor) < B,
®) ly(r,y, ¢y, 7)) —y(z,y,¢(y, 7)) < Nlp(y, 7) — ¢ (v, 7).

Under these conditions, using the Cauchy-Schwarz and Minkowski inequalities in conjunc-
tion with Schauders fixed point theorem, we easily can prove the following theorem.

Theorem 2.1. If the conditions (i)—(iv) are satisfied, then (1.1) has a unique solution in the space
LZ([a/ b] X C[O/ T])
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3. The Numerical Solution

In this section, we present a numerical method to solve (1.1). This method consists of two
phases.

In phase one, we rewrite this equation as a system of linear Volterra integral equations.
To do so, we choose a sufficiently small step size hy, and we assume a = xp < x1 <xp <--- <
XN, = b is a partition of the interval [a, b] with hy = b — a/N,. Then, at each point x,, (1.1)
becomes

Pu(t) = fult) + A JZ fb F(t,T)K(xn,v)y(T,y,¢(y,7))dydr, 0<t<T, (3.1)

where
Pn(t) = ¢(xn,t),  fult) = f(xn,t), n=0,1,2,..., Ny (3.2)
Replacing the integral fZ K(xn, y)y(t,y, ¢(y, 7))dy by a numerical integration rule of

the form Z7=0 wikyyi(t,yj, §j(1)), where k,j = k(x,, x;), then an approximate to (1.1) can be
found as a system of Volterra integral equations:

Pu(t) = fut) + /\Zw]-kn,]- fo E(t, 1)yi(t,yj, ¢j(1))dr, n=0,1,2,...,N,. (3.3)
i=0

In phase two, we use the block-by-block method to solve such system of integral equations
of Volterra type. The following subsection explains how this method works.

3.1. Block-by-Block Method, See [8]

Assume that we need to solve an equation of the form
t
u(t) =o(t) + )LJ‘ H(t,s,u(s))ds. (3.4)
0

The idea behind the block-by-block method is to divide the interval [0, ] into a mesh 0 = fy <
t<th<---<t, <--<tn, =t <T,and then we try to evaluate the value of the unknown
function u(t) at these points exceptat t = 0, where we have that #(0) = v(0). Using any known
rule, say Simpson’s rule, we have

u(tz) = U(tz) + .)L%{H(tz, to,u(to)) +4H(t2, tl,u(tl)) + H(tz, tz,u(tz))}. (35)

To obtain a value for u(t;), we introduce the point t1,, = h;/2, hy = t/N;, and then we use
Simpson’s rule again to obtain

u(t) = v(tn) + L H (b fo,u(t0)) + 4H (1, o, ultn ) + Ht b (k). (36)
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Replacing the value u(t;/2) by a quadratic interpolation using the values u, u;, and
Uy, we have

u(tin) = gu(to) + Zu(tl) - %u(tz) (3.7)

so that we can compute u(t1) by

u(ty) = o(t)

hy

+ .)Lg {H(tl, to, u(to)) +4H<t1, t1/2, [%u(to) + Zu(tl) - %u(tz) > + H(tl, t1, u(tl))}.

(3.8)

Equations (3.5) and (3.8) are a pair of simultaneous equations for u(t;) and wu(t;). For
sufficiently small h;, u(t;) and u(f;) can be found uniquely using any procedure such as
Netwon’s method.

In general, for m = 0,1,2,...,N; — 1, the approximate solution of (3.4) is evaluated
using the following two equations:

2m
u(t2m+1) = U(t2m+1) + )LhtZKsH(thH/ ts, u(ts))
s=0

h
+ zt {H(t2m+1/ th/ u(tzm))

3 3 1
+4H <t2m+1/t2m+1/2/ [gu(th) + Zu(fzmn) - gu(t2m+2)]>

3.9
+H (tama1, tom+1, u(tome)) }, (3:9)

2n

U(trams2) = U(toms2) + )LhtZKsH(thJrL ts, u(ts))
5=0

h
+ gt {H (tams2, tom, u(tom))
+4H (tams2, tome1, U(tame2)) + H (foma2, tome2, U(tome2)) ),

where

ks =211,4,2,2,...,2,41}, s=0,1,2,...,2m, (3.10)

Wl =

h
toms1/2 = tam + Et (3.11)

At each subinterval [t2+1, t2m+2], We solve these two equations simultaneously for the
unknowns u(ty,4+1) and u(tz,,42), so that we obtain a block of unknowns at a time.
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3.2. Application of the Block-by-Block Method on the NVFIE

Combining the previous results, we obtain a new scheme defined by the following two
equations:

s=0

n 2m
¢n(t2m+l) = fn (t2m+1) + /\Zw] . htZKsF(thH/ts)k(xn/ y])Y] (tS/ (,b] (ts))
j=0

h
+ gt {F(t2m+1/ tom)Yn (t2m, Pn(tom)) + 4F (tomet, tame1/2)

X [%Yn(th/ ¢n(t2m)) + ZY] (t2m+1/ ¢n(t2m+1)) - %Yn (t2m+2/ ¢n(t2m+2))

+F (tama1, tame1) Yn (b2met, Pn(b2ms1)) },

n 2m
¢n(t2m+2) = fn (t2m+2) + /\ijhtZKsF(tZTHZ/ ts)k(xn/ yj)Yj(tS/ (,b] (ts)>

j=0 s=0
hy
3 {F(tams2, tom) Yn (t2m, Pultam)) + 4F (b2ma2, tama1) Yn (F2me2, Pn(toms2) )

+F (tams2, tame2) Yn (t2me2, Pn(toms2)) ),
(3.12)

where g,(tp) = g(Xa, tp).

These two equations are two nonlinear equations in the two unknown ¢(-, t2,,+1) and
¢ (-, tom+2), and so they can be determined uniquely using any procedure such as Netwons
method. By repetitions, we get the solution ¢(:, t,,) foreachm =1,2,...,2N;.

4. Examples

We use the block-by-block method to solve numerically the following examples when

(i) case 1: y(t, x, p(x, 1)) = ¢p(x, 1),
(ii) case 2: y(t, x, p(x,1)) = ¢*(x, 1).

Example 4.1. Solve the Volterra-Fredholm integral equation
t ol
P(x,t) = f(x,t) + J\J‘ f eV 1ty (1,¢(y,7))dydr, A=0.1,0<t<T. (4.1)
0Jo

The exact solution of this integral equation is ¢(x,t) = t?e*. Tables 1 and 2 list the error at
different values of x and f for different value of N, (number of partitions of the interval [a, b]
and 2N; (number of partitions of the interval [0, T]; T =0.5).
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Table 1
N, =20, N; =8, case 1 N, =20, N; =8, case 2
x t Error x t Error
0.0 0.03125 5.6968e — 9 0.0 0.03125 1.187911448e — 13
0.0 0.0625 8.2956¢e — 8 0.0 0.0625 1.520526653¢e — 11
0.0 0.09375 1.153468¢ — 6 0.0 0.09375 2.597962336¢ — 10
0.0 0.125 2.45626e — 6 0.0 0.125 1.946274116e — 9
0.0 0.15625 1.153968¢ — 6 0.0 0.15625 9.280558183¢ — 9
0.0 0.1875 1.676568e — 5 0.0 0.1875 3.325391791e - 8
0.0 0.21875 4.9747e - 5 0.0 0.21875 9.782961574e - 8
0.0 0.25 6.225697e — 5 0.0 0.25 2.491230869¢ — 7
0.0 0.28125 1.44479962¢ — 4 0.0 0.28125 5.681743627e — 7
0.0 0.3125 1.67653%e — 4 0.0 0.3125 1.187911447¢ - 6
0.0 0.34375 3.358295¢ - 4 0.0 0.34375 2.314903342¢ - 6
0.0 0.375 3.708329¢ - 4 0.0 0.375 4.256501464¢ - 6
0.0 0.40625 6.718015e — 4 0.0 0.40625 7.453968013¢ — 6
0.0 0.4375 7.185560¢e — 3 0.0 0.4375 1.252219045e - 5
0.0 0.46875 1.2112901e - 3 0.0 0.46875 2.029657908¢ — 5
Table 2
N, =20, N; =12, case 1 N, =20, N; =12, case 2
x t Error x t Error
0.15 0.0208 9.043e - 10 0.15 0.0208 7e — 15
0.15 0.0417 1.3740e - 8 0.15 0.0417 9.1e - 13
0.15 0.0625 1.85378e — 7 0.15 0.0625 1.544e - 11
0.15 0.0833 4.10254e -7 0.15 0.0833 1.165¢ — 10
0.15 0.1042 1.89677e — 6 0.15 0.10417 5.528e — 10
0.15 0.1250 2.84822e — 6 0.15 0.125 1.9913e -9
0.15 0.1458 8.37159%¢ - 6 0.15 0.1458 5.8391e -9
0.15 0.16667 1.080563¢ — 5 0.15 0.16667 1.49276e -9
0.15 0.1875 2.493218e -5 0.15 0.1875 3.39692¢ - 8
0.15 0.2083 2.97599%e -5 0.15 0.2083 7.12269¢ - 8
0.15 0.2292 5.912387¢ - 5 0.15 0.2292 1.38578e — 7
0.15 0.25 6.732566e — 5 0.15 0.250 2.55370e -7
0.15 0.2708 1.2085744¢ — 4 0.15 0.27083 4.46663¢ — 7
0.15 0.2917 1.3339764¢ — 4 0.15 0.2917 7.51666e — 7
0.15 0.3125 2.225555e — 4 0.15 0.31250 3.00819388¢e — 4

Example 4.2. Solve the Volterra-Fredholm integral equation
t ol
P(x, 1) = f(x, 1) + J\J‘ f sin(x +y) - °¢(y,7)dydr, 1=02,0<t<1. (4.2)
0Jo

The exact solution of this integral equation is ¢(x,t) = t? - sin(x). Tables 3 and 4 list the error
at different values of x and t for different value of Nx and 2Nt, T = 0.5.
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Table 3
N, =20, N; =15, case 1 N, =20, N; =15, case 2
x t Error x t Error
0.3 0.01666666667 5.945¢ - 11 0.3 0.0167 0.0
0.3 0.03333333334 6.357e — 10 0.3 0.033 1.0e - 13
0.3 0.05000000001 1.14903e — 8 0.3 0.05 3.6e — 12
0.3 0.06666666668 1.7798e — 8 0.3 0.067 2e—-12
0.3 0.08333333335 1.05510e — 7 0.3 0.083 9.5e - 11
0.3 0.1000000000 1.10750 e - 7 0.3 0.1 6.1-10
0.3 0.1166666667 4.09431e -7 0.3 0.117 5.94e - 10
0.3 0.1333333334 3.58103¢ — 7 0.3 0.133 7.52e - 10
0.3 0.1500000001 0.000001.053654 0.3 0.15 1.533e¢ -9
0.3 0.1666666668 8.03699¢ -7 0.3 0.167 5.029¢ -9
0.3 0.1833333335 2.114448e - 6 0.3 0.183 2.06e -9
0.3 0.2000000002 1.39937e - 6 0.3 0.2 2.278¢ — 8
0.3 0.2166666669 3.55673e — 6 0.3 0.217 1.446e - 8
0.3 0.2333333336 1.94771e - 6 0.3 0.233 7929 -8
0.3 0.2500000003 5.17671e — 6 0.3 0.25 7.235¢ - 8
Table 4
N, =30, N; =20, case 1 N, =30, N; =20, case 2
x t Error x t Error
0.9667 0.05 2.4409¢ — 8 0.9667 0.05 5540 e -9
0.9667 0.0625 1.04382¢ — 7 0.9667 0.0625 1.6736e — 9
0.9667 0.075 1.65928e — 7 0.9667 0.075 4.1744e - 8
0.9667 0.0875 4.48488e -7 0.9667 0.0875 1.928724554e — 3
0.9667 0.1 6.13893¢ -7 0.9667 0.1 1.928987702e — 3
0.9667 0.1125 1.30420e - 6 0.9667 0.1125 3.1009¢e -7
0.9667 0.125 1.65044¢e - 6 0.9667 0.125 5.2633e -7
0.9667 0.1375 3.02692¢ - 6 0.9667 0.1375 8.3017e -7
0.9667 0.15 3.65065¢ — 6 0.9667 0.15 1.292513e - 6
0.9667 0.1625 6.06528¢ — 6 0.9667 0.1625 3.46926¢e — 3
0.9667 0.175 7.08188e — 6 0.9667 0.175 3.47390471e - 3
0.9667 0.1875 1.096068¢ — 6 0.9667 0.1875 3.82799¢ - 6
0.9667 0.2 1.250315¢ -5 0.9667 0.2 5.31250e — 6
0.9667 0.2125 1.834653e -5 0.967 0.2125 4.49134734e - 3
0.9667 0.225 2.056455e — 5 0.967 0.225 4.50775985¢e — 3

5. Conclusion

Two rules of numerical integration methods are used to solve (1.1). One of these rules is
of order O(hy), the rectangle method, which is applied on the integral with respect to the
variable x. The other method is of higher-order, O(hf), the block-by-block method, and is
applied on the integral with respect to the variable t where we used the fact that ¢(x,0) =
f(x,0). More information about the solution could allow us to use higher-order method with

the block-by-block method.
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