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This article addresses the robust output regulation problem for a class of nonlinear switched
power converters after its linearization by means of a change of the control vector variable. The
methodology employs a dynamic state feedback control law and considers parametric uncertainty
due to unknown values of resistive loads. Restrictions arising from the fact that the control gains
exhibit fixed values are taken into account. The proposed technique is exemplified with the output
voltage regulation of a Noninverting Buck-Boost converter and tested through realistic numerical
simulations.

1. Introduction

The output regulation—or servomechanism—problem deals with the design of feedback
control laws that provide output tracking of any reference belonging to a family of command
profiles and, at the same time, are able to reject any perturbation from a certain set, with
both references and disturbances being generated by a known, autonomous system of
ordinary differential equations, the so-called exosystem. The control design is robust when
the objective is achieved despite the presence of parametric uncertainties.

This capital subject, with long trajectory in control theory, was solved for linear
systems in the early 1970’s with the introduction of the well-known internal model principle
[1]; there is also an interesting algebraic approach contained in [2]. The extension of the
solution to nonlinear systems appeared almost two decades later in the celebrated paper [3].
The reader is referred to [4] for a summary of main topics in Output Regulation Theory. On
the other hand, any of the excellent monographic text-books [5, 6] offer a complete overview
of the subject.
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In this article we address the robust output regulation problem for a family of non-
linear power converters with two control switches that includes the NonInverting Buck-
Boost (NIBB), the Watkins-Johnson (WJ), the Inverse of Watkins-Johnson (IWJ) and the
Full-Bridge NonInverting Buck-Boost (FBNIBB). The NIBB, the WJ and the IWJ are among
the class of eight elementary single-input (i.e., possessing a single voltage source) single-
output converters containing a single inductor [7], while the FBNIBB is derived through the
substitution of the original switches by a full-bridge in a NIBB [7, 8].

The converters being nonlinear, the first thought may be to face the problem by means
of nonlinear output regulation techniques. However, performing a change of control variable
the resulting system appears to be linear. Thus, linear output regulation tools are used from
this stage on.

The approach, which considers resistive loads with uncertain output resistance, proves
the existence of a dynamic state feedback law that solves the linear robust output regulation
problem and provides an algorithmic-like construction of the regulator for the general case,
that is, either output voltage regulation or tracking. Nevertheless, the eventual achievement
of control objectives in the physical system is limited by a possible control action saturation
due to the fixed values of the control gains. Hence, guaranteeing a dynamical evolution of
the converter in an unsaturated region of the phase plane involves restrictions on the system
parameters, state variables and reference profiles that are also studied.

The article is structured as follows. Section 2 contains the main results of linear robust
output regulation by means of dynamic state feedback. Section 3 introduces a family of
switched power converters and establishes the solution of its output regulation problem.
Section 4 is specifically devoted to the construction of a dynamic state feedback regulator
for the target system. A numerical example based on the methods outlined in this section is
presented in Section 5, while the corresponding simulation results are in Section 6. Finally,
conclusions are outlined in Section 7.

2. Linear Robust Output Regulation

This section is focused on the major highlights of Linear Robust Output Regulation (LROR)
and follows the exposition in [6].

The Output Regulation Theory addresses the problem of rendering the output y(·)
of a linear control system, possibly with plant uncertainties w, to asymptotically track any
reference yR(·) belonging to a given family and, at the same time, reject asymptotically any
disturbance d(·) that may be found in a certain set, while maintaining the internal stability of
the closed loop system.

The formulation of the problem to be solved takes advantage of the following fact: if
one thinks in nullifying the output error e = y − yR, there is no need to separate the roles
of yR and d, because both may be seen as components of an exogenous input that has to be
rejected.

Therefore, consider the system

ẋ = Awx + Bwu + Pwv,

e = Cwx +Qwv,
(2.1)

with x ∈ R
n and u, e ∈ R

m. The exogenous input v ∈ R
p is assumed to satisfy the exosystem

v̇ = Sv, (2.2)
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while w ∈ R
q stands for the plant uncertainty vector. Aw, Bw, Cw, Pw, and Qw are real

matrices with appropriate dimensions, whose coefficients depend on the plant uncertainties,
their nominal values matrices being A0, B0, C0, P0, and Q0. Notice, finally, that in (2.1) it is
assumed that d = Pwv, y = Cwx, and yR = −Qwv.

Let the dynamic state feedback law

ż = Φz +Ne,

u = H1x +H2z,
(2.3)

with z, Φ, N,H1, and H2 being real vector and matrices of appropriate dimensions. Then, the
forced closed-loop system consisting of the plant (2.1), the exosystem (2.2) and the control
law (2.3) is

(
ẋ
ż

)
=
(
Aw + BwH1 BwH2

NCw Φ

)(
x
z

)
+
(

Pw
NQw

)
v,

v̇ = Sv,

e = Cwx +Qwv.

(2.4)

Denote also by

Acw =
(
Aw + BwH1 BwH2

NCw Φ

)
(2.5)

the matrix of the unforced closed-loop system, Ac0 being its nominal value matrix.
Within this framework, the LROR problem may be posed as follows.

Definition 2.1. Let W be an open subset of R
q that contains the origin w = 0. The LROR

problem of (2.1) with exosystem (2.2) in W , by means of dynamic state feedback, consists of
designing a control law of the form (2.3) such that one has the following:

(i) The matrix Ac0 defined from (2.5) is Hurwitz, that is, σ(Ac0) ⊂ C
−, where σ(Ac0)

denotes the spectrum of Ac0.

(ii) The matrix Acw in (2.5) is such that σ(Acw) ⊂ C
−, for all w ∈ W ; furthermore, for

all x(0), z(0), v(0) and for all w ∈W , the trajectories of (2.4) satisfy

lim
t→∞

e(t) = lim
t→∞

[Cwx(t) +Qwv(t)] = 0. (2.6)

A necessary and sufficient condition for the solvability of the LROR problem using
dynamic state feedback is established in the next result.

Theorem 2.2 (see [6]). Consider the plant (2.1)with exosystem (2.2). Assume that the pair (A0, B0)
is stabilizable and also that σ(S) ⊂ C+ = {λ ∈ C; Re(λ) ≥ 0}. Then, the LROR problem is solvable
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by means of a dynamic state feedback controller (2.3) if and only if

rank
(
A0 − λI B0

C0 0

)
= n +m, ∀λ ∈ σ(S). (2.7)

Assume that system (2.1)-(2.2) satisfies condition (2.7). Then, the construction of a
linear robust regulator with a dynamic state feedback control law of the form (2.3) may be
carried out as follows [6]. Let

mpS(λ) = λr + ar−1λ
r−1 + · · · + a1λ + a0 (2.8)

be the minimal polynomial of S. Then, consider the matrices

Φi =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1
−a0 −a1 −a2 · · · −ar−1

⎞
⎟⎟⎟⎟⎟⎟⎠
, Ni =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
...
0
1

⎞
⎟⎟⎟⎟⎟⎟⎠
, (2.9)

with Φi ∈Mr×r(R), Ni ∈Mr×1(R), and define

Φ = diag(Φ1, . . . ,Φm) ∈Mrm×rm(R),

N = diag(N1, . . . ,Nm) ∈Mrm×m(R).
(2.10)

This selection of Φ and N, which ensures the controllability of (Φ,N), together with the
assumed stabilizability of (A0, B0) and the fulfillment of (2.7), yields the stabilizability of the
following pair:

A0 =
(
A0 0
NC0 Φ

)
, B0 =

(
B0

0

)
, (2.11)

where A0 and B0 are, respectively, (n + rm) × (n + rm) and (n + rm) ×m matrices. Thus, there
exists H ∈Mm×(n+rm)(R) such that

σ
(
A0 + B0H

)
= σ
[(

A0 + B0H1 B0H2

NC0 Φ

)]
⊂ C

−. (2.12)

Selecting Φ, N, H1, and H2 as indicated above, the dynamic state feedback regulator
(2.3) solves the LROR problem for system (2.1)-(2.2).
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Remark 2.3. It is proved in [6] that, under the assumption σ(S) ∈ C+, if a controller (2.3)
solves the LROR problem for (2.1) and (2.2), then, for all w ∈W , there exist unique matrices
(Πw,Σw) that satisfy the following matrix equations:

(
Πw

Σw

)
S =

(
Aw + BwH1 BwH2

NCw Φ

)(
Πw

Σw

)
+

(
Pw

NQw

)
, (2.13)

0 = CwΠw +Qw. (2.14)

For every w ∈ W , (2.13) indicates that Mcw = {(x, z, v); x = Πwv, z = Σwv} is an
invariant manifold for the closed-loop system (2.4), while (2.14) means that the error is zero
on the invariant manifold Mcw. Furthermore, let v(0) = v∗ be any initial condition for the
exosystem; then, the corresponding exogenous input is v∗(t) = exp(St)v∗. If the initial state of
the plant (x, z) in (2.4) is set to x(0) = Πwv

∗, z(0) = Σwv
∗, it is immediate that x(t) = Πwv

∗(t),
z(t) = Σwv

∗(t), and, subsequently, e = 0, for all t ≥ 0.

3. Output Regulation in a Class of Nonlinear
Switched Power Converters

The basic nonlinear switched power converters NonInverting Buck-Boost, Full-Bridge
NonInverting Buck-Boost, Watkins-Johnson and Inverse of Watkins-Johnson have a general
state-space representation in terms of an averaged model consisting of a two-dimensional
system with the inductor current iL and the capacitor voltage vC as state variables, and a
control variable û = (û1, û2)

	. It is worth mentioning that the control action in the physical
system is carried out by means of switches; hence, û1 and û2 are to be actually implemented
through an appropriate PWM signal.

For a systematic analysis it is advisable to minimize the number of parameters of the
system. This goal may be achieved with the change of variables and parameters:

x1 =
1
Vg

√
L

C
iL, x2 =

1
Vg
vC, t =

1√
LC

τ, μ =
1
R

√
L

C
, (3.1)

which make the system dimensionless:

ẋ1 = û1 − x2û2 + k1(û2 − 1) + k2x2(1 − û1),

ẋ2 = −μx2 + x1û2 − k2x1(1 − û1).
(3.2)

The control gains û1, û2 take values in [û−, û+] × [û−, û+], with û− < û+. The values of
the parameters k1, k2 and of the lower and upper bounds of the control gains for the different
converters are summarized in Table 1. Moreover, assume an unknown value R for the load
resistance, due to the addition of a constant disturbance term Rw to its nominal value RN ;
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Table 1: State space descriptors of a class of switched power converters.

Converters k1 k2 û− û+

NonInverting Buck-Boost 0 0 0 1
Full-Bridge NonInverting Buck-Boost 0 0 −1 1
Watkins-Johnson 1 0 0 1
Inverse of Watkins-Johnson 0 1 0 1

that is, R = RN + Rw, with RN > 0 and Rw ∈ (−RN,+∞). Consequently, the parameter μ may
be written as μ = μN −w, with

μN =
1
RN

√
L

C
> 0, w =

μNRw

RN + Rw
∈
(
−∞, μN

)
, (3.3)

w being the only uncertain parameter of the system.
Assigning

x =

(
x1

x2

)
, û =

(
û1

û2

)
, δ =

(
−k1

0

)
, AN =

(
0 k2

−k2 −μN

)
, (3.4)

Aw =

(
0 0

0 w

)
, B(x) =

(
−k2x2 + 1 −x2 + k1

k2x1 x1

)
, (3.5)

the dynamical system (3.2) may be written as

ẋ = (AN +Aw)x + δ + B(x)û. (3.6)

Furthermore, notice that detB(x) = x1(1 − k1k2) = x1 according to the admissible values for
k1, k2 indicated in Table 1. Hence, assuming x1 /= 0, the state feedback control law

û = B−1(x)[u −ANx − δ] (3.7)

transforms system (3.6) into

ẋ = Awx + u. (3.8)

Let us now consider the problem of rendering the state x of system (3.8) to
asymptotically track a certain reference profile x = xR(t), which can be expressed as a linear
combination of the solutions of a time-invariant, linear exosystem; that is, there exist real
matrices S and Q, of appropriate dimensions, such that

v̇ = Sv,

v(0) = v0,

xR = Qv.

(3.9)
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Notice that an exosystem as (3.9) with σ(S) ⊂ C+ can generate a large class of functions,
including combinations of step functions with arbitrary amplitude, ramps with arbitrary
slope or sinusoidal signals with arbitraries amplitude and initial phase. These are the type
of references/disturbances usually faced by power converters.

Therefore, the problem may be posed as that of finding a linear robust output regulator
for

ẋ = Awx + u,

v̇ = Sv,

e = x −Qv.
(3.10)

Let I2 and 02 denote, respectively, the identity matrix and the null matrix in the set of
2 × 2 matrices. Then, identifying the elements of the original system (2.1) with those of the
particular case (3.10) one gets

Bw = B0 = I2, Pw = P0 = 02, Cw = C0 = I2, Qw = Q0 = −Q, (3.11)

while Aw is defined in (3.5) and, subsequently, A0 = 02.

Proposition 3.1. Let us consider system (3.10) and the equivalences (3.5)–(3.11). Then,

(i) The pair (A0, B0) = (02, I2) is controllable.

(ii) The following matrix is nonsingular for all λ ∈ C:

(
A0 − λI2 B0

C0 02

)
=
(
−λI2 I2

I2 02

)
. (3.12)

Proof. The proof is immediate.

Theorem 3.2. Consider the plant (3.10), and assume that σ(S) ⊂ C+. Then, the LROR problem is
solvable by means of a dynamic state feedback controller (2.3).

Proof. The result follows using Proposition 3.1 and Theorem 2.2.

Let (2.3) be a dynamic state feedback controller that solves the LROR problem for the
system (3.10). Turning back now to the original system (3.6), the corresponding feedback
control law is to be obtained using (2.3) in (3.7). However, recalling that the original control
vector û has fixed gain values and taking into account (3.7), it is easily realizable that (2.3)
will be actually useful for output regulation situations in which the trajectories x(·) of (3.6)
remain entirely inside the state-space region X defined as

X =
{
x ∈ R

2; det B(x)/= 0 ∧ B−1(x)[u −ANx − δ] ∈ Û
}
, (3.13)

with Û = [û−, û+] × [û−, û+]. Notice that the restriction detB(x)/= 0 is necessary and
sufficient for guaranteeing the diffeomorphic character of the transformation (3.7), while the
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requirement û in Û ensures nonsaturation of the controller performance. Eventually, this fact
entails restrictions on the set of initial values x(0), z(0), v(0) and parametric uncertainties
W (see issue (ii) in Definition 2.1) from which robust output regulation is attainable.

At this point, specific conditions to be accomplished by candidate reference profiles
xR are especially interesting. They follow immediately from the assumption that xR lies in
X. Hence, assume that system (3.10) has achieved a steady-state x = xR under the action of
the dynamic state feedback controller (2.3), and denote zR, uR, the corresponding stationary
behavior for u and z; it follows from Remark 2.3 that xR = Πwv, zR = Σwv, (Πw,Σw) being
the solution of (2.13) and (2.14), and uR = H1xR + H2zR by construction. Moreover, it is
straightforward from the assignment (3.5)–(3.11) that Πw = Q, while Σw is such that

QS = (Aw +H1)Q +H2Σw,

ΣwS = ΦS.
(3.14)

Hence, using (3.9),

xR = Qv = Q exp(St)v0, (3.15)

zR = Σwv = Σw exp(St)v0, (3.16)

uR = (H1Q +H2Σw) exp(St)v0, (3.17)

where Σw satisfies (3.14). Furthermore, from (3.8) we obtain an alternative expression for uR:

uR = ẋR −AwxR = QSv −AwQv = (QS −AwQ) exp(St)v0. (3.18)

Proposition 3.3. Let xR = (x1R, x2R)
	 satisfying (3.15) be a reference profile for system (3.8), (3.9),

and let X be the set defined in (3.13). Then, xR ∈ X, for all t ≥ 0, if and only if the following relations
are fulfilled:

x1R = q1v = q1 exp(St)v0 /= 0, ∀t ≥ 0,

B−1(xR)
[
(QS −ANQ −AwQ) exp(St)v0 − δ

]
∈ Û, ∀t ≥ 0,

(3.19)

where q1 denotes the first row of matrix Q, that is, Q = col(q1, q2).

Proof. The proof is immediate using (3.4)-(3.5), Table 1, (3.15), and (3.18) in (3.13).

The next result establishes sufficient conditions for a command profile xR in such a
way that the dynamic state feedback regulator (2.3) that solves the LROR for system (3.10)
also yields robust tracking of xR by the original system (3.6).
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Theorem 3.4. Let xR = (x1R, x2R)
	 satisfying (3.15) be a reference profile for system (3.6) in such a

way that

x1R = q1v = q1 exp(St)v0 /= 0, ∀t ≥ 0,

B−1(xR)
[
(QS −ANQ) exp(St)v0 − δ

]
∈ Û, ∀t ≥ 0,

(3.20)

where q1 denotes the first row of matrix Q. Let also (2.3) be a dynamic state feedback controller that
solves the LROR problem for system (3.10). Then, there exist open subsets X0 ⊂ R

2, Z0 ⊂ R
2r and

W0 ∈ R, with 0 ∈ W0, such that, for all (x(0), z(0)) ∈ X0 × Z0 and for all w ∈ W0, the controller
(2.3) and (3.7), produces

lim
t→∞

x(t) = xR(t) (3.21)

in system (3.6), with x(t) ∈ X, for all t ≥ 0, X being the region defined in (3.13).

Proof. As, by hypothesis, (2.3) solves the LROR problem for (3.10), Definition 2.1 ensures the
existence of a neighborhood W ⊂ R of the origin w = 0 where

(i) σ(Acw) ⊂ C
−, for all w ∈ W , Acw being the matrix defined in (2.5), which now is

(see (3.5)–(3.11))

Acw =
(
Aw +H1 H2

N Φ

)
; (3.22)

(ii) for all x(0), z(0) and for all w ∈ W , the trajectories of (3.10) satisfy limt→∞x(t) =
xR(t).

Assume that xR satisfies (3.20). It then follows by continuity that there exists an open
subset Ŵ ⊂ R, containing the origin, such that xR also satisfies (3.19), for allw ∈ Ŵ ; moreover,
W∩Ŵ is trivially nonempty and open. Continuity also guarantees the existence of three open
subsets, X0 ∈ R

2, with Qv0 ∈ X0, Z0 ∈ R
2r , with Σ0v0 ∈ Z0, Σ0 satisfying (3.16) for w = 0,

and W0 ⊆ W ∩ Ŵ , such that, for all (x(0), z(0)) ∈ X0 × Z0 and for all w ∈ W0, it results that
x(t) ∈ X, for all t ≥ 0.

The size of the open set W0 ⊆W ∩ Ŵ ⊆ (−∞, μN) (recall from (3.3) that w ∈ (−∞, μN))
of possible parametric uncertainties that can be accommodated by the control system (3.6),
(3.7), (2.3) during the tracking task of a certain reference xR satisfying (3.9), is studied below.

On the one hand, W depends on the features of the regulator (2.3). Indeed, W
coincides with the set where the matrix Acw is exponentially stable [6], that is,

W =
{
w ∈

(
−∞, μN

)
;σ(Acw) ⊂ C

−}, (3.23)

with Acw defined in (3.22). The next section contains a design procedure for (2.3) in such
a way that a necessary condition for having W = (−∞, μN) is fulfilled; furthermore, this
condition is also sufficient for regulation (xR constant, i.e., S = 0.) tasks.
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On the other hand, the size of Ŵ can be tuned at will under certain restrictions. Indeed,
assuming that the perturbed parameterw belongs to a known, closed interval [wm,wM], with
wm ≤ 0 ≤ wM, and also that x2R satisfies mild hypotheses that include periodicity, a technique
based on semi-infinite programming methods developed in [9] allows the obtention of an
also periodic reference x1R for x1, with minimum Root Mean Square, in such a way that (3.19)
are verified for all w ∈ [wm,wM], that is, Ŵ = [wm,wM]. Then, if the dynamic state feedback
regulator (2.3) is also designed in order to have W = (−∞, μN), then W ∩ Ŵ = Ŵ .

Finally, assume that xR is such that (3.19) are satisfied for all w ∈ W ∩ Ŵ . The set
W0 ⊆ W ∩ Ŵ is strongly dependent on the initial conditions x(0), z(0) and the distance
between the actual value of w and w = 0. A good selection for x(0) is x(0) ∼ xR(0) = Qv0.
However, zR(t) depends on w (see (3.16)); thus, the setting z(0) ∼ Σ0v0 makes W0 contain
the values w for which the distance ‖(Σw −Σ0)v0‖ is small enough. Otherwise, assuming that
w ∈ [wm,wM], alternative assignments such as z(0) ∼ Σwv0, w being a certain value of the
interval [wm,wM], should be considered (see Remark 2.3).

4. Construction of a Dynamic State Feedback Regulator

The construction of a dynamic state feedback regulator (2.3) for system (3.10) is carried out
using the results of Section 3.

Assume that σ(S) ⊂ C+. Let mpS(λ) be the minimal polynomial of S written as in (2.8),
with degmpS(λ) = r, and consider the matrices Φi and Ni defined in (2.9). Therefore, using
(2.10), let

Φ = diag(Φ1,Φ2) ∈M2r×2r(R),

N = diag(N1,N2) ∈M2r×2(R).
(4.1)

It was already commented in Section 2 that, with this selection of Φ and N, the pair (A0, B0)
defined in (2.11) is stabilizable. Hence, H = (H1 H2) ∈M2×(2+2r)(R) can be selected in such a
way that σ(A0 + B0H) ⊂ C

−. However, the situation for system (3.10) is even better, because
the corresponding pair is controllable, as stated in the next result.

Proposition 4.1. Consider the matrices Φ, N, defined in (4.1). Then, the following pair is
controllable:

A0 =
(

02 02×2r

N Φ

)
, B0 =

(
I2

02r×2

)
. (4.2)

Proof. Notice that

A
k

0B0 =
(

02

Φk−1N

)
, ∀k ≥ 1. (4.3)
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Therefore, the controllability matrix C(A0, B0) = (B0, A0B0, . . . , A
2r+1
0 B0) is such that

rankC
(
A0, B0

)
= rank

(
I2 02 02 · · · 02

02r×2 N ΦN · · · Φ2rN

)

= rank I2 + rank
[
C(Φ,N),Φ2rN

]
= 2 + 2r,

(4.4)

because of the fact that (Φ,N) is controllable by construction.

Then, by Proposition 4.1, there exists H = (H1 H2) that allows an arbitrary placement
of the poles of the closed-loop system A+BH. The regulator is therefore ensured to be robust
for all w ∈W , W being the set defined in (3.23).

As discussed in Section 3, it is of obvious interest to place the poles of the unperturbed
system in such a way that W = (−∞, μN). The design procedure suggested below, besides
guaranteeing robustness in an open neighborhood of w = 0, gives a general necessary
condition for having W = (−∞, μN). However, arbitrary pole-placement must be replaced by
stable pole-placement. This condition appears to be sufficient in the lowest dimensional case
S = 0 (i.e., r = 1), that is, for regulation purposes. Other cases may demand further analysis
of the resulting Acw in order to establish the region W where robustness is preserved.

Hence, consider the perturbed system associated to (4.2):

(
ẋ
ż

)
= Aw

(
x
z

)
+ Bwu, (4.5)

with

Aw =
(
Aw 02×2r

N Φ

)
, Bw = B0 =

(
I2

02r×2

)
, (4.6)

and Aw(w = 0) = A0. The change of variables

x1 =

⎛
⎜⎜⎜⎝

x11

x12
...

x1,r+1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝
x1

z1
...
zR

⎞
⎟⎟⎟⎠, x2 =

⎛
⎜⎜⎜⎝

x21

x22
...

x2,r+1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

x2

zr+1
...
z2R

⎞
⎟⎟⎟⎠ (4.7)

transforms system (4.5) into the block-diagonal form:

(
ẋ1

ẋ2

)
=

(
A1 0r+1

0r+1 A2

)(
x1

x2

)
+

(
B1 0(r+1)×1

0(r+1)×1 B2

)(
u1

u2

)
, (4.8)

where

A1 =
(

0 01×r
N1 Φ1

)
, A2 =

(
w 01×r
N2 Φ2

)
, B1 = B2 =

(
1

0r×1

)
. (4.9)
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Since the disturbance free pair (A1, B1) is trivially controllable, its poles can be
arbitrarily placed by means of appropriate feedback and are not affected by the perturbation.
Thence, let us denoted by

pA1
(λ) = −λpΦ1(λ) = −λmpS(λ) = −

(
λr+1 + ar−1λ

r + · · · + a0λ
)

(4.10)

the characteristic polynomial of A1. It is well-known that (A1, B1) achieves the controllable
canonical form:

Ã1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1
0 −a0 −a1 · · · −ar−1

⎞
⎟⎟⎟⎟⎟⎟⎠
, B̃1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
...
0
1

⎞
⎟⎟⎟⎟⎟⎟⎠

(4.11)

on the base of R
n+1 defined by the column vectors of the matrix

T = col
(
A
r

1B1 + ar−1A
r−1
1 B1 + · · · + a0B1, . . . , A1B1 + ar−1B1, B1

)
. (4.12)

Let us now assume that the feedback subsystem is in canonical form

˙̃x1 = Ã1x̃1 + B̃1u1,

u1 = H̃1x̃1,
(4.13)

where x̃1 = T−1x1, is expected to possess a spectrum such as σ(Ã1 + B̃1H̃1) = {λ11, . . . , λ1,r+1} ⊂
C
−, and let {α10, . . . , α1r} ⊂ R

+ be the coefficients of the corresponding characteristic
polynomial:

(λ − λ11)(λ − λ12) · · · (λ − λ1,r+1) = λr+1 + α1rλ
r + · · · + α10. (4.14)

Proposition 4.2. Let H̃1 = (h̃11 · · · h̃1,r+1), h1i ∈ R, for all i ∈ {1, . . . , r + 1}, be a feedback matrix for
system (4.13). If the gains are selected as

h̃11 = −α10,

h̃1k = −α1,k−1 + ak−2, k = 2, . . . , r + 1,
(4.15)

then the characteristic polynomial of Ã1 + B̃1H̃1 coincides with (4.14), which makes the system robust
for all w ∈ (−∞, μN).
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Proof. It is immediate from (4.11) that the characteristic polynomial of Ã1 + B̃1H̃1 is

p1(λ) = λr+1 +
(
ar−1 − h̃1,r+1

)
λr + · · · +

(
a0 − h̃12

)
λ − h̃11. (4.16)

The substitution of (4.15) in (4.16) yields the result.

The final step should be the transformation of H̃1 into the original x1-base:

Hx1 = H̃1T
−1. (4.17)

Proposition 4.3. Let (A2, B2) be defined from (4.9). The base transformation with associated matrix
T introduced in (4.12) reduces the pair to the canonical form (Ã2, B̃2), with

Ã2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 · · · 0
0 0 · · · 0
...

...
...

...
0 0 · · · 1

wa0 (wa1 − a0) · · · (w − ar−1)

⎞
⎟⎟⎟⎟⎟⎟⎠
, B̃2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
...
0
1

⎞
⎟⎟⎟⎟⎟⎟⎠
. (4.18)

Proof. Taking into account (4.9), the linear system associated to the pair (A2, B2) may be
written as

ẋ2 = A2x2 + B2u2 = A1x2 +
(
wx21

0r×1

)
+
(

1
0r×1

)
u2. (4.19)

Assigning

u2 = wx21 + u2, (4.20)

Equation (4.19) takes the form: ẋ2 = A1x2 + B2u2. Performing the base transformation x̃2 =
T−1x2 and recalling from (4.9) that B2 = B1, one gets that

˙̃x2 = Ã1x̃2 + B̃2u2, (4.21)

with x̃2 = T−1x2, B̃2 = B̃1 and Ã1, B̃1 being described in (4.11). Observe now that the state
vector component x21 may be expressed as x21 = T1x̃2 = T11x̃21 + · · · + T1,r+1x̃2,r+1, where
T1 = (T11, . . . , T1,r+1) stands for the first row of T ; denoting the Kronecker product by ⊗, the
reversion of the change (4.20) in (4.21) results in

˙̃x2 = Ã2x̃2 + B̃2u2, with Ã2 = T−1A2T = Ã1 +wB̃2 ⊗ T1. (4.22)
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Therefore, Ã2 is a matrix in controllable canonical form, and its characteristic polynomial
coincides with that of A2 due to the invariance property under base transformations:

pÃ2
(λ) = pA2

(λ) = (w − λ)pΦ2(λ)

= −
[
λr+1 + (ar−1 −w)λr + +(ar−2 −war−1)λr−1 + · · · + (a0 −wa1)λ −wa0

]
.

(4.23)

Hence, the result follows.

Consider the canonical feedback subsystem:

˙̃x2 = Ã2x̃2 + B̃2u2,

u2 = H̃2x̃2.
(4.24)

On the one hand notice that since Ã2|w=0 = Ã1, an assignment of feedback gains equivalent
to (4.15) guarantees robustness at least in a certain neighborhood of w = 0. On the other
hand, it is well-known that a necessary condition for the stability of a polynomial is that all
its coefficients have the same sign, which is also sufficient for polynomials of degree 2.

Therefore, assume that (4.24) is expected to possess the following spectrum for w = 0:
σ(Ã2|w=0 + B̃2H̃2) = {λ21, . . . , λ2,r+1} ⊂ C

−, and let {α20, . . . , α2r} ⊂ R
+ be the coefficients of the

corresponding characteristic polynomial:

(λ − λ21)(λ − λ22) · · · (λ − λ2,r+1) = λr+1 + α2rλ
r + · · · + α20. (4.25)

Proposition 4.4. Let H̃2 = ( h̃21···h̃2,r+1 ), h̃2i ∈ R, for all i ∈ {1, . . . , r + 1}, be a feedback matrix for
system (4.24).

(i) If the gains are selected as

h̃21 = −α20,

h̃2k = −α2,k−1 + ak−2, k = 2, . . . , r + 1,
(4.26)

then the characteristic polynomial of Ã2 + B̃2H̃2 coincides with (4.25) for w = 0, which
makes the subsystem robust in a neighbourhood of w = 0.

(ii) Moreover, if

α2k > εk + μN |ak|, k = 0, . . . , r − 1,

α2r > μN,
(4.27)

with εk > 0, for all k = 0, . . . , r − 1, then all the coefficients of the characteristic polynomial
of the feedback system Ã2 + B̃2H̃2 are positive, for all w ∈ (−∞, μN); furthermore, if r = 1
then the system is stable for all w ∈ (−∞, μN).
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Proof. It is straightforward from (4.18) that the characteristic polynomial of Ã2 + B̃2H̃2 is

p2(λ) = λr+1 +
(
ar−1 −w − h̃2,r+1

)
λr + · · · +

(
a0 −wa1 − h̃22

)
λ +
(
wa0 + h̃21

)
. (4.28)

(i) The replacement (4.26) in (4.28) yields

p2(λ) = λr+1 + (α2r −w)λr + · · · + (α21 −wa1)λ + (α20 −wa0), (4.29)

from which issue (i) follows immediately.

(ii) The assumption σ(S) ⊂ C+ entails ak ∈ R, for all k = 0, . . . , r−1 and, since εk > 0, for
all k = 0, . . . , r − 1 by hypothesis, (4.27) results in the coefficients of (4.29) satisfying

α2k −wak > εk +
(
μN −w

)
|ai| > 0, k = 0, . . . , r − 1,

α2r −w > μN −w > 0,
(4.30)

for all w ∈ (−∞, μN). The statement for the case r = 1 is therefore trivial.

Remark 4.5. Propositions 4.2 and 4.4 allow to conclude the following.

(i) The assignments (4.15) and (4.26) yield robustness in a neighborhood of w = 0.
Indeed, the actual set W is given by W = {w < μN ;σ[p2(λ)] ⊂ C

−}, with p2(λ)
defined in (4.29).

(ii) The assignments (4.15) and (4.26) and the restriction (4.27) constitute a necessary
condition for having W = (−∞, μN). In case that S = 0, that is, r = 1, the condition
becomes necessary and sufficient.

Once the feedback matrix H̃2 has been constructed following either (4.26) or (4.26)-
(4.27), the transformation into the x2-base is to be carried out:

Hx2 = H̃2T
−1. (4.31)

Eventually, the dynamic state feedback control law (2.3) is now completely determined, with
Φ, N selected as indicated in (4.1) and

(
H1 H2

)
=
(

Hx1 01×(r+1)

01×(r+1) Hx2

)
M−1, (4.32)

M−1 being the matrix associated to the change of variables defined in (4.7) for system (4.5):

(
x1

x2

)
=M−1

(
x
z

)
. (4.33)
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5. Example: Output Voltage Regulation in a Noninverting
Buck-Boost Converter

In this section we address the robust regulation of the output voltage x2 of a NIBB, described
by system (3.6) and (3.7) and Table 1, to a constant level x2R ∈ R is addressed. Firstly, dynamic
state feedback regulators are constructed following Section 4. Later, restrictions arising from
control saturation as discussed in Section 3 are considered and, for a certain command profile
x2R, a reference x1R for the input current is selected in such a way that (3.19) are fulfilled for
all t ≥ 0 and for all w ∈ Ŵ = [wm,wM] ⊂ (−∞, μN), where wm, wM are, respectively, lower
and upper bounds for the uncertain parameter, with wm ≤ 0 ≤ wM.

Hence, assume that the control goal is the robust regulation of the state variable x to a
constant level x = xR. Then, S = 0 and, being r = degmpS(λ) = 1, (4.1) indicates that Φ = 02,
N = I2, which results in the dynamic state feedback regulator (2.3) appearing as

ż = e,

u = H1x +H2z.
(5.1)

The construction of matrices H1 and H2 is made from the pole-placement design method
provided by Propositions 4.2 and 4.4. Notice that now the closed-loop system (3.22) is

Acw =
(
Aw +H1 H2

I2 02

)
, (5.2)

where Aw is defined in (3.5). Therefore, let us assign complex conjugated, stable poles:

λ11,12 = λ21,22 = λ1,2; λ2 = λ1 ∧ Re(λ1) < 0, (5.3)

for subsystems (4.13) and (4.24). Then, (4.15) and (4.26) yield

H̃1 = H̃2 =
(
−|λ1|2 − 2|Re(λ1)|

)
, (5.4)

and the base transformation matrices T , M−1 being (see (4.12) and (4.33), resp.)

T =
(

0 1
1 0

)
, M−1 =

⎛
⎜⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎠. (5.5)

equations (4.17), (4.31), and (4.32) provide

(
H1

... H2

)
=

⎛
⎝−2|Re(λ1)| 0

... −|λ1|2 0

0 −2|Re (λ1)|
... 0 −|λ1|2

⎞
⎠. (5.6)
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Remark 5.1. According to Remark 4.5(i)

W =
{
w < μN ;σ

[
λ2 + (2|Re(λ1)| −w)λ + |λ1|2

]
⊂ C

−
}
, (5.7)

withW = (−∞, 2|Re(λ1)|) ⊂ (−∞, μN) in case that 2|Re(λ1)| < μN . Otherwise, the assumption
2|Re (λ1)| ≥ μN results in the fulfillment of (4.27), this yielding W = (−∞, μN) in accordance
to Remark 4.5(ii).

On the other hand, let v0 = 1, Q = (q1, q2)
	 ∈ R

2 in (3.9), which yield x1R = q1,
x2R = q2. Next result provides a selection criteria for x1R which is shown to be sufficient for
the fulfillment of (3.19).

Proposition 5.2. Let the NIBB converter, described by (3.6), (3.7) and Table 1, be regulated by (5.1),
with (H1 | H2) defined in (5.6). Let alsoW be the set defined in (5.7). Assume that the output voltage
x2 is expected to attain a certain reference level x2R = q2 ∈ R \ {0}, while the uncertain parameter w
belongs to the set with known bounds [wm,wM],wm ≤ 0 ≤ wM < μN . If the reference x1R = q1 ∈ R

+

is such that

q1 >
(
μN + |wm|

)
max

{∣∣q2
∣∣, q2

2

}
, (5.8)

then one has the following:

(i) Restrictions (3.19) are fulfilled for all t ≥ 0, for all w ∈ Ŵ = [wm,wM].

(ii) If 2|Re(λ1)| > wM, then W ∩ Ŵ = Ŵ ; furthermore, there exist open sets X0, Z0 and
W0, with W0 ⊆ Ŵ and 0 ∈ W0, in such a way that, for all (x(0), z(0)) ∈ X0 × Z0,
and for all w ∈ W0, the regulated system (3.6), (3.7), (5.1), (5.6) is able to accommodate
any disturbance w ∈ [wm,wM] and, at the same time, maintain the system trajectories
evolving inside the state-space region X defined from (3.13), for all t ≥ 0.

Proof. (i) The statement follows from the fact that, in this case, (3.19) answers to

q1 /= 0, 0 <

(
μN −w

)
q2

2

q1
< 1, 0 <

(
μN −w

)
q2

q1
< 1. (5.9)

(ii) As 2|Re(λ1)| > wM by hypothesis, it follows from Remark 5.1 and item (i) that
Ŵ ⊂W , this yielding W ∩ Ŵ = Ŵ . Then, the result follows from Theorem 3.4.

Remark 5.3. It is worth mentioning that the procedure described in [9] for the obtention of an
input current reference x1R when both x1R, x2R are assumed to be constant, yields the same
result as that of Proposition 5.2.

Finally, recall that the stationary values xR, zR, obtained following (3.15), (3.16), are:

xR =
(
q1

q2

)
, zR = Σw = −H−1

2 (Aw +H1)
(
q1

q2

)
, (5.10)

where S = 0, v0 = 1 and Φ = 02 has been taken into account.
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Figure 1: Rw = −5Ω: inductor current (x1) and output voltage (x2).

6. Simulation Results

The parameters selected for the NIBB converter are Vg = 40 V, L = 0.001 H, C = 0.00006 F,
RN = 10Ω, and it is expected to suffer an additive load disturbance at t = 0 that may vary the
nominal value RN in the range −50% to +100%, that is, admissible values for Rw and R are:
Rw ∈ [Rwm,RwM] = [−5Ω, 10Ω] and R ∈ [Rm,RM] = [5Ω, 20Ω]. These settings, translated to
normalized variables, result in (see (3.3)) μN = 0.4082, w ∈ [wm,wM] = [−0.4082, 0.2041] and
μ ∈ [0.1361, 0.8165]. Using λ1,2 = −1/4 ± (1/4)i in (5.3), the regulator obtained from (5.6) is

(
H1

... H2

)
=

⎛
⎜⎜⎝
−1

2
0

... −1
8

0

0 −1
2

... 0 −1
8

⎞
⎟⎟⎠. (6.1)

Then, as 1/2 = 2|Re(λ1)| > μN = 0.4082, it follows from (5.7) and Remark 4.5(ii) that W =
(−∞, μN) = (−∞, 0.4082) ⊃ [−0.4082, 0.2041] = [wm,wM].

Let us now assign references for the state variables: x1R = 5, x2R = 2, corresponding
to iL = 48.9898A, vC = 80 V, respectively. It can be immediately checked that this
selection guarantees the fulfillment of restriction (5.8) in Proposition 5.2: 5 = q1 > (μN +
|wm|)max{|q2|, q2

2} = 3.2660 and, therefore, Ŵ = [−0.4082, 0.2041] ⊂ W . Thus, considering
that Ŵ =W ∩ Ŵ = [−0.4082, 0.2041] = [wm,wM], Proposition 5.2(ii), ensures the existence of
open sets W0 ⊂W ∩ Ŵ , X0, Z0, with 0 ∈W0, in such a way that, for all (x(0), z(0)) ∈ X0 ×Z0,
the regulated system (3.6), (3.7), (5.1) is able to accommodate any disturbance w ∈ W0 and,
at the same time, maintain the system trajectories evolving in the unsaturated region of the
state-space region X defined from (3.13), for all t ≥ 0.

Finally, notice that the steady-state values for the state variables x, z are (see (5.10)):
xR = (5, 2)	, zR = Σw = −(20, 8 − 16w)	.



Mathematical Problems in Engineering 19

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50

û1
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Figure 2: Rw = −5Ω: equivalent controls û1 and û2.
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Figure 3: Rw = −5Ω: auxiliary variables z1 and z2.

Ideal simulations have been carried out with a SIMULINK model of the system for the
cases Rw = −5Ω and Rw = 10Ω. The control signal û is considered continuous. The duration
of the simulations is 204.1241 time units, corresponding to 0.05 s. In both cases the selected
initial conditions have been: x(0) = (4, 2)	, z(0) = Σ0 = −(20, 8)	.

Figures 1, 2, and 3 depict, respectively the state variables x1 and x2, the control actions
û1, û2, and the auxiliary variables z1 and z2 for the case Rw = −5Ω: the results show an
excellent agreement with the theory developed in Section 5, which is confirmed by plots in
Figures 4, 5, and 6, corresponding to Rw = 10Ω.

The section closes with realistic simulations that use the software package PSIM.
Besides the converter’s main parameters indicated above, the model incorporates internal
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Figure 4: Rw = 10Ω: inductor current (x1) and output voltage (x2).
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Figure 5: Rw = 10Ω: equivalent controls û1 and û2.

resistances of 10 mΩ for the inductor and the capacitor. Each switch is implemented by means
of an IGBT with a saturation voltage of 2 V and a power diode with a voltage drop of 0.5 V.
The implementation of the control law uses PWM with a frequency of 50 kHz.

The current and voltage references have been set to 49 A and 80 V, respectively, and
null initial conditions have been selected for both the state and the auxiliary variables. The
total duration of the simulations is 9 ms. Figure 7 depicts the inductor current and the output
voltage reaching their reference levels under an actual output load of R = 5Ω instead of the
nominalRN = 10Ω, that is, with a disturbance Rw = −5Ω. In turn, Figure 8 plots an equivalent
situation for R = 20Ω, that is, for Rw = 10Ω. The results confirm the validity of the proposed
approach.
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Figure 6: Rw = 10Ω: auxiliary variables z1 and z2.

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4
(ms)

5 6 7

iL(A)

vC(V )

8 9

Figure 7: Rw = −5Ω: output voltage vC (in Volts) and inductor current iL (in Ampères).

7. Conclusions

The robust output regulation problem for a family of nonlinear switched power converters
that includes the NonInverting Buck-Boost, the Full-Bridge NonInverting Buck-Boost, the
Watkins-Johnson and the Inverse of Watkins-Johnson has been addressed. Linear techniques,
available after a transformation of the control variable, render an efficient solution of the
problem. The methodology employs a dynamic state feedback control law and considers
resistive loads with load resistance uncertainty. Restrictions due to fixed values of the control
gains are considered. The proposed technique is successfully tested via realistic numerical
simulations of the robust output voltage regulation in a NonInverting Buck-Boost converter.

Further research should explore the possibility of using state feedback linearization
plus linear robust output regulation techniques in converters with a single control switch,
such as the boost or the buck-boost.
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Figure 8: Rw = 10Ω: output voltage vC (in Volts) and inductor current iL (in Ampères).
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