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This paper discusses the estimation of autocorrelation function (ACF) of fractional Gaussian noise
(fGn) with long-range dependence (LRD). A variance bound of ACF estimation of one block of fGn
with LRD for a given value of the Hurst parameter (H) is given. The present bound provides a
guideline to require the block size to guarantee that the variance of ACF estimation of one block of
fGn with LRD for a givenH value does not exceed the predetermined variance bound regardless of
the start point of the block. In addition, the present result implies that the error of ACF estimation
of a block of fGn with LRD depends only on the number of data points within the sample and not
on the actual sample length in time. For a given block size, the error is found to be larger for fGn
with stronger LRD than that with weaker LRD.

1. Introduction

ACF analysis, or equivalently spectral analysis according to the Wiener-Khintchine theorem,
plays a role in many areas of sciences and technologies (see, e.g., [1, 2]), such as structural
engineering [3–7]. In engineering, ACF or its Fourier transform (power spectrum density
function (PSD)) can only be estimated according to a given record length in measurement.
Note that the random load simulated in a laboratory test may be generated based on a
predetermined ACF or PSD; see, for example, [8–13]. Thus, the quality of ACF or PSD
estimation has great impact on structure analysis and design.

The literature of error analysis (mainly, bias, and variance) of ACF/PSD estimation of
an ordinary random process is quite rich; see, for example, [1, 2, 14–19]. By ordinary random
processes, we mean that the ACF and PSD of a process are ordinary functions except the
Dirac delta function that is the ACF of white noise.
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Note that processes with LRD or long-memory substantially differ from ordinary
processes [20]. By LRD, we mean that the ACF of a process is nonsummable in the discrete
case or nonintegrable in the continuous case [20]. Hence, its PSD should be considered in the
sense of generalized function over the Schwartz space of test functions. FGn introduced in
[21] is a widely used model of stationary fractal time series, which has found increasingly
wide applications in many fields of sciences and technologies, ranging from hydrology to
network traffic; see, for example, [22–45]. Note that the statistics of a zero mean Gaussian
process are completely determined in terms of its ACF. Therefore, when using fGn-type load
in structural engineering, the method to assure the quality of its ACF estimation is desired. In
passing, we mention that, in the field of the Internet, ACF estimation of fGn-type teletraffic is
utilized for detection of distributed denial-of-service flood attacks [32].

In the field, [46] discussed the statistical error of the structure function of Gaussian
random fractals, and [47] studied the bias of the sample autocorrelations of fractional noise.
This paper aims at providing a variance bound of the ACF estimation of one block of fGn.

An ACF is usually estimated on a block-by-block basis [1, 10, 13], where block size
means the number of data points of a block of sample. Note that the ACF estimation of
different blocks may be different, resulting in the estimation error caused by sectioning.
The error resulted from sectioning can be reduced by the skill of averaging [1]. Different
from conventional methods to reduce errors based on averaging, this research studies how to
determine the size of one block according to a given degree of accuracy of ACF estimation of
fGn with LRD.

Intuitively, if the size of one block is large enough, the ACF estimation will be
independent of the start point for sectioning the block. Let N be the block size of fGn with
LRD. The aim of this paper is to provide a formula to calculate the variance bound of ACF
estimation of fGn with LRD for a given N and a given value of H.

The remaining article is organized as follows. Section 2 presents an error bound of ACF
estimation of one block of fGn with LRD. Discussions are given in Section 3. Finally, Section 4
concludes the paper.

2. Variance Bound of ACF Estimation of One Block of fGn with LRD

2.1. Preliminaries

Let B(t) be ordinary Brownian motion (Bm) for t ≥ 0 and B(0) = 0 [48]. The stationary white
noise can be taken as B′(t), which is the derivative of B(t) in the domain of generalized
functions. Let 0D

−v
t be the Riemann-Liouville integral operator [49, 50]. Then,

0D
−v
t B′(t) =

1
Γ(v)

∫ t

0
(t − u)v−1dB(u), (2.1)

where Γ is the Gamma function. Replacing ν with H + 1/2 in (2.1) yields

0D
−(H+1/2)
t B′(t) =

1
Γ(H + 1/2)

∫ t

0
(t − u)H−1/2dB(u) � B0

H(t). (2.2)

In the above expression, B0
H(t) is termed the Riemann-Liouville fractional Brownian motion

(fBm) and 0 < H < 1. This fBm is self-similar but does not have stationary increments. In
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passing, it is noted that the fBm described in the sense of the Riemann-Liouville fractional
integral can be explained as the response of a fractional system, the impulse response of
which is tH−1/2/Γ(H + 1/2) under the excitation of white noise from a view of the theory of
linear fractional systems discussed in [51, 52].

Following Mandelbrot and van Ness [21], the fBm that is self-similar and has
stationary increments is defined for t > 0 by

BH(t) − BH(0) =
1

Γ(H + 1/2)

⎧⎪⎪⎨
⎪⎪⎩

∫0

−∞

[
(t − u)H−0.5 − (−u)H−0.5

]
dB(u)

+
∫ t

0
(t − u)H−0.5dB(u)

⎫⎪⎪⎬
⎪⎪⎭
, (2.3)

where BH(0) = b0 is the starting value at time 0. If b0 = 0, B1/2(t) = B(t). Hence, fBm
generalizes Bm. The fBm expressed by (2.3) is the fractional integral of B(t) in the sense of
Weyl (see [49, 50] for the details of the fractional Weyl integral operator).

FGn is the increment process of fBm. It is stationary and self-affine with parameter H.
Let X(t) be fGn in the continuous case. Then, the ACF of X(t) is given by

r(τ) =
σ2ε2H−2

2

[( |τ |
ε

+ 1
)2H

+
∣∣∣∣ |τ |ε − 1

∣∣∣∣
2H

− 2
∣∣∣∣τε

∣∣∣∣
2H

]
, τ ∈ R, (2.4)

where 0 < H < 1, σ2 = (Hπ)−1Γ(1 − 2H) cos(Hπ) is the intensity of fGn, and ε > 0 is used by
regularizing fBm so that the regularized fBm is differentiable [21, pages 427-428]. The PSD of
X(t) is given by (Li and Lim [53])

S(ω) = σ2 sin(Hπ)Γ(2H + 1)|ω|1−2H. (2.5)

Letting ε = 1 and replacing τ ∈ R by k ∈ Z in (2.4) yields the ACF of the discrete fGn (dfGn):

r(k) =
σ2

2

[
(|k| + 1)2H + ||k| − 1|2H − 2|k|2H

]
, k ∈ Z. (2.6)

Recall that a stationary Gaussian process with ACF r(τ) is of LRD if [20]

∫∞
0
r(τ)dτ =∞; (2.7)

otherwise it is of short-range dependence (SRD). Another definition of LRD is given as
follows. For asymptotically large time scales, if

r(τ) ∼ τ−β, β ∈ (0, 1) as τ −→ ∞, (2.8)

then the process is of LRD.
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Note that the expression 0.5[(k + 1)2H − 2k 2H + (k − 1)2H ] described in (2.6) is the finite
second-order difference of 0.5(k)2H . Approximating it with the second-order differential of 0.5
(k)2H yields

0.5
[
(k + 1)2H − 2k2H + (k − 1)2H

]
≈ H(2H − 1)(k)2H−2. (2.9)

Expressing β in (2.8) by the Hurst parameter H gives β = 2 − 2H, or

H = 1 −
β

2
. (2.10)

The LRD condition expressed by H therefore is 0.5 <H < 1. The larger the H value, the stronger
the long-range persistence.

FGn contains three subclasses of time series. In the case of 0.5 < H < 1, r(τ) is positive
and finite for all τ . It is monotonously decreasing but nonintegrable. In fact, from the ACF
of dfGn described by (2.9), one immediately has

∑∞
0 k2H−2 = ∞. Thus, for 0.5 < H < 1, the

corresponding fGn is of LRD. ForH ∈ (0, 0.5), the integral of r(τ) is zero. Hence, fGn is of SRD
in this case. Moreover, r(τ) changes its sign and becomes negative for some τ proportional to
ε in the parameter domain [21, page 434]. FGn reduces to white noise when H = 0.5.

Note that if r(τ) is sufficiently smooth on (0,∞) and if

r(0) − r(τ) ∼ c|τ |α for |τ | −→ 0, (2.11)

where c is a constant, then one has the fractal dimension of X(t) as

D = 2 − α
2

; (2.12)

see, for example, [54–57]. The local irregularity of the sample paths is measured by α, which
can be regarded as the fractal index of the process. Thus, the behaviour of r(τ) near the origin
determines the local irregularity or the local self-similarity of the sample paths. The larger the
D value, the higher the local irregularity.

Now, in the case of ε = 1, we apply the binomial series to r(τ). Then, one has

r(0) − r(τ) ∼ c|τ |2H for |τ | −→ 0. (2.13)

Therefore, one immediately gets

D = 2 −H. (2.14)

Hence, H measures both LRD and self-similarity of fGn. In other words, the local properties
of fGn are reflected in the global ones as remarked by Mandelbrot [58, page 27].

Figures 1(a) and 1(b) give the plots of the ACFs of fGn with LRD and SRD in the case
of ε = 1, respectively.
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Figure 1: Plots of ACF of fractional Gaussian noise. (a) ACF of fGn with LRD. Solid line is for H = 0.95, dot
line is for H = 0.75, and dadot line is for H = 0.55. (b) ACF of fGn with SRD. Solid line is for H = 0.45, dot
line is for H = 0.25, and dadot line is for H = 0.05.

2.2. Variance Bound

In practical terms, the number of measured data points within a sample of fGn is finite. Let a
positive integer N be the number of data points of a measured sample of dfGn sequence x(i).
Then, the ACF of x(i) is estimated by

R(k) =
1
N

N∑
i=1

x(i)x(i + k). (2.15)

Usually, for l,m ∈ Z+,

1
N

(m+1)N∑
i=mN

x(i)x(i + k)/=
1
N

(l+1)N∑
i=lN

x(i)x(i + k). (2.16)

Therefore, R(k) is a random variable.
Let M2(R) be the mean square error in terms of R. Denote R(k) by R(k; H, N). The aim

of the statistical error analysis in this research is to derive a relationship between M2(R) and
N as well as H so as to establish a reference guideline for requiring N under the conditions
that the bound of M2(R) and the value of H are given.

Theorem 2.1. Let x(i) be dfGn series with LRD. Let r(k) be the true ACF of x(i). Let N be the
number of data points of a sample sequence. LetR(k) be an estimate of r(k). Let Var(R) be the variance
of R. Then,

Var(R) ≤ 4|Γ(1 − 2H)|2cos2(Hπ)(2H − 1)2

π2N

N∑
i=1

(i)4H−4. (2.17)
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Proof. Mathematically, r(k) is computed over infinite interval [1, 2, 59]:

r(k) = E[x(i)x(i + k)] = lim
N→∞

1
N

N∑
i=0

x(i)x(i + k). (P-1)

In practice, r(k) can only be estimated with a finite sequence. Therefore,

r(k) ≈ R(k) = 1
N

N0+N∑
i=N0

x(i)x(i + k), (P-2)

where N0 is the start point.
Let b2(R) be the bias of R. Then, M2(R) = E[(r − R)2] = Var(R) +b2(R). Since

E[R(τ)] =
1
N

N0+N∑
i=N0

E[x(i)x(i + k)] =
1
N

N0+N∑
i=N0

r(k) = r(k), (P-3)

R(k) is the unbiased estimate of r(k) and M2(R) = Var(R) accordingly. We need to express
Var(R) by the following proposition to prove the theorem.

Proposition 2.2. Let x(i) be dfGn with LRD. Let r(k) be the true ACF of x(i). LetN be the number
of data points of a sample sequence. Let R(k) be an estimate of r(k). Let Var(R ) be the variance of R.
Suppose that r(k) is monotonously decreasing and r(k) ≥ 0. Then,

Var(R) ≤ 4
N

N∑
i=0

r2(k). (P-4)

Proof. As Var(R) = E{[R − E(R)]2} = E(R2) – E2(R), according to (P-3), one has

Var(R) = E
(
R2

)
− r2. (P-5)

Expanding E(R2) yields

E
(
R2

)
= E

⎧⎨
⎩
[

1
N

N0+N∑
N0

x(i)x(i + k)

]2
⎫⎬
⎭

= E

[
1
N2

N0+N∑
N0

x(i1)x(i1 + k)
N0+N∑
N0

x(i2)x(i2 + k)

]

= E

[
1
N2

N0+N∑
N0

N0+N∑
N0

x(i1)x(i2)x(i1 + k)x(i2 + k)

]

=
1
N2

N0+N∑
N0

N0+N∑
N0

E[x(i1)x(i2)x(i1 + k)x(i2 + k)].

(P-6)
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Thus,

Var(R) =
1
N2

N0+N∑
N0

N0+N∑
N0

E[x(i1)x(i2)x(i1 + k)x(i2 + k)] − r2(k). (P-7)

Let

X1 = x(n1),

X2 = x(n2),

X3 = x(n1 + k),

X4 = x(n2 + k).

(P-8)

Then,

E[x(n1)x(n2)x(n1 + k)x(n2 + k)] = E(X1X2X3X4). (P-9)

Since x is Gaussian, random variables X1, X2, X3, and X4 have a joint-normal distribution
and E(X1X2X3X4) = m12m34 +m13m24 +m14m23, where

m12 = E[x(n1)x(n2)] = r(n2 − n1),

m13 = E[x(n1)x(n1 + k)] = r(k),

m14 = E[x(n1)x(n2 + k)] = r(n2 − n1 + k),

m23 = E[x(n2)x(n1 + k)] = r(n1 − n2 + k),

m24 = E[x(n2)x(n2 + k)] = r(k),

m34 = E[x(n1)x(n2 + k)] = r(n2 − n1).

(P-10)

Therefore,

1
N2

N0+N∑
N0

N0+N∑
N0

E[x(i1)x(i2)x(i1 + k)x(i2 + k)] (P-11)

=
1
N2

N0+N∑
N0

N0+N∑
N0

E(X1X2X3X4)

=
1
N2

N0+N∑
N0

N0+N∑
N0

(m12m34 +m13m24 +m14m23)
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=
1
N2

N0+N∑
N0

N0+N∑
N0

r2(i2 − i1) + r2(k) + r(i2 − i1 + k)r(i1 − i2 + k)

=
1
N2

N0+N∑
N0

N0+N∑
N0

r2(i2 − i1) + r(i2 − i1 + k)r(i1 − i2 + k) + r2(k).

(2.18)

According to (P-6), the variance is expressed as

Var(R) =
1
N2

N0+N∑
N0

N0+N∑
N0

r2(i2 − i1) + r(i2 − i1 + k)r(i1 − i2 + k). (P-12)

Replacing (i2 − i1) with i in the above expression yields

Var(R) =
1
N2

N0+N∑
i1=N0

N0−N1+N∑
i=N0

r2(i) + r(i + k)r(−i + k) = 1
N2

N0+N∑
i1=N0

N0−N1+N∑
i=N0

f(i), (P-13)

where f(i) = r2(i) + r(i + k)r(−i + k). Without losing generality, let N0 = 0. Then, the above
becomes

Var(R) =
1
N2

N∑
i=0

(N − i)f(i) + 1
N2

0∑
i=−N

(N + i)f(i). (P-14)

Since ACF is an even function, the above expression is written by

Var(R) =
2
N2

N∑
i=0

(N − i)f(i) = 2
N2

N∑
i=0

(N − i)
[
r2(i) + r(i + k)r(−i + k)

]

≤ 2
N

N∑
i=0

∣∣∣∣1 − i

N

∣∣∣∣
∣∣∣r2(i) + r(i + k)r(−i + k)

∣∣∣

≤ 2
N

N∑
i=0

∣∣∣r2(i) + r(i + k)r(−i + k)
∣∣∣ ≤ 4

N

N∑
i=0

r2(i).

(2.19)

Therefore, Proposition 2.2 holds.
Now, replacing r(k) with (2.6) yields

Var(R) ≤ 4
N

N∑
i=0

r2(i) ≤ 4
N

N∑
i=1

r2(i) ≤ σ
4

N

N∑
i=1

[
(i + 1)2H − 2i2H + (i − 1)2H

]2
. (P-15)
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Figure 2: Error bound s(N, H). (a) H = 0.60, 0.70. (b) H = 0.80, 0.90.

According to (2.9), replacing [(i + 1)2H − 2i2H + (i − 1)2H] on the right hand of the above
expression by (i)2H , we have

Var(R) ≤ 4|Γ(1 − 2H)|2cos2(Hπ)(2H − 1)2

π2N

N∑
i=1

(i)4H−4. (2.20)

Theorem results.

The above formula represents an upper bound of Var(R). Denote by s(N,H) the
bound of standard deviation. Then,

s(N,H) =
2Γ(1 − 2H) cos(Hπ)|2H − 1|

π

√√√√ 1
N

N∑
i=1

(i)4H−4. (2.21)

We illustrate s(N, H) in terms of N by Figure 2 for H = 0.60, 0.70, 0.80, and 0.90.
From Figure 2, we see that s(N,H1) > s(N,H2) for H1 > H2, meaning that the error

of ACF estimation of fGn is larger with stronger LRD than that with weaker LRD.

3. Discussions

3.1. To Avoid Misleading Result of ACF Estimation

Recall that processes with LRD substantiality differ from those with SRD [20]. Therefore,
possible SRD signs of an ACF estimate of an fGn series that is of LRD may be taken as a
misleading result of ACF estimation.
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Figure 3: Case study. Solid line: theoretic ACF of fGn. Dot line: ACF estimate. (a) FGn with H = 0.75. (b)
AFC estimate for N = 256. (c) The first 64 points of Figure 3(b). (d) The first 128 points of Figure 3(b).

Suppose that we have a block of fGn with H = 0.75. Hence, this series is of LRD.
Figure 3(a) shows an fGn series with H = 0.75, which is synthesized with the method given
in [60].

Assume the block size N = 256. Then, we have Var(R) ≤ 0.015 according to
Theorem 2.1. The dotted line in Figure 3(b) indicates its ACF estimation with N = 256 and
the solid line in Figure 3(b) shows the theoretical ACF of fGn with H = 0.75. We note that the
error regarding the ACF estimate reflected by the dotted line in Figure 3(b) is severe because
many points of the dotted line are negative. Thus, it may probably confuse the property of
the positive correlation (i.e., LRD) of the data being processed. Consequently, by the dotted
line in Figure 3(b), one might likely be misled to take the data being processed (Figure 3(a))
as SRD. Figures 3(c) and 3(d) show the first 64 and 128 points of Figure 3(b), respectively.
They again show the possible confusions caused by severe estimation error.

Now we increase the block size such that N = 2048. Then, one has Var(R) ≤ 2.5 ×
10−3 according to (2.17). In this case, the ACF estimation is indicated by the dotted line in
Figure 4(a). Comparing Figure 4(a) to Figure 3(b), we see that the error of ACF estimation is
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Figure 4: Solid line: theoretic ACF of FGN. Dot line: ACF estimate. (a) ACF estimate of fGn with H = 0.75
for N = 2048. (b) The first 64 points of Figure 4(b). (c) The first 128 points of Figure 4(b). (d) The first 256
points of Figure 4(b).

considerably reduced when N increases to 2048 because most data points of the ACF estimate
are positive. Figures 4(b), 4(c), and 4(d) give the plots of the first 64, 128, and 256 points of
Figure 4(a), respectively. They evidently interpret the improvement of the quality of ACF
estimation of one block of fGn with LRD by increasing the block size.

From the above, one sees that the accuracy of ACF estimate of fGn with LRD can be
increased if the block size increases. Therefore, in addition to the direct way to increase the
record length, increasing the sampling rate in measurement of fGn to be processed may yet
be a way to increase the accuracy of the ACF estimation in the case that the block size is given.

3.2. One Block Estimation

The previous discussions regarding ACF estimation of fGn with LRD do not relate to
averaging. In fact, once the block size N is such that it meets the required accuracy according
to Theorem 2.1, the ACF estimation is independent of the start point of the block. That is, for



12 Mathematical Problems in Engineering

anyN0 ∈ Z+, (1/N)
∑N0+N

i=N0
x(i)x(i+k) yields an ACF estimate, the error of which is bounded

based on Theorem 2.1. Further, we note that the discussed ACF estimation does not relate to
sectioning. As a matter of fact, for each m ∈ Z+, (1/N)

∑(m+1)N
i=mN x(i)x(i + k) yields an ACF

estimate, the error of which is bounded by (2.17).

3.3. Remarks

In the field of fractional order signal processing (see, e.g., [61]), [62] recently introduced
a method to obtain a reliable estimation of H based on fractional Fourier transform for
processing very long experimental time series locally. It is worth noting that the present error
bound in this paper may yet be an explanation why the reliable estimation of H discussed in
[62] requires long series.

Finally, we note that the ACF estimate expressed by (2.15) is biased one. However,
that does not matter because the present variance bound relates to the fluctuation of the ACF
estimate regardless of whether it is biased or not.

4. Conclusions

We have established an error bound of ACF estimation of one block of fGn with LRD. It has
been shown that the error does not depend on the absolute length of the sample but only
relies on the number of data points, that is, the block size N, of the sample. The error of an
ACF estimate of fGn with stronger LRD is larger than that with weaker LRD for a given N.
The discussed ACF estimation is not related to averaging. The accuracy of an ACF estimate of
a block of fGn with LRD can be guaranteed once the block size is selected according to (2.17)
without the relation to sectioning.
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