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The polyconvolution with the weight function y of three functions f, g, and h for the integral
transforms Fourier sine (Fs), Fourier cosine (F.), and Kontorovich-Lebedev (Kj,), which is
denoted by l( f,g,h)(x), has been constructed. This polyconvolution satisfies the following

factorization property Fc(l(f, & M) (y) = siny(Fsf)(y) - (Feg)(y) - (Kiyh)(y), for all y > 0. The
relation of this polyconvolution to the Fourier convolution and the Fourier cosine convolution has
been obtained. Also, the relations between the polyconvolution product and others convolution
product have been established. In application, we consider a class of integral equations with
Toeplitz plus Hankel kernel whose solution in closed form can be obtained with the help of the
new polyconvolution. An application on solving systems of integral equations is also obtained.

1. Introduction

The convolution of two functions f and g for the Fourier transform is well known [1]

1 [oe]
(f;g> (x) = Ef_wf(x—y)g(y)dy, x€R. (1.1)
This convolution has the factorization equality as below

F(F18) 0= ENWE)W), Wwer 12)
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where F denotes the Fourier transform
1 * —ix
(Ff)(v) = Wi f f(x)e™¥dx. (1.3)

The convolution of f and g for the Kontorovich-Lebedev integral transform has been studied
in [2]

X X0

<f & g) (x) = %J‘J‘: exp [_%(?u + — 4+ %)]f(u)g(v)du dv, x>0, (1.4)

u

for which the following factorization identity holds:
Kis(F 2, 8) = (Kaf) - (Kig), V¥y>0, (15)

Here K;, is the Kontorovich-Lebedev transform [3]
Kulf] = [ Kuth (e, 1.6)

and K, (t) is the Macdonald function [4].
The convolution of two functions f and g for the Fourier cosine is of the form [1]

1 9]
(F1e)0=—= [ F@lslx-vh+sGenldy, x>0 a2
which satisfied the following factorization equality:
F(f18) W) = ENWED W), Wy >0 a8)

Here the Fourier cosine transform is of the form

(Fef)(y) = \/%F cosyx - f(x)dx, y>0. (1.9)
0

The convolution with a weight function y(x) = sin x of two functions f and g for the Fourier
sine transform has been introduced in [5, 6]

(Fr8)e= 3o [ F@)lsign(eey=1g(bxs y=1]) +signe—y+ gl =y +1)

—g(x+y+1) -sign(x -y -1)g(|]x -y -1[)]dy, x>0,
(1.10)
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and the following factorization identity holds:

F, (f * g) (v) =siny(Fsf)(y) (Fsg)(y), Yy >0. (1.11)

Here the Fourier sine is of the form

(Fsf)(v) = \/%fm sinyx - f(x)dx, y>0. (1.12)
0

The generalized convolution of two functions f and g for the Fourier sine and Fourier cosine
transforms has been studied in [1]

1 [oe]
* xX) = —— u x—ul)—-¢(x+u)|du, x>0, 1.13
(F18) @ == [ Flstr=u) - gl +w] (113)
and proved the following factorization identity [1]:

R(f58) W) = (RN Fg) (), ¥y>0, (114)

The generalized convolution of two functions f and g for the Fourier cosine and the Fourier
sine transforms is defined by [7]

1 oo
* X) = —— u)[sien(u —x)g(lu—x|) + ¢(u+x)|du, x>0. 1.15
(F18)@ == | flsigntu—0g(u=) + g+ ) (1.15)
For this generalized convolution, the following factorization equality holds:

F(f18) W) = ENWED W), Wy >0 (116)

The generalized convolution with the weight function y(x) = sin x for the Fourier cosine and
the Fourier sine transforms of f and g has been introduced in [8]

! __L _ _
(F1e)e == [ F st +u=1)+g(x-us1) .

—gx+u+1)-g(lx-u-1))]du, x>0.

It satisfies the factorization property

F(fE8) ) =siny(EA) W) (Feg) ), Yy>0 (118)
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The generalized convolution with the weight function y(x) = sinx of f and g for the Fourier
sine and Fourier cosine has been studied in [9]

<f’£8>(X) = #Ej‘jf(u)[g(|x+u—l|) +g(x—u-1)

(1.19)
—gx+u+1)-g(lx-u+1))]du, x>0,
and satisfies the following factorization identity:
Y .
F(FE8) ) =siny(FH) ) (Feg) @), Vo> (120)

Recently, the following generalized convolutions for Fourier cosine, Kontorovich-Lebedev
and Fourier sine, Kontorovich-Lebedev are studied in [10] (f. 21)

_ L —x cosh(u—v) —x cosh(u+v)
(f * g)[g}(x) =5 -[RE fu)g(v) [e te ]du dv, x>0. (1.21)

The respective factorization equalities are [10]

(Fiy(F*8) ) @) = (Fiof) @)Ku[gl, x>0, fe Li®)NL,(R,), gL’ p>1,
(1.22)

where
LY - {f : fo ()P Ko(p)dt < 00, 0 < p < 1}. (1.23)

In 1997, Kakichev introduced a constructive method for defining a polyconvo-
lution with a weight function y of functions fi, f,..., fn, for the integral transforms

K,Ki,K3,...,K,, which are denoted by l(fl,fz, ..., fn)(x), such that the following factor-
ization property holds [11]:

Kt 0] @) = v DT TR ), 723 129

Polyconvolutions for the Hilbert, Stieltjes, Fourier cosine, and Fourier sine integral transforms
have been studied in [12].

The polyconvolution of f, g, and h for the Fourier cosine and the Fourier sine
transforms has the form [13]

w(f. g ) (x) = %”jf(u)g(v)[h(lxw—vl) +h(x-u+o)) 125

—h(lx-u-v|)—h(x+u+v)]dudov, x>0,
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which satisfies the following factorization property:
Fe(«(f,81) () = (Fsf)(v) - (Fsg) () - (Feh)(y), Yy >0. (1.26)

In recent years, many sciences were interested in the theory of convolution for the integral
transforms and gave several interesting application (see [3, 14-21]), specially, the integral
equations with the Toeplitz plus Hankel kernel [22-24]

fx)+ J:ﬁ [ki(x+y) +ka(x-y)]f(y)dy = g(x), x>0, (1.27)

where ki, k;, and g are known functions, and f is an unknown function. Many partial cases of
this equation can be solved in closed form with the help of the convolutions and generalized
convolutions. In this paper, we construct and investigate the polyconvolution for the Fourier
sine, Fourier cosine, and the Kontorovich-Lebedev transforms. Several properties of this new
polyconvolution and its application on solving integral equation with Toeplitz plus Hankel
equation and systems of integral equations are obtained.

2. Polyconvolution

Definition 2.1. The polyconvolution with the weight function y = sin x of functions f, g, and
h for the Fourier cosine, Fourier sine, and the Kontorovich-Lebedev integral transforms is
defined as follows:

[o9]
l(f, g h)(x) = L” 0(x,u,v,w) f (u)g(v)h(w)du dv dw, (2.1)
0
where
G(X, w0, ’LU) — 1 [e—w cosh(x+v+u-1) + e—wcosh(x+v—u+l) + e—wcosh(x—v+u—l) + e—wcosh(x—v—u+1)
4~/ 2o
_efwcosh(x+v+u+1) _ efwcosh(erv—ufl) _ efwcosh(x7v+u+1) _ efwcosh(x—vfufl)]_

(2.2)

Theorem 2.2. Let f and g be functions in L1(R.), and let h be a function in L (1//w,R,); then
the polyconvolution (2.1) belongs to L1 (R.) and satisfies the following factorization equality:

(08 m) W) =siny(FH W) - F) W) (Kuh), W0 @3)
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Proof. Since |e~% coshtr+usv-1) _ gwcosh(x+uro-1)| < 1 /. /1 for sufficient large w > 0, we have

*(f g h)(x)

1 oo}
< EJT . |f @) ||g@)||h(@)||0(x, u, v, w)|du dv dw s

©
0

1 ® o 1
r: fo |f o) et fo |g(v)|do f )l < +eo

On the other hand, note that cosh(x + u +v — 1) > (x + u + v — 1)*/2; we have

e—wcosh(x+u+v—1) < e—w((x+u+v—1)2/2)’ Yew > 0. (25)

Using formula 3.321.3, page 321, in [4], we have

jw e—wcosh(x+u+v—1)dx < E J-oo e—(\/w/z(x+u+v—1))2d A /E(x +U+D— 1)
0 wJo 2
2 o]
<2 —f e 'ds = 2—
\/ w ), V w

(2.6)

It shows that

f f f f :O e o0 | (1) | g(0) | |h(w) du do deo dx

, Z_JT 2.7
S Uf 0 \/;Ww)llf(””|8(U)|dudvdw 0

joe] 1 joe] o]
< \/ﬂfo ﬁ|h(w)|dw-fo |f(u)|du.f0 |g(v)|dv < +oo.

By the same way, we obtain similar estimations for the 7 other terms. Therefore, from
formulas (2.1), (2.2), and (2.7), we have

J,

It shows that the polyconvolution (2.1) belongs to Li(R.). We now prove the factorization
equality (2.3). Indeed, we have

X(f,g,h)(x)|dx < +o. (2.8)

siny (Fsf)(y) (Fe8) (v) (Kiyh)

2 (" sinysi (2.9)
T I I J 0 siny sin(yu) cos(yv) Kiy (w) f (1) g (v) h(w)du dv dw.
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Using formula 2, page 130 in [4], we get
siny (Fsf) () (Feg) (v) (Kiyh)

= % T i —wcosha
G f f f J; siny sin(yu) cos(yv) cos(ya)e F(w)g(0)h(w)du do dw da

= %J‘J‘J‘J‘ et cosy(u-1+v+a)+cosy(u—-1-v-a)+cosy(u-1+v-a)
0

+cosy(u—-1-v+a)-cosy(u+l+v+a)-cosy(u+1-v-a)
—cosy(u+l+v—a)-—cosy(u+1-v+a)

x f(u)g(v)h(w)du dv dw da.

(2.10)
Interchanging variables, we have
f et cosy(u—1+v+a)—cosy(u+1+v+a)|da
0 B (2.11)
— f cos yx [efw cosh(x—u+1-v) _ e cosh(xfuflfv)]dx'
0
Similarly,
f et cosy(u-1-v+a)-cosy(u+1-v+a)|da
0
_ Im cos yx [e_w cosh(x—u+1+v) _ P cosh(x—u—1+v)]dx;
0
f e fcosy(u-1-v-a)-cosy(u+1-v-a)lda
0 B (2.12)
— f cos yx [e—w cosh(x+u-1-v) _ P cosh(x+u+1—v)]dx,.
0
f et lcosy(u—1+v-a)—cosy(u+1+v-a)lda
0
— ’[ cos yx [e—wcosh(x+u—1+v) _ e—wcosh(x+u+1+v):|dx‘
0
From fomulae (2.10)—( 2.8), we have
. Y
siny (F-F) () (Feg) () (Kigh) = Fo (21,8, ) ) 213)

The proof is complete. O
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Definition 2.3. Let f be a function in L;(R,) and let & be a function in L; (§, R,); their norms

are defined as follows:

||f||L1(R+) = J‘o | f () |dx, IRl pr.) = Io p(v)|h(v)|dv. (2.14)

here f(v) =2//v.

Theorem 2.4. Let f and g be functions in Li(R,), and let h be function in Li(B,R.); then the
following estimation holds:

8”L1(R+)”h”L1(ﬂ,R+)' (2.15)

Y
e <l
Ly (R+)

Proof. From formulas (2.1), (2.2), and (2.7), we have

f

Therefore, by Definition 2.3,

(f,8.h)(x)

dxéZfo |h(w)|dw-J‘0 | f (u)|du - L |g(v)|do. (2.16)

1
N

gllLl(R+)|lhllL1(ﬂ,R+)' (2.17)

Y
e <l
Ly (R+)

O

Proposition 2.5. Let f, g € L1(R,), and let h € L1(1/+/w,R.); then the following identity holds:

l(f,g,h) = %\/gf: h(w) [<<g={e_wc°s}”> x (f(|t]) sign t))(x +1)

~((gxe ™)« (f(lt]) sign 1) ) (x = 1)| dw.
((grev=) )x-)

(2.18)

Proof. From the definition (2.1) of the polyconvolution and the convolution (1.7), we have

* (£ )
= %J‘J‘jf(u)h(w) [(g * e’wc"s}‘t>(x —u+1l)+ (g * e"wc‘”ht) (x+u-1)

—<g * e*w“’s}‘t> (x+u+1)- <g * e*wcos}‘t> (x—u- 1)] du dw.
(2.19)
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From (2.19) and calculation, we obtain

1(am =15 [ he|((sye) xrsign 1) )

_<<g : e-wmshf) x £t sign t> (x - 1)] dw.

(2.20)

The proof is complete. O

Theorem 2.6. Let f, g, h be functions in Li(R.),y(x) = sinx, and let | and k be functions in
L(1/+/w,R); then the following properties holds:

(@) *(f,%(g, 1, k), 1) = *(g,%(f, h,k),1);
(b) *(f x g, 1) = *(f,g* b F);

(©) *(f * g hk) = *(f,g*h,k);
(@) *(f kg hk) = *(f £ h g k)
(&) *(f g x 1K) = *(g,f x k).

Proof. First, we prove the assertion (c). From Theorem 2.2 and the convolutions (1.17), (1.10),
we have

Fe <l(f g h, k>> (y) =sinyFs (f x g) (y) - (Fch) (y) (Kiyh)

=siny siny (Fs f) (v) (Fs8) (v) (Fch) (y) (Kiyh)

y (2.21)
=siny - () () Fe(g 1) () - (Kigh)
= Fc<l<f,g>? h,k)).
Therefore, the part (c) holds. Other parts can be proved in a similar way. O
3. Applications in Solving Integral Equations and
Systems of Integral Equations
Consider the integral equation
fx)+ fff 0(x,u,v,w)g(u)f(v)h(w)dudv dw
0
(3.1)

+ Jm 01 (x,u) f(u)du + J‘(>c> O2(x,u) f(u)du = p(x), x>0,
0 0
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where g, h, k,I, and ¢ are known functions, f is an unknown function, 8(x,u, v, w) is given
by the formula (2.2), and

1

01(x,u) = 727[- [k(x+u+1)—k(lx+u-1])sign(x+u—-1)
+k(Jx —u+1])sign(x —u+1) — k(]x —u—1|) sign(x —u - 1)], (3.2)
1
0(x,u) = E[l(x +u)+1(Jx —ul)].

Theorem 3.1. Suppose that g,1,¢,k1,k, € Li(R,), h € Li(1/+v/v,R,), k = ki ; k> such that
1+siny(Fsg) (v) (Kiyh) + (Fsk1) (v) (Feka) (y) + (Fel) (y) #0, (3:3)
then (3.1) has a unique solution in Li(R.) whose closed form is
f(x)=op(x) - ((p * é) (x). (3.4)

Here ¢ € Li(RR,) is defined uniquely by

siny (F.g) (v) (Kiyh) + siny(Fsk1) (v) (Fek2) (v) + (FD) (v)

(Feo)(y) = . . : (3.5)
) = T Siny (Fog) (v) (Kagh) + sin y (Fokn) () (Fo) () + (ED (9)
Proof. We obtain the following lemmas.
Lemma 3.2. For f,k € Li(R,), then the following operator also belongs to L1 (R.)
J f(w)01(x, u)du. (3.6)
0
Moreover, the following factorization equality holds:
Fc<f0 f )6 (x, u)du) (y) =siny - (Fsk)(y)(Fef)(y), VYy>D0. (3.7)

Lemma3.3. Let g € L1(Ry), h € L1(1/+/v,R.); then the generalized convolution ( g%h) (x) belongs

to L1 (R.) and the respectively factorization equality is

F(g5h) (1) =siny(Fg) (1) (Kih), ¥y >0, 69)



Mathematical Problems in Engineering 11

where

<g l h) (x) — jIJ‘J‘OO [e—vcosh(x+u—l) + e—vcosh(x—wrl) _ e—vcosh(x+u+1) _ e—vcosh(x—u—l)]
3 0 (3.9)

x g(u)h(v)dudo, x>0.

We now prove Theorem 3.1 with the help of convolution (1.7), Lemmas 1, and 2. We
have

(Fef)(y) +siny(Fsg) (v) - (Fef) (y) - (Kiyh)

(3.10)
+ (Fsk)(y) - (Fef) (y) siny + (Fl) (y) - (Fef) (y) = (Feop) (v)-

Therefore, by the given condition,

(F.)(y) = (Fap) (3) <1 siny (Fsg) (v) (Kiyh) +siny(Fsk) (y) + (F) (y) > (3.11)

~ 1+siny(Fog) (y) (Kiyh) +siny(Fok) (y) + (F) ()

By the hypothesis k = k; * ky, we see that sin y(Fsk)(y) = Fc(k; % k2)(y); using Lemma 3.3, we
get

Fg k) )+ Eo(kid k) ) + (E) )
1+ E(ghn) )+ Fe(la e ) ) + (R ()

In virtue of the Wiener-Levy theorem [25], by the given condition, there exists a function
¢ € L1(R,) such that

(Fef)(w) = (Fep)(y) | 1~ (3.12)

%=

siny(Fsg) (v) (Kiyh) +siny (Fski) (v) (Foka) (y) + (Fl) (v)

F. = . 3.13
T ) = 1 Gy () (1) (Kigh) sy (Fk) 1) Fokd () + B ()
From (3.12) and (3.13), we have
(Fef) () = (Fep) (y) [1 = (Fe$) (w)]- (3.14)
Then the solution in L; (R, ) of (3.1) has the form
£ =9 - (91 ) ). (3.15)

The proof is complete. O
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Remark 3.4. The integral equation (3.1) is a special case of the integral equation with the Toeplitz plus
Hankel kernel (1.27) for x > 0 and

ky (t)

. 1
Z\ﬁ ——[k(t+1) - k(|t - 1|) sign(t - 1)] + El(t)

{e0)
+ (u)h(w) [e—wcosh(tﬂkl) + e—wcosh(tfwrl) _ efwcosh(t+u+1) _ efwcosh(tfu—l)]du dw
4+/ f f 0 &

ka(t)
= L k(i + 1)) sign(t+ 1) - k(lt - 1) sign(t - 1)] + —— 1(jt])
2/ 20T 8 8 V2
1 {os]
o wWh(w e—wcosh(t+u—1) + e—wcosh(t—u+1) _ e—wcosh(t+u+1) _ e—wcosh(t—u—l) du dw.
e | RG] ]
(3.16)

Next, we consider the following system of two integral equations:

f(x) + fff:oe(x, u,v,w)g(u)h(v)k(w)dudv dw + f: 03(x, u)g(u)du = p(x)

) ) (3.17)
4[0 Os(x,u) f(u)du + fo Os(x, u) f(w)du + g(x) = q(x).
Here 0(x,u, v, w) is defined by (2.2), and
03(x,u) = %[l(x +u) —I(]x — ul) sign(x - u)],
Os(x,u) = \/%[g(x+u) +&(|x — ul) sign(x — u)], (3.18)
Os(x,u) = M x+u-1)+n(x-u-1)) -nlx+u+1) -n(x-u+1)],

2W

h,k,1,¢,1,p,q are known functions, and f and g are unknown functions.

Theorem 3.5. Given that p,q,h,1,¢é, 11,12 € Li(R,) and k € Li(,R.), 1 = m >§ 12 such that
— (Fey)(y) #0, where

v = (o0 )@ - (511) @0 -x(m b k)@ - (1en)@. (19
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Ther the system (3.17) has a unique solution in Ly (B.) x Ly(R. ywhose closed form s as follows
£ =pe) - (Hah k) )+ (ax1) + (15p) )
- (Hanw D)+ ((a51) 11w,
g =at0) - (83p) 0= (nkp) @+ (ax1)@ - ((e30) 1) - ((nkp) 1) 0.

N ¥=

(3.20)
Here, 1 € L1(R.) is defined by
(Fey) ()
F.l =———" =7 3.21
FOW =T ) 20
Proof. We need the following lemma.
Lemma 3.6. Let ¢, f € Li(R,); then
J? [&(x + 1) + &(|x — u]) sign(x — u)] f (u)du € L1(R,),
F <L fw[é(x+u) +&(|x —ul) si n(x—u)]f(u)du)( ) = (Fs&)(y) (Fef)(y), VYy>0
s \/27‘71_ 0 & y)= s y c Yv), y .
(3.22)

Using Theorem 2.2, Lemma 3.6, and the generalized convolution (1.15), (1.19), we
have

(Fef)(y) +siny (Fsg) (v) (Fh) (v) (Kiyk) + (FsD) (y) (Fs8) (v) = (Fep) (),

(3.23)
(Fs&)(v) (Fef) (y) +siny (Fen) (v) (Fef) (y) + (Fsg) () = (Fsq) (y).

On the other hand, from 7 = 13 x12 we have sin y(F.n)(y) = Fs(m k 12)(y). Therefore, using
Theorem 2.2 and the generalized convolution (1.15), (1.17), we have

1 siny(F:h)(y) - (Kiyk) + (Fsl)(y)
(Fs¢)(v) +siny(Fen) (y) 1

=1-F. <1(§, h, k)) (y) - F (é * l) (y) - F (*(711 * 12, k>> (y) - Fe (1 {* n)(x)-

(3.24)

A =
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Hence, in view of the Wiener-Levy theorem [25], by the given condition, there is a unique
function [ € L1 (R, ) such that

1
S =1+ (Fe) (y), (3.25)

where

Fc<1(§,hf’<>> +FC<§§Z> +FC<*<’11 lnz’h’k» +Fc<l%n> (3.26)
1 —FC<1(§,h,k)> —FC<§=§Z> —FC<*<111 lnz,h,k» —Fc<l{<11>‘ .

On the other hand, using Theorem 2.2 and the generalized convolution (1.15), we have

(Fcl) =

Fep)(y)  siny(Fch)(y) - (Kiyk) + (Fsl) (y)
(qu) (y) 1 (3_27)

- (Fop) (1) = Fe(x(a 1) () - Fe(a11) )

AF“

Hence, from (3.25), (3.27) we have

(PN = [1+ FD] | (Fep) () = Fele (7 kD @) = Fe(a1) )]
- (Fp) ) - Fele @) = Fe(a31) + o (15p) ) - Eo(x(@h ) 1) @)

—Fc<<q§l> ;*l)(y)-

(3.28)

It shows that

f(x) =p(x) = (x(q,h k) (x) - <q§l> + (l’;P>(x) - <*(q/hrk) ’;l>(x) - <<q§l> ’;l>(x)-

(3.29)
Similarly, from the generalized convolutions (1.15), (1.19), we have
_ 1 (Fep) (v)
(F&) (y) +siny(Fen)(y) (Fug) () 530

= (Fsq)(y) ~ Fs (é * P) (v) - Fs (11 : p) ©)-
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Using formulas (3.25), (3.30), we have
(F.)w) = 1+ EDW|F) @) - F:(457) ) - Fe(nkp) )]

U
=(qu)(y)—Fs<§;P>(y)—F(n*v)(y)+F(q l) ((é;p);l>(y)
—Fs(<n*gp>;l)(y)‘

(3.31)

It shows that

g(x) =q(x) - <§3P>(x)— <71’EP>(X)+ <q;l>(x)— <<§;p> ;l> - <<n£p> ;l>(x)-

(3.32)

Pair (f, g) defined by fomulae (3.29) and (3.32) is a solution in closed form in L1 (R.) x L; (R;)
of system (3.17). The proof is complete. O
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