
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2010, Article ID 751659, 17 pages
doi:10.1155/2010/751659

Research Article
Time-Dependent Statistical Analysis of Wide-Area
Time-Synchronized Data

A. R. Messina, P. Esquivel, and F. Lezama

Graduate Studies Program in Electrical Engineering, The Center for Research and Advanced Studies,
Avenida Cientı́fica 1145, Colonia El Bajı́o, Guadalajara, 45015 Jalisco, Mexico

Correspondence should be addressed to A. R. Messina, aroman@gdl.cinvestav.mx

Received 30 January 2010; Accepted 16 April 2010

Academic Editor: Ming Li

Copyright q 2010 A. R. Messina et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

Characterization of spatial and temporal changes in the dynamic patterns of a nonstationary
process is a problem of great theoretical and practical importance. On-line monitoring of large-
scale power systems by means of time-synchronized Phasor Measurement Units (PMUs) provides
the opportunity to analyze and characterize inter-system oscillations. Wide-area measurement sets,
however, are often relatively large, and may contain phenomena with differing temporal scales.
Extracting from these measurements the relevant dynamics is a difficult problem. As the number of
observations of real events continues to increase, statistical techniques are needed to help identify
relevant temporal dynamics from noise or random effects in measured data. In this paper, a statis-
tically based, data-driven framework that integrates the use of wavelet-based EOF analysis and a
sliding window-based method is proposed to identify and extract, in near-real-time, dynamically
independent spatiotemporal patterns from time synchronized data. The method deals with the
information in space and time simultaneously, and allows direct tracking and characterization of
the nonstationary time-frequency dynamics of oscillatory processes. The efficiency and accuracy
of the developed procedures for extracting localized information of power system behavior from
time-synchronized phasor measurements of a real event in Mexico is assessed.

1. Introduction

Phenomena observed in power system oscillatory dynamics are diverse and complex.
Remotely sensed measured data are known to exhibit noisy, nonstationary fluctuations
resulting primarily from small magnitude, random load changes in load, driven by low-scale
motions or nonlinear trends originating from control actions or other changes in the system.
Extracting from these sets indices that capture significant spatial and temporal dynamics is
very challenging [1–4].

Recent improvements in wide-area monitoring schemes have led to renewed
investigation of nonlinear and nonstationary behavior of system oscillations [2, 3]. In
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the last decade, extensive research has been carried out for developing modal extraction
algorithms that can accurately monitor transient response. Multivariate statistical data
analysis techniques offer a powerful tool for analyzing power system response from
measured data [1]. By seeing the snapshots of system data as a realization of random
field generated by some kind of stochastic process, data-driven statistical can be applied
to investigate propagating phenomena of different spatial scales and temporal frequencies
[5–7]. Existing analysis methods, however, do not take into account the multiscale nature of
measured system dynamics arising from events occurring at different locations with different
localization in time and frequency [6, 7]. This, in turn, may obscure visualization of transient
wide-area phenomena or limit the ability of the method to deal with data measured at
different sampling rates or containing missing information.

Analysis and characterization of time-synchronized system measurements requires
mathematical tools that are adaptable to the varying system conditions, accurate and fast,
while reducing the complexity of the data to make them comprehensible and useful for real-
time decisions. This is particularly true in the study of large datasets of dynamic processes
whose energy changes with time or frequency.

In this paper, a statistically based, data-driven framework that integrates the use of
a wavelet-based empirical orthogonal function (EOF) analysis and the method of snapshots
is proposed to identify and extract dynamically independent spatio-temporal patterns from
time-synchronized data. Extensions to current approaches to estimating propagating and
standing features in near-real-time that can be associated with observed or measured data
are discussed and numerical issues are addressed.

The procedure allows identification of the dominant spatial and temporal patterns in
a complex dataset and is particularly well suited for the study the temporal evolution of
critical modal parameters. It is shown that, in addition to providing spatial and temporal
information, the method improves the ability of conventional correlation analysis to capture
temporal events and gives a quantitative result for both the amplitude and phase of motion,
and modal content, which are essential in the interpretation and characterization of transient
processes in power systems.

The efficiency and accuracy of the developed procedures for capturing the temporal
evolution of the modal content of data from time-synchronized phasor measurements of a
real event in Mexico is assessed. Results show that the proposed method can provide accurate
estimation of nonstationary effects, modal frequency, time-varying modes shapes, and time
instants of intermittent or irregular transient behavior associated with abrupt changes in
system topology or operating conditions in a near-real-time setting.

2. Statistical Characterization of Measured Data

2.1. Empirical Orthogonal Function Analysis

Time-synchronized phasor measurements collected by PMUs or other dynamic recorders can
be interpreted conveniently in terms of statistical models involving both temporal and spatial
variability [1–4]. When data is available at multiple locations, a spatio-temporal model is
required that represents system behavior. Figure 1 shows a conceptual representation of PMU
data collected at different spatial locations.

Assume, in order to introduce the more general ideas that follow, that measured data
is available at n spatial locations (measurement locations) defined by xj , j = 1, . . . , n, at
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Figure 1: Visualization of PMU data in terms of spatial and temporal information.

N instants in time, tk, k = 1, . . . ,N. Let u(xj , tk) be a space-time scalar field representing
a time trace, where xj , is a set of spatial variables (i.e., measurement locations) on a space Ωk,
and tk, is the time at which the observations are made.

Using this notation, the set of data can be represented by an N×n-dimension ensemble
(observation) matrix, F(x, t), of the form

F(x, t) =
[
f1(x1, t) f2(x2, t) · · · fn(xn, t)

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

u(x1, t1) u(x2, t1) · · · u(xn, t1)

u(x1, t2) u(x2, t2) · · · u(xn, t2)

...
...

. . .
...

u(x1, tN) u(x2, tN) · · · u(xn, tN)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (2.1)

In this formulation, each column corresponds to the system response at a specific time,
and can represent the system response to a single event or represent an ensemble of time
responses to multiple events measured at a single location.

Empirical orthogonal function (EOF) analysis provides a basis for the modal
decomposition of an ensemble of data in terms of the smallest possible number of basic
modes or proper orthogonal modes (POMs, most energetic global functions) [5–8]. This
decomposition is of the form [5]

F̂(x, t) =
m∑
i=1

aiϕ∗
i (x), (2.2)

where ai are the temporal amplitudes or eigenvectors, ϕi(x) are the spatial component maps
or eigenfunctions, andm are the statistical modes or POMs, where ai = F(x, t)ϕi. Each of these
maps represents a standing oscillation, and the temporal coefficients, ai, represent how this
pattern oscillates through time [9–14].
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The temporal and spatial components are calculated from the eigenvectors and
eigenfunctions of the covariance matrix

C =
1
N

FT (x, t)F(x, t). (2.3)

In standard real-EOF analysis, matrix C is real and symmetric and possesses a set
of orthogonal eigenvectors with positive (real) eigenvalues. The vectors ϕi(x) are called
empirical orthogonal functions (EOFs); the map associated with each eigenvector represents
a pattern which is statistically independent of the others and spatially orthogonal to them.

Two important properties of EOFs are that the spatial distributions are orthogonal and
their time series are uncorrelated. The method accounts for spatial and temporal changes and
can be used to extract dynamic patterns from measured data. Measured data, however, may
exhibit quite different dynamics at each system location or exhibit abrupt changes in modal
quantities that cannot be captured using existing stationary models [11].

2.2. Wavelet-Based EOF Analysis

In real-world applications data are multiscale due to events occurring at different locations
with different localization in time and frequency. To address the problem of multiscale
modeling in data, a wavelet-based EOF approach has been developed. In this approach, the
empirical orthogonal functions of the wavelet coefficients are computed at each scale and
then combined the results at relevant scales. The approach is referred to as wavelet-based
EOF analysis [15, 16] and involves three main steps:

(1) computing the wavelet decomposition for each column in the data matrix,

(2) computing the covariance matrix of wavelet coefficients for each scale of interest,
and combining the results at the dominant scales of interest,

(3) extracting dynamic features from the selected scales.

Appendix A briefly summarizes wavelet analysis in the context of the proposed
formulation. In what follows we review the theory behind EOF decomposition and present
some results and extensions to conventional analysis to treat changes in space and temporal
variability.

A complex, near-real-time formulation with the ability to resolve localized information
is then proposed.

3. Near-Real Time EOF Analysis

As it was highlighted in the previous section, conventional EOF analysis assumes
stationarity of the underlying dynamic process and is therefore not suitable for an on-line
implementation. In addition, such an approach, can only provide information about standing
waves and cannot isolate portions of the phenomena in which dynamic changes take place
[1].

In order to overcome the above limitations, a sliding window-based method is used
to systematically analyze the observational data in near-real-time. This allows to isolate and
extract the portions of data where oscillations are present and improves numerical efficiency
and accuracy.
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Figure 2: Visualization of PMU data in terms of spatial and temporal information.

3.1. Time-Dependent Covariance Matrix

Assume that fk(x) = [fk(x1), fk(x2), . . . , fk(xn)] denotes a sequence of observations, collected
at time instants tk, to k = 1, 2, . . . ,∞, evenly spread throughout the time period, where xn is
set of spatial variables (measurement locations).

A sliding window-based approach has been combined with EOF analysis to resolve
localized information. In this approach, a sliding window frame of fixed size, say τ , is shifted
regularly throughout the data span from the beginning of the record to the end of the data
as shown in Figure 2. The analysis window is then slid the same distance repeatedly and
the covariance matrix is computed recursively. It should be stressed that τ can range from a
single sample to the entire length of the record.

Referring to Figure 2, let matrix Ck(x) be the covariance matrix of size τ × n, where τ
is the window size, n is the number of sensors or PMUs, and k indicates the time instant at
which the response matrix is computed.

More formally, given a set of available sample time series, the temporal autocorrelation
matrix, Ck, of Fk(x) extending over a window length is defined as

CkΔ
FHk (x)Fk(x)

k
=

1
k

k∑
i=1

fHi (x)fi(x), (3.1a)

or, equivalently,

CkΔ
Fk(x)FHk (x)

k
=

1
k

k∑
i=1

fi(x)fi(x)H, (3.1b)

where, in the above, the covariance matrix can be real or complex.
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In our formulation, matrix Ck, is a positive semidefinite matrix of size n × n, and
possesses a set of complex time-dependent orthogonal eigenvectors, ϕi(t), i = 1, . . . , n,
that capture propagating features. Extensions of this approach to consider the case where
the autocorrelation matrix is nonintegrable are discussed in [17, 18]. This is, however, not
considered here.

An interesting and useful interpretation of the covariance matrix can be obtained by
rewriting (3.1a) as

kCk =
k−1∑
i=1

fi(x)fHi (x) + fk(x)fHk (x). (3.2)

Now if we let Ck−1 = (1/(k − 1))
∑k−1

i=1 fi(x)fi(x)
H , we can write

Ck =
k − 1
k

Ck−1 +
1
k
fk(x)fHk (x). (3.3)

This analysis suggests that the covariance matrix at time step k can be computed
recursively using information from both, the previous time step (k − 1) and the current
measurement using only elementary operations [19]. The stationarity test for the recursive
covariance matrix can be made to demonstrate the stationarity of the dataset [20].

Similar to the previous development, it can be shown that for a fixed window size, τ ,
(3.1a) and (3.1b) can be rewritten as

Ck =
τ − 1
τ

Ck−1 +
1
τ
fk(x)fHk (x). (3.4)

Equation (3.4) provides an efficient method to approximate the time-dependent co-
variance matrix: since the method is based on local information the technique is well-
suited for real-time applications. The selection of an optimal window size is an important
but difficult problem and will be addressed in future research. In the analysis of highly
nonstationary signals, large values of τ may obscure the analysis of temporal changes
occurring at specific segments of the observed record. As discussed in our numerical
simulations, short-width windows provide improved localized information but result in
enhanced computational effort. We have found that, the best estimate for the autocorrelation
matrix C can be obtained using the averaged two-point correlation function [5].

3.2. Complex Formulation

In an effort to extend standard real-EOF analysis to deal with propagating phenomena a
complex formulation is adopted. Here, the real part is augmented with an imaginary obtained
from the Hilbert transform of each time series. Refer to Esquivel and Messina for more details
[11, 21, 22].
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Assume then that Fk = [FR + jFI]k is a complex matrix with j =
√
−1, where

the subscripts R, I, indicate the real and imaginary vectors. Under these assumptions, the
autocorrelation matrix Ck in (3.1a) and (3.1b) [11, 23] becomes

FkFHk =
[
FRFTR + FIFTI

]
k
+ j

[
FIFTR − FRFTI

]
k
,

FHk Fk =
[
FTRFR + FTI FI

]
k
+ j

[
FTRFI − FTI FR

]
k
.

(3.5)

Given a model of the form (3.5), it is straightforward to show that CR = CT
R is a

symmetrical matrix, and that CI is an asymmetric matrix or hemisymmetric matrix, that is,
CT
I = −CI . Since the symmetrical matrix is a particular case of the Hermitian matrix, all of its

eigenvectors are real; the elements of the asymmetrical matrix are all purely imaginary and
its eigenvectors are complex conjugate. Note that the bases for the complex autocorrelation
matrix Ck, are now defined as ϕR(x) for the real part and ϕI(x) for the imaginary part.

Appendix B contains further discussion of this subject.

3.3. Propagating Features

Many power system phenomena derive from nonlinear interactions between traveling waves
of different spatial scales and temporal frequencies. This section extends the developed model
to detect propagating phenomena in nonstationary processes.

Once the spatial eigenvectors associated with the real and imaginary part of C are
calculated, the original field can be approximated by a spatio-temporal model [4, 8, 10].
Consider a field fk composed of standing and traveling components, denoted by fswc, ftwc

of the form

fk = [fswc + ftwc]k. (3.6)

From EOF analysis [11], the complex field can be expressed as the complex expansion

[fswc]k =

[
p∑
i=1

RR(i)(t)SR(i)(x) cos
(
ωR(i)t

)]
k

,

[ftwc]k =

[
q∑
i=1

RI(i)(t)SI(i)(x) cos
(
ωI(i)t +KI(i)x + π

)]
k

,

(3.7)

where R,S are the temporal and spatial amplitude functions, respectively, and ω, K are the
frequency functions and wave component to be determined.

Let now the complex field (3.6) be expanded in terms of a truncated EOF basis of p
and q modes as [12]

f̂k =

[
p∑
i=1

AR(i)(t)ϕH
R(i)(x) + j

q∑
i=1

AI(i)(t)ϕH
I(i)(x)

]
k

, (3.8)
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where the complex, time-dependent coefficients, AR(i)(t) and AI(i)(t) are given by

AR(i) =
[
fϕR(i)(x)

]
k
, AI(i) =

[
fϕI(i)(x)

]
k
. (3.9)

Equation (3.8) can now be recast in the form

f̂k =

[
p∑
i=1

RR(i)(t)SR(i)(x)ej(θR(i)+ϕR(i))

]
k

+

[
q∑
i=1

RI(i)(t)SI(i)(x)ej(θI(i)+ϕI(i)+π)

]
k

, (3.10)

where R(t) and S(x) are the temporal and spatial amplitude functions associated to the wave
component of the decomposition, respectively, and θ(t) and ϕ(x) are the temporal and spatial
phase functions, respectively, [6, 7]. The original time series can then be reconstructed from
the real part of (3.10). The details are omitted.

In the developed models, a criterion for choosing the number of relevant modes is
given by the energy percentage contained in the p and q modes:

∑p

i=1

[
Δλ(i)swc

]
k +

∑q

i=1

[
Δλ(i)twc

]
k

‖fk‖2
F

= 99%, (3.11)

where ‖ · ‖2
F denotes the Frobenius norm. From (3.11), (Δλswc)k and (Δλtwc)k are given in

difference as

(Δλswc)k = (λswc)k+1 − (λswc)k, (Δλtwc)k = (λtwc)k+1 − (λtwc)k. (3.12)

Equations (3.7)–(3.12) provide a complete characterization of any propagating effects
and periodicity in the original data field which might be obscured by normal cross-spectral
analysis.

It might be remarked that, in the special case of real analysis, these expressions are
simplified to the standard definitions.

4. Recursive Algorithm

A flowchart of the proposed approach is shown in Figure 3. In this plot, dashed boxes indicate
the use of instantaneous information from the previous time step (k − 1), and E(·) indicates
the expectation value. This approach makes feasible the analysis and characterization of
transient processes using real-time information. Variations to these approaches that extend
their practical use to the realm of near-real-time stability assessment and control are being
investigated. These features will be discussed in future research.

The following sections describe the application of multivariate statistical techniques to
measured data including the estimation of instantaneous parameters.
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Figure 3: Algorithm for near-real-time computation of standing and propagating features from measured
data.

5. Simulations

5.1. Records of Selected Signals

The data used for this study were recorded by multiple phasor measurement units during a
real event in northern Mexico. See [21, 22] for more details about this event.

The main event that originated the oscillations was a failed temporary interconnection
of the Northwestern regional system to the Mexican interconnected system through a 230 kV
line between Mazatlan Dos and Tres Estrellas substations. As a result of topological changes
and load shedding, the observed oscillations exhibit highly complex phenomena including
transient motions characterized by changing frequency content and variations in the mode
shapes of critical electromechanical modes.

Among the existing PMU locations, frequency measurements at three major sub-
stations round the north, northwestern and northeastern systems were selected for study:
Hermosillo (H), Mazatlan Dos (MZD) and Tres Estrellas (TTE). Figure 4 is an extract
from PMU measurements of this event showing the observed oscillations of selected bus
frequencies.

Measurements were recorded over 400 ms collected at a rate of 0.20 samples per
second.
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Figure 4: Time traces of recorded bus frequency swings recorded January 1, 2004 and detail of the
oscillation buildup.

5.2. Analysis of Propagating Features

System measurements in this plot demonstrate significant variability suggesting a nonsta-
tionary process in both space and time. As observed in these plots, the most prominent
variations occur in the interval during which the oscillation starts at 06 : 27 : 42 and the interval
in which the operating frequency is restored to the nominal condition (60 Hz) by control
actions at about 06 : 28 : 21.

Based on the frequency data collected by PMUs, EOF analysis was applied to reveal
spatial and temporal dynamics. As a first step towards the development of an empirical basis,
the covariance matrix was formed by the ensembles of the frequency observations at different
system locations, that is,

Fk = [fH(tk), fMZD(tk), fTTE(tk)]. (5.1)

To visualize the complex temporal and spatial dynamics that takes placed in the
system following the failed interconnection, each time series is augmented with an imaginary
component using Hilbert analysis and the complex EOF method is employed to approximate
the original data. Further, in order to improve the ability of the method to capture
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Figure 5: Reconstruction of the original data with the traveling wave mode identified using the off-line
and on-line analysis.

Table 1: RMS error in the approximation.

Signals Off-line (rms) On-line (rms)

Hermosillo 0.3591 0.2614

Mazatlan Dos 0.4928 0.4008

Tres Estrellas 0.7536 0.5477

temporal behavior, the individual time series are separated into their time-varying mean
and fluctuating components; complex-EOF analysis is applied to the fluctuating field to
decompose the spatio-temporal data into orthogonal modes associated to the standing and
traveling wave components.

Using the proposed approach, two statistical modes describing standing and traveling
features were identified. Mode 1, which accounts for 98.5% of the total energy describes the
main (standing) feature in the records. The second mode contains approximately 1% of the
energy and describes propagating features.

Figure 5 compares the signal reconstructed using conventional EOF and the proposed
on-line formulation, whilst Table 1 gives the rms error. A two-sample data analysis window
was used in the on-line analysis of system characteristics. For simplicity, only the traveling
wave mode is used in the computation. Simulation results clearly show that near-real-time
approximations enhance the ability of the method to capture local information.
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Figure 6: (a) average energy of traveling wave mode using the off-line analysis, and (b) instantaneous
energy of traveling wave mode using the on-line analysis.

Also of interest, Figure 6 compares the amplitude of modal components provided
by conventional EOF analysis and that obtained from the proposed formulation. Note
that conventional analysis can only provide average information. In sharp contrast with
this, the near-real-time implementation enables to single out the times at which sudden
changes in system behavior take place. Further, Figure 7 shows the mode shape of dominant
electromechanical modes obtained using both approaches.

One of the most attractive features of proposed technique is its ability to detect changes
in the shape properties of critical modes arising from topology changes [9, 23], and control
actions. Changes in the mode shape of electromechanical modes may indicate changes in
topology or changes in operating patterns and may be useful for control decisions and the
design of special protection systems [1, 22]. In this analysis, complex values are displayed
as vectors with the length of the vector proportional to the eigenvector magnitude and the
direction equal to the eigenvector phase.

The proposed approach provides an automated way to estimate mode shapes without
any prior information of the time intervals of interest. The computational effort for analysis
of large blocks of data is directly related to the number of spatial variables and the size of
the observation window considered. In our numerical simulations the data analysis window
corresponds to on-going that research is being conducted to estimate the appropriate window
size for real-time applications.
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Figure 7: (a) mode shape of traveling wave mode using off-line analysis, and (b) time-varying mode shape
of traveling wave mode using the proposed on-line analysis method.
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Figure 8: Spatial pattern of the leading mode showing temporal variability.

Finally, Figure 8 shows the time evolution of the dominant travelling wave at different
system locations obtained using the wavelet empirical orthogonal function analysis described
above. The analysis depicts the fill evolution of temporal dynamics and provides details
about the local behavior of multiscale data. Here, the shaded areas in the plot delineate the
regions where the energy is significant. This provides detailed information of time instants
associated with transient system behavior whose behavior changes over time and frequency.
The results stand in contrast with current modeling done at a single scale.

6. Conclusion

Wide-area, real-time monitoring may prove invaluable in power system dynamic studies
by giving a quick assessment of the damping and frequency content of dominant system
modes after a critical contingency. In this paper, an alternative technique based on time-
dependent complex EOF analysis of measured data is proposed to resolve the localized
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nature of transient processes and to extract dominant temporal and spatial information. A
method of spatially decomposing oscillation patterns in near-real-time into their standing
and travelling parts is presented.

By combining a sliding window approach with complex EOF, a novel framework
for on-line characterization of temporal behavior is proposed that attempts to consider the
influence of both, spatial and temporal variability. Numerical results show that the proposed
method provides accurate estimation of nonstationary effects, modal frequency, time-varying
mode shapes, and time instants of intermittent transient responses. This information may be
important in determining strategies for wide-area control and special protection systems.

It is shown that, in addition to providing spatial and temporal information, the method
improves the ability of conventional correlation analysis to capture temporal events and gives
a quantitative result for both the amplitude and phase of motions, which are essential in the
interpretation and characterization of transient processes in power systems.

Extensions to this approach to determine the optimal locations to place PMUs are
underway. Applications to real-time system monitoring, protection and control will be
addressed in future work.

Appendices

A. Wavelet Transform

Consider a function f(t) belonging to a family of finite energy functions, that is

∫∞

−∞

∣∣f(t)∣∣2
dt <∞. (A.1)

The continuous wavelet transform (WT) of f(t) is defined as [24]

W(a, b) =
1√
|a|

∫∞

−∞
f(t)ψ∗

(
t − b
a

)
dt, (A.2)

where ψ(t) is the basis wavelet function or mother wavelet, a is a scale parameter and b is
a time parameter. The superscript ∗ denotes complex conjugation. It is assumed that ψ(t) is
also a finite energy function satisfying the condition

CΨ =
∫∞

−∞

|Ψ(ω)|2

|ω| dω <∞ (A.3)

in which Ψ̂(ω) is the Fourier transform of ψ(t) defined as

Ψ̂(ω) =
1√
2π

∫∞

−∞
ψ(t)e−iωtdt. (A.4)



Mathematical Problems in Engineering 15

The function f(t) can be reconstructed from W(a, b) by using the double integral
representation

f(t) =
1

πCψ

∫∫∞

−∞

1
a2
W(a, b)ψ

(
t − b
a

)
da√
a
db, (A.5)

where the scale parameter a is restricted to positive values only.

B. Singular Value Decomposition

This section reviews the singular value decomposition and its features that relevant in the
context of the proposed formulation.

Using the SVD decomposition, a complex matrix X can be represented as

X = ‖X‖
[
cos(θXt) + j sin(θXt)

]
= URΣRVH

R + jUIΣIVH
I ,

(B.1)

where ‖X‖ and θX are the magnitude and phase of X, respectively, U are left singular vectors
and Σ are singular values.

Using (B.1), we can rewrite (3.5) as

XXH = ‖X‖
∥∥∥XT∥∥∥{[cos(θXt) cos(θXT t) + sin(θXt) sin(θXT t)]

+ j[sin(θXt) cos(θXT t) − cos(θXt) sin(θXT t)]
}
,

XHX =
∥∥∥XT∥∥∥‖X‖{[cos(θXT t) cos(θXc t) + sin(θXT t) sin(θXt)]

+ j[cos(θXT t) sin(θXt) − sin(θXT t) cos(θXt)]
}

(B.2)

or

XXH =
[
URΣRΣT

RU
T
R +UIΣIΣT

IU
T
I

]
+ j

[
UIΣIΣT

RU
T
R −URΣRΣT

IU
T
I

]
,

XHX =
[
VT
RΣ

T
RΣRVR +VT

I Σ
T
I ΣIVI

]
+ j

[
VT
RΣ

T
RΣIVI −VT

I Σ
T
I ΣRVR

]
.

(B.3)

As it is seen from (B.1), the columns of UR and UI are the eigenvectors of real and imaginary
parts of XXH , and the columns of VR and VI are the eigenvectors of real and imaginary parts
of XHX, respectively, [10, 11]. The n singular values on the diagonal of ΣR and ΣI are the
square roots of the nonzero eigenvalues of the real and imaginary parts of both XXH and
XHX divided by the number of samples N.



16 Mathematical Problems in Engineering

From the decomposition given in (B.2), it can be seen that the imaginary part is zero
when time is in phase with the extremum of the cosine or sine, that is, the sum of the two
components is zero, for this instant both are symmetrical matrixes.

The imaginary part measures the grade of asymmetries when the sum of both matrixes
is different from zero; this is used to define the existence of traveling wave components.
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