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This article deals with the application of the periodized harmonic wavelets for solution of integral
equations and eigenvalue problems. The solution is searched as a series of products of wavelet
coefficients and wavelets. The absolute error for a general case of the wavelet approximation was
analytically estimated.

1. Introduction

Mathematical models describe a variety of physical and engineering problems and processes
which can be represented by integral equations (IEs). The homogeneous Fredholm IE is
written as follows:

b
Af(x) - f K(x,t)f(t)dt =0, (1.1)

where a and b are finite numbers, the kernel K (x, t) is known function, and A and f (x) are the
unknown eigenvalue and associated eigenfunction. Equation (1.1) has a nontrivial solution
only for some values of \.

There exist two different methods to solve IEs numerically. The first one is to expand
the equation by the appropriate set of basis functions, such as the classical orthogonal
polynomials [1] or wavelets (e.g. [2, 3]), and to reduce the equation to simultaneous
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equations with respect to the expansion coefficients. The second method is to use the
trapezoidal formula for integration [4]. Since we are interested in application of periodic
harmonic wavelets (PHWSs) as basis functions, we will focus our attention on the first
approach.

These methods have their own advantages and disadvantages. The main advantage
of our approach over the existing wavelet methods is that the wavelet expansion coefficients
can be computed analytically. In addition, it will be shown that the computational cost of our
approach is low and the accuracy is high. It is worth to be mentioned that the application
of wavelets takes a special place in the modern computational methods thanks to quick
convergence of a series of wavelets and the possibility to find the solution with a low
approximation error.

The pioneering contribution into the wavelet approach for solution of IEs belongs to
Beylkin et al. [5]. There were many other approaches by, for example, [2, 6, 7] towards this
problem. The interest in the wavelet approach for solution of IEs is popular nowadays [8].

The most part of the existing research programs is devoted to solution of the Fredholm
and Volterra-type IEs. The Galerkin and collocation methods are mainly used in such papers
[2, 6,7, 9], where besides the well-known Daubechies wavelets many other wavelets have
been used, such as the Haar wavelets [2, 8, 9], CAS-wavelets [3], and so forth.

In our opinion, the attention to the PHW and its application for solution of IEs have
not been sufficiently paid, although there were attempts to use this basis for solution of
partial differential equations (e.g., [10-12]). The advantage of our choice is that PHWs are
continuous and differentiable functions everywhere.

It is known that the wavelet approach offers an alternative route for a signal and
function decomposition in the time-frequency domain. Recent applications of the wavelet
transform to engineering and applied problems can be found in several studies [13]. In order
to analyze some applied engineering problems, Newland proposed [13, 14] wavelets whose
spectrum is confined exactly to an octave band. It was suggested that the “level” of a signal’s
multiresolution would be interchangeable with its frequency band and the interpretation of
the frequency content would be easier for engineers.

In addition, for the convenience of the further analysis it would be better to operate
with such functions, whose Fourier transform was compact and which could, if possible, be
constructed from simple functions. The wavelets considered in our paper are called PHW and
they possess all mentioned properties and constitute a specific but a representative example
of wavelets in general.

The main purpose of the present work is to propose for numerical solution of IEs a
simple approach based on periodized harmonic wavelets. This technique is also applicable
with minor changes to the Fredholm, Volterra, and integro-differential equations. In Section 2
of the paper we show that PHWs satisfy the axioms of the multiresolution analysis and can
be used as basis functions in solution of IEs. An illustrative example is presented in Section 3.
The generalized error estimation is given in Section 4 and it shows that the accuracy of
computations is very high even when the approximation level is small.

2. Periodized Harmonic Wavelets

It is known [13-15] that PHWs are defined as follows:

2/t _
g(Dx—k) =27 3 ermimbx-k/2), (2.1)

m=2]
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Figure 1: Real (solid line) and imaginary (dashed line) parts of the periodic harmonic wavelets go(x),
@10(x), g22(x), and g3 3(x).

where the scaling parameter k = 0, .. .,2/ =1 and the dilation parameter j =0,..., N — 1. The
1-periodicity of function (2.1) can be demonstrated as follows:

) 2" ]2121:162””"( BT (,Lr<2jx—k>. (2.2)

m=2/

(p(Zj(x +1) -

The plots for several values of the scaling parameter j are shown on Figure 1 for selected
positions k.

According to [14, 16], PHWSs construct basis for 1-periodic functions from L*([0;1]).
The orthogonal projection of the function f(x) onto the space of wavelets Vi of the level N
is written as follows:
j—

N-

Py f(x) = agp(x) + {aw%kQ'+%k%kW” (2.3)

7=0 k=0

,_\
N
H

where the harmonic scaling function is ¢(x) = 1 [14] and the “*” over ¢« stands for its
complex conjugate. If N — oo, then limn ., Dv, f(x) = f(x) and expansion (2.3) becomes

f@) = aop() + 3, > { akeu(x) + Gy (x) }. (2.4)

7=0 k=0



4 Mathematical Problems in Engineering

Thus, we have a set of functions, which form basis for the L?([0; 1]) functions. It means
that we can substitute the expansion (2.3) into (1.1) and reduce it to a system of equations
with respect to wavelet coefficients.

3. Eigenvalues and Eigenfunctions

Let us consider the homogeneous Fredholm integral equation
]@-Af<msf+?AE¢ﬁ=o (3.1)
f@ -4 eos(x+ 1)1 (7)

In order to deal with 1-periodic functions, it is convenient to introduce new variables as
follows: X = 2orx and t = 27rt. And we get the new equation

0.5

f(x) - 2.F)LJ‘O cos[2m(x + )] f(t)dt =0, (3.2)

which we will solve by the collocation method. Denote the collocation points by

as<x;<xp<---<x;<---<bh. (3.3)

Recalling the decomposition of a real periodic function (2.3) on the space of PHW, we have
Py, f(x) = ao + goo(x) + doogp(x), (3.4)

for N = 1. Also, apo = app for a real function. The corresponding choice of the collocation
points {x;} leads us to a system of linear algebraic equations with the parameter A and
unknowns {ay; ao; doo} as

1/2

ap + ao,oez’”x’ + a0,06_2”1x1 - Z.F.)LJ‘ Ccos [2,7['(3(1 + t)] (ao + ao,oez’”t + ﬁo,oe_zynt)dt =0. (35)

0

The solution of this system of equations gives us two pairs of coefficients {0;0.5;0.5} and
{0;-i/2;i/2}. Thus, we can find parameters Ay = 2/a, 1, = —2/x and the eigenfunctions
f1(%) = cos X, fo(X) = sin X.

We obtained the projection of the solution of the unknown eigenfunctions fi, f» on
the first level of approximation. Note that the obtained projection for N = 1 coincides with
the analytical solution. If we have continued to search for the solution on the other levels of
approximation, the connection coefficients {a;«} would be zeros.
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4. Approximation Properties of Multiresolution Spaces

Let us now consider the approximation error for the periodic wavelets. Let f(x) € L2([0;1])
and assume that its periodic expansion (2.4) is P times differentiable everywhere. Denote the
approximation error as follows:

e (x) = f(x) = Py f(x), x€[0;1], (4.1)

where Py, f (x) is the orthogonal projection of f(x) onto the space of PHW. The symbol “per”
over ey assumes that the error is a periodic function. The derivation of the value of eﬁfr(x) is
presented in the following theorem.

Theorem 4.1. The approximation error (4.1) is bounded by the exponential decay |ef (x)| =
O(27NP),

Proof. Using the wavelet periodic expansion (2.4), we find that

N-12/-

DVNf(x) Zatp k‘P(x k) + Z Za] k‘l’]k(x) (4.2)

j=0 k=0

At any given scale, the projection of the function on the subspace of wavelets of the certain
scale approaches to the function as the number of zero wavelet moments P tends to infinity,
thatis, N — oo and we get f(x) itself:

fx) = Zatp,k‘P(x - k) + Z Zaj,k(lfj,k(x)- (4.3)
k=0

=0 k=0

Then, by subtracting (4.2) from (4.3), we obtain an expression for the error ef\fr in terms of

the wavelets at scales j > N:

o 2/-1
ex (¥) = 3, X ajkejk(x). (4.4)
j=N k=0
Define
A
Cy = max|y(2x-k)| = max o) @5)

Since maxer;, ¢k (x)| = 2/ /2C,, and according to the Theorem of decay of wavelet coefficients
[17], itis

|4jx97(0)| < Cr27"max| f P (@) |Cy. (4.6)
14
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Recall that

(4.7)

i

k k+D-1
2] - |-

supp (¢5jk) = Lk = [— >

Hence, there are at most D — 1 intervals I;x containing a given value of x. Thus, for any x
only D -1 terms in the inner summation in (4.4) are nonzero. Let I; be a union of all these
intervals, that is,

ix)= U I (4.8)
{Lxel; )
and let
P _ r
K () = max |77 @) (4.9)

Then we can find a common bound for all terms in the inner sum:

2. ajkwik] < CuCr277(D = 1)pif (). (4.10)

k=-—c0
The outer sum over j can be evaluated using the fact that
W) 2 Ry () 2 iR () 2 (411)

and we establish the bound

|k ()] < CyCr(D - 1) () Y277
=N

(4.12)
2—NP

= CyCp(D - 1)#?](@@-

Thus, we see that for an arbitrary, but fixed x, the approximation error will be bounded as
follows:

|e;§f(x)| - o(z-NP), (4.13)

where O only denotes an upper bound. This is an exponential decay with respect to the
resolution N. Furthermore the greater number of vanishing moments P of a periodic wavelet
increases the rate of the decay. O

Let us compare the approximation error of wavelets with the error of the Fourier
approximation for N terms. In order to do this, we need to introduce a smooth function
of the order g.
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Definition 4.2. A smooth function is a function that has continuous derivatives up to some
desired order g over some domain. A function can, therefore, be said to be smooth over a
restricted interval such as [a; b].

According to [18], we can find that the approximation error of the Fourier series is
F _ _ _ -4-05
e (a.N)| = max|F(N, x) - f(x)] = O(N"0). (4.14)

This is also an exponential decay with respect to the number of terms in the series and the
level of smoothness of a function. In order to give a more detailed comparison of these two
methods, it is necessary to consider specific examples.

5. Concluding Remarks

In this work we have proposed PHWs as basis functions for solution of IEs. The approach was
verified by solving a test problem and its approximation error was analytically estimated
for periodized wavelets. The assumption of 1-periodicity of solution does not restrict the
generality of the problem, since we can always make the substitutional change of variables.
There are several important facts to remember about the wavelet approximation.

(1) The goal of the wavelet expansion of a function or signal is to obtain the coefficients
of the expansion a; .

(2) The second goal is to have the most zero coefficients or very small. This is called
a sparse representation and it is very important in applications for statistical
estimation and detection, data compression, noise reduction, and fast algorithms.

(3) The fact that the error is restricted to a small neighborhood of the discontinuity is
the result of the “locality” of wavelets. The behavior of f(x) at one location affects
only the coefficients of wavelets close to that location.

(4) Most of the linear part of f(x) is represented exactly.

We can infer from the example that the present approach is applicable to a large class
of problems, where the expected solution is a periodic function. It should be also mentioned
that any differential equation can be transformed into an integral equation. It means that it
might be solved a large class of eigenvalue equations derived by differential equations.

Acknowledgment

The work of A. Kudreyko is supported by the Istituto Nazionale di Alta Matematica
Francesco Severi (Rome-IT) under scholarship U 2008/000564, 21/11/2008.

References

[1] C. M. Bender and E. Ben-Naim, “Nonlinear-integral-equation construction of orthogonal polynomi-
als,” Journal of Nonlinear Mathematical Physics, vol. 15, supplement 3, pp. 73-80, 2008.



8 Mathematical Problems in Engineering

[2] U. Lepik and E. Tamme, “Application of the Haar wavelets for solution of linear integral equations,”
12r(1) (iroceedings of the Dynamical Systems and Applications, vol. 510, pp. 494-507, Antalya, Turkey, July

[3] S. Yousefi and A. Banifatemi, “Numerical solution of Fredholm integral equations by using CAS
wavelets,” Applied Mathematics and Computation, vol. 183, no. 1, pp. 458-463, 2006.

[4] Y.-p. Liu and L. Tao, “Mechanical quadrature methods and their extrapolation for solving first kind
Abel integral equations,” Journal of Computational and Applied Mathematics, vol. 201, no. 1, pp. 300-313,
2007.

[5] G. Beylkin, R. Coifman, and V. Rokhlin, “Fast wavelet transforms and numerical algorithms I,”
Communications on Pure and Applied Mathematics, vol. 44, no. 2, pp. 141-183, 2006.

[6] Y. Mahmoudi, “Wavelet Galerkin method for numerical solution of nonlinear integral equation,”
Applied Mathematics and Computation, vol. 167, no. 2, pp. 1119-1129, 2005.

[7] J.-Y. Xiao, L.-H. Wen, and D. Zhang, “Solving second kind Fredholm integral equations by periodic
wavelet Galerkin method,” Applied Mathematics and Computation, vol. 175, no. 1, pp. 508-518, 2006.

[8] U. Lepik, “Solving fractional integral equations by the Haar wavelet method,” Applied Mathematics
and Computation, vol. 214, no. 2, pp. 468—-478, 2009.

[9] U. Lepik, “Numerical solution of evolution equations by the Haar wavelet method,” Applied
Mathematics and Computation, vol. 185, no. 1, pp. 695-704, 2007.

[10] C. Cattani, “Harmonic wavelets towards the solution of nonlinear PDE,” Computers and Mathematics
with Applications, vol. 50, no. 8-9, pp. 1191-1210, 2005.

[11] C. Cattani and A. Kudreyko, “On the discrete harmonic wavelet transform,” Mathematical Problems in
Engineering, vol. 2008, Article ID 687318, 7 pages, 2008.

[12] S. V. Muniandy and I. M. Moroz, “Galerkin modeling of the Burgers equation using harmonic
wavelets,” Physics Letters A, vol. 235, pp. 352-356, 1997.

[13] D. E. Newland, An Introduction to Random Vibrations, Spectral & Wavelet Analysis, Longman Scientific
& Technical, Essex, UK, 3rd edition, 1993.

[14] D. E. Newland, “Harmonic wavelet analysis,” The Royal Society, vol. 443, pp. 203-225, 1993.

[15] D.E.Newland, “Harmonic wavelets in vibrations and acoustics,” Philosophical Transactions of the Royal
Society A, vol. 357, no. 1760, pp. 2607-2625, 1999.

[16] T. Morita, “Expansion in Harmonic wavelets of a periodic function,” Interdisciplinary Information
Sciences, vol. 3, no. 1, pp. 5-12, 1997.

[17] S.Mallat, A Wavelet Tour of Signal Processing, Ecole Polytechnique, Paris, France, 2nd edition, 1990.

[18] G. P. Miroshnichenko and A. G. Petrashen, “Numerical methods,” Saint-Petersburg, p. 120, 2008.



