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Exponential fins are mathematically analyzed in this paper. Two types are considered: (i) straight
exponential fins and (ii) pin exponential fins. The possibility of having increasing or decreasing
cross-sectional areas is considered. Different thermal performance indicators are derived. The
maximum ratio between the thermal efficiency of the exponential straight fin to that of the
rectangular fin is found to be 1.58 at an effective thermal length of 2.0. This ratio is even larger
when exponential fins are compared with triangular and parabolic straight fins. Moreover, the
maximum ratio between the thermal efficiency of the exponential pin fin to that of the rectangular
pin fin is found to be 1.17 at an effective thermal length of 1.5. However, exponential pin
fins thermal efficiencies are found to be lower than those of triangular and parabolic pin fins.
Moreover, exponential joint-fins may transfer more heat than rectangular joint-fins especially when
differences between their senders and receivers portions dimensionless indices are very large.
Finally, it is found that increasing the joint-fin exponential index may cause straight exponential
joint-fins to transfer more heat than rectangular joint-fins.

1. Introduction

Enhancing heat transfer between solids and the adjoining fluids is one of the most important
objectives in thermal engineering. Therefore, many methods were proposed to achieve this
goal. Bergles [1, 2] classified these methods to active and passive methods. Active methods
are those requiring external power to maintain their enhancement such as well stirring the
fluid or vibrating the solid surface [3, 4]. On the other hand, the passive methods do not
require external power to maintain the enhancement effect as when fins are utilized. Fins
are widely used in industry, especially in heat exchanger and refrigeration industries [5–10].
Moreover, fins are used in cooling of large heat flux electronic devices as well as in cooling of
gas turbine blades [11].
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According to design aspects, fins can have simple designs such as rectangular,
triangular, parabolic, hyperbolic, annular, and pin fins [9]. Complicated designs of fins such
as spiral fins have been utilized [12, 13]. In addition, fins can be arranged uniformly on the
solid surface [10]. In contrast, they can be arranged on the solid surface in complex networks
as can be seen in the works of Alebrahim and Bejan [14], Almogbel and Bejan [15] and
Khaled [16]. Moreover, fins can be further classified based on the number of the adjoining
fluids interacting with their surfaces. Examples of works including fins surrounded by more
than one adjoining fluid can be found in the works of Khaled [17, 18]. In addition, fins are
usually attached to solid surfaces [5–13] but they may have roots in the solid walls [19]. To the
best knowledge of the author, thermal characterization of exponential fin systems received
almost negligible attention in the literature. Perhaps, this is due to the difficulty associated
with manufacturing them in the past. However, the recent advancements in manufacturing
technologies, which led to accurate micro- and nanosystems fabrications, may increase the
opportunities of these passive systems to be implemented in industry.

In this paper, fins with exponentially varying cross-sectional areas are modeled and
mathematically analyzed. Two types were considered: (i) exponential straight fins and (ii)
exponential pin fins. The appropriate energy equations are solved, and the temperature
distributions are found. Accordingly, different thermal performance indicators are calculated.
The analysis is expanded to account for exponential joint-fins. Extensive parametric study is
performed for the various controlling parameters in order to evaluate these kinds of systems.

2. Problem Formulation

It should be mentioned before starting the analysis that the following assumptions are
considered:

(i) one-dimensional heat transfer analysis,

(ii) conduction and convection heat transfer rates being governed by the Fourier law
and the Newtons law of cooling, respectively,

(iii) having, for exponential pin fins, (dr/dx)2 � 1.0,

(iv) uniform heat transfer coefficient between the fin and the fluid stream.

2.1. Straight Fins with Exponentially Varying Widths

Consider a rectangular fin having a uniform thickness t that is much smaller than its width
H(x) and length L as shown in Figure 1. The fin width varies along the fin centerline axis
(x-axis) according to the following relationship:

H(x) ≡ H(x/L)
Hb

= e−bLx, (2.1)

where x = x/L and b is a real number named as the exponential index. The quantity
Hb represents the fin half-width at its base (x = 0). Note that, when b > 0, the analysis
corresponds to the right portion of the joint-fin shown in Figure 1 while it corresponds to
the left fin portion of the joint-fin when b < 0.
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Figure 1: Schematic diagram for a straight exponential fin and exponential joint-fin and the system
coordinates.

The application of the energy equation [20] on a fin differential element results in the
following differential equation:

d

dx

(
Ac

dT

dx

)
− h
k

(
dAs

dx

)
(T − T∞) = 0, (2.2)

where T, T∞, k, and h are the fin temperature, free stream temperature, fin thermal
conductivity, and the convection heat transfer coefficient between the fin and the fluid stream,
respectively. The quantitiesAc and As are the cross-sectional and the surface areas of the fin,
respectively. Equation (2.2) has the following dimensionless form:

d

dx

(
H
dθ

dx

)
− (mL)2Hθ = 0, (2.3)

where m =
√

2h/(kt) and θ = (T(x) − T∞)/(Tb − T∞). The quantity m is called the fin index
while Tb is the fin temperature at its base. Equation (2.3) prescribes the following general
solution:

θ(x) = C1e
s1x + C2

s2x, (2.4)
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where s1 and s2 are equal to

s1,2 =
bL

2

[
1 ∓

√
4X2 + 1

]
if b > 0,

s1,2 =
bL

2

[
1 ±

√
4X2 + 1

]
if b < 0,

(2.5)

where X = m/b. The quantity X is named as the dimensionless exponential fin parameter.
It represents the ratio of the fin index, m, to the exponential index, b. When X � 1.0,
cross section gradients near the base are expected to be larger than the nearby temperature
gradients. The opposite scenario occurs when X � 1. The boundary conditions for an
adiabatic fin tip are given by

θ(x = 0) = 1.0,
∂θ

∂x

∣∣∣∣
x=1

= 0.0. (2.6)

As such, the dimensionless temperature distribution has the following form:

θ(x) =
es1x − [(s1e

s1)/(s2e
s2)]es2x

1 − (s1es1)/(s2es2)
. (2.7)

The rate of heat transfer through the fin is called the fin heat transfer rate. For this case,
it is equal to

qf = −kAc
dT

dx

∣∣∣∣
x=0

=

⎧⎪⎨
⎪⎩
Hbtkb

{
−1 +

√
4X2 + 1

}
(Tb − T∞)Φ1(s1, s2); b > 0,

−Hbtkb
{

1 +
√

4X2 + 1
}
(Tb − T∞)Φ2(s1, s2); b < 0,

(2.8)

where Φ1 and Φ2 factors are smaller than unity. They are equal to

Φ1(s1, s2) =
1 − Exp

(
−bL
√

4X2 + 1
)

1 −
((

1 −
√

4X2 + 1
)
/
(

1 +
√

4X2 + 1
))

Exp
(
−bL
√

4X2 + 1
) , (2.9)

Φ2(s1, s2) =
1 − Exp

(
bL
√

4X2 + 1
)

1 −
((

1 +
√

4X2 + 1
)
/
(

1 −
√

4X2 + 1
))

Exp
(
bL
√

4X2 + 1
) . (2.10)
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Utilizing (2.9) and (2.10), the fin lengths L = (L∞)1 and L = (L∞)2 that make Φ1 and
Φ2 equal to 0.99, respectively, can be approximated by

m(L∞)1
∼=

X√
4X2 + 1

(
5.293 − ln

[
1 +

1√
4X2 + 1

])
, b > 0,

m(L∞)2
∼=

−X√
4X2 + 1

(
5.293 − ln

[
1 − 1√

4X2 + 1

])
, b < 0,

(2.11)

where quantity mL∞ is called the effective thermal length. This is because the fin material
exists after x = L∞ encounters negligible heat transfer rates and should be removed. The fin
thermal efficiency ηf is defined as the fin heat transfer rate divided by the fin heat transfer
rate if the fin temperature is kept at Tb. For this case, it can have the following forms:

ηf ≡
0.99

(
qf
)

max

4h(Tb − T∞)
∫L∞

0 Hdx
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0.99
{
−1 +

√
4X2 + 1

}

2X2
[
1 − Exp(−b(L∞)1)

] , b > 0,

0.99
{

1 +
√

4X2 + 1
}

2X2
[
Exp(−b(L∞)2) − 1

] , b < 0,

(2.12)

where (qf)max is the fin heat transfer rate when L � L∞. Now, define the fin performance
indicator γ as the ratio of the fin heat transfer rate when L > L∞ to the fin heat transfer
rate for a rectangular fin having a uniform width of 2Hb, uniform thickness t and an infinite
length. As such, γ is equal to

γ ≡
(
qf
)

max(
qf
)∣∣
H=Hb

=

(
qf
)

max

2Hb

√
2hkt(Tb − T∞)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
−1 +

√
4X2 + 1

2X

)
, b > 0,

(
1 +
√

4X2 + 1
2X

)
, b < 0.

(2.13)

2.2. Pin Fins with Exponentially Varying Radii

Consider a pin fin of radius r(x), as shown in Figure 2, that varies exponentially along the
x-axis according to the following relationship:

r(x) ≡ r(x)
rb

= e−bx, (2.14)

where b > 0. As such, (2.2) changes to:

d

dx

(
e−2bx dθ

dx

)
−m2e−bxθ = 0, (2.15)
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Figure 2: Schematic diagram for an exponential pin fin with b < 0 and the system coordinate.

where m =
√

2h/(krb). It can be shown that the general solution of (2.15) is

θ(x) = emx/X
{
C1I2

(
2Xemx/(2X)

)
+ C2K2

(
2Xemx/(2X)

)}
, (2.16)

where X = m/b. As such, the fin heat transfer rate is

qf = −kπr2
b(Tb − T∞)b{C1[I2(2X) + 0.5X(I1(2X) + I3(2X))]

+C2[K2(2X) − 0.5X(K1(2X) +K3(2X))]}.
(2.17)

For a fin with an infinite length (L → ∞), the constants C1 and C2 are given by

C1 = 0, C2 =
1

K2(2X)
. (2.18)

This is because emx/(2X) approaches infinity as x approaches infinity; hence I2(2Xemx/(2X))
approaches infinity. Thus, C1 is equal to zero.
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For adiabatic fin tips, boundary conditions given by (2.6) should be satisfied.
Accordingly, the constants C1 and C2 are equal to

C1 = (I2(2X) −K2(2X)C3)−1,

C3 =
I2
(
2XemL/(2X)) + 0.5XemL/(2X){I1

(
2XemL/(2X)) + I3

(
2XemL/(2X))}

K2
(
2XemL/(2X)

)
− 0.5XemL/(2X)

{
K1
(
2XemL/(2X)

)
+K3

(
2XemL/(2X)

)} ,

C2 = −C1C3.

(2.19)

The fin efficiency ηf for b > 0 can be found to be equal to

ηf ≡
0.99

(
qf
)

max

2πrbh(Tb − T∞)
∫L∞

0 r(x)dx

=
0.99(

1 − e−mL∞/X
)
(

1
X2

){
X

2

[
K1(2X)
K2(2X)

+
K3(2X)
K2(2X)

]
− 1
}
, b > 0,

(2.20)

where mL∞ is obtained from the solution of the following equation:

(
qf
)

Ins. Tip(
qf
)
L→∞

= φ
(
X,

mL∞
X

)
= 0.99. (2.21)

The fin performance indicator γ for this case is defined as the ratio of the fin heat
transfer rate when L � L∞ to that of a rectangular pin fin having a uniform radius of rb and
an infinite length. It is equal to the following:

γ1 ≡
(
qf
)

max(
qf
)∣∣
r=rb

=

(
qf
)

max

πrb
√

2hkrb(Tb − T∞)

=
(

1
X

){
X

2

[
K1(2X)
K2(2X)

+
K3(2X)
K2(2X)

]
− 1
}
, b > 0.

(2.22)

For cases when b < 0; X is replaced with −X, and the constants C1 and C2 for a fin with
infinite length are replaced by

C1 =
1

I2(−2X)
, C2 = 0, b < 0. (2.23)

As such, the fin thermal efficiency ηf and the indicator γ when b < 0 change to

ηf =
0.99(

e−mL∞/X − 1
)
(

1
X2

){−X
2

[
I1(−2X)
I2(−2X)

+
I3(−2X)
I2(−2X)

]
+ 1
}
, b < 0,

γ2 ≡
qf(

qf
)∣∣
r=rb

=
(−1
X

){−X
2

[
I1(−2X)
I2(−2X)

+
I3(−2X)
I2(−2X)

]
+ 1
}
, b < 0.

(2.24)
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2.3. Pin Fins with Exponentially Decaying Temperature Distribution

Consider a pin fin having a given fin temperature distribution that varies exponentially with
x according to the following relationship:

θ(x) ≡ T(x) − T∞
Tb − T∞

= e−axox, (2.25)

where x = x/xo and a is the exponential index. The dimensionless form of the energy
equation has the following form

d

dx

(
r2(x)

dθ

dx

)
− (mxo)2r(x)θ = 0, (2.26)

where m =
√

2h/(krb) and r(x) = r(x)/rb. By substituting (2.25) in (2.26), a differential
equation of first order constructed. It has the form

dr

r −X2
=

(ax0)
2

dx, (2.27)

where X = m/a. The solution to (2.27) is given by

r(x) = X2 +
[
1 −X2

]
Exp

(ax0

2
x
)
. (2.28)

For engineering problems, r(x) cannot be negative and it should intersect with fin
centerline at x = 1 when X > 1.0. As such, x0 is found to be equal to

mx0 = (2X) ln

[
X2

X2 − 1

]
, X > 1.0. (2.29)

In situations when 0 < X < 1.0, mx0 is minimally equal to 4.605X (x0 = 4.605/a; X < 1.0).
Under this constraint, the heat transfer rate at the fin tip (x = x0) is always 0.01 times the fin
heat transfer rate. The rate of heat transfer through the fin base is equal to

qf = −kfAc
dT

dx

∣∣∣∣
x=0

= πr2
bka(Tb − T∞). (2.30)
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As such, the fin thermal efficiency and the performance indicator for this case are equal
to

ηf =
qf

2πrbx0h(Tb − T∞)
∫1

0 r(x)dx
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
2X2

{
X2 ln

[
X2

X2 − 1

]
− 1

}−1

, X > 1.0,

1
2X2(9.0 − 6.697X2)

, 0 ≤ X ≤ 1.0,

γ1 =
qf

πrb
√

2hkrb(Tb − T∞)
=

1
X
.

(2.31)

2.4. Exponential Joint-Fins

Consider an infinite exponential fin joining two different fluid streams separated by a wall of
negligible thickness such as a pipe wall. The convection coefficient between the fin and the
fluid stream of the heat source side (side with maximum free stream temperature T∞1) is h1.
This coefficient is h2 for the heat sink side (side with T∞2 < T∞1) as illustrated in Figure 1.
The joint-fin portion on the source side is named as the “joint-fin receiver portion” while the
other portion is named as the “joint-fin sender portion”. The heat transfer rates through a
straight exponential joint-fin (qf)s, pin exponential joint-fin (qf)P , and the pin joint-fin with
exponential decaying temperature (qf)T are given by the following equations:

(
qf
)
s
= −γ22Hb

√
2h1kt(Tb − T∞1) = γ12Hb

√
2h2kt(Tb − T∞2), (2.32)

(
qf
)
P
= −γ2πrb

√
2h1krb(Tb − T∞1) = γ1πrb

√
2h2krb(Tb − T∞2), (2.33)

(
qf
)
T
= −γ1πrb

√
2h1krb(Tb − T∞1) = γ1πrb

√
2h2krb(Tb − T∞2), (2.34)

where the exponential index for the joint-fin receiver portion is considered to be negative,
b < 0, while that for the sender portion is positive, b > 0. This is only for cases represented by
(2.32) and (2.33).

By solving (2.32)–(2.34), the temperature at the joint-fin base (x = 0) can be calculated.
They are equal to

(Tb)s =

⌊√
4X2

1 + 1 + 1
⌋
T∞1 +

⌊√
4X2

2 + 1 − 1
⌋
T∞2

√
4X2

1 + 1 +
√

4X2
2 + 1

, (2.35)

(Tb)P =
M × T∞1 +N × T∞2

M +N
, (2.36)

(Tb)T =
T∞1 + T∞2

2
, (2.37)
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where M and N are given by

M =
[(

X1

X2

){
I1(2X1)

2I2(2X1)
+
I3(2X1)

2I2(2X1)

}
+

1
X2

]
,

N =
[
K1(2X2)

2K2(2X2)
+
K3(2X2)

2K2(2X2)
− 1
X2

]
.

(2.38)

By substituting (2.35)–(2.37) in (2.32)–(2.34), the joint-fin heat transfer rates reduce to the
following forms:

(
qf
)
s
= 2Hb

√
2h1kt(T∞1 − T∞2)

⌊√
4X2

1 + 1 + 1
⌋⌊√

4X2
2 + 1 − 1

⌋

2X1

{√
4X2

1 + 1 +
√

4X2
2 + 1

} ,

(
qf
)
s
= πrb

√
2h1krb(T∞1 − T∞2)

N

M(M +N)

(
X2

X1

)
,

(
qf
)
T
= πrb

√
2h1krb

(T∞1 − T∞2)
2X1

.

(2.39)

Define the joint-fin performance indicator γ3 as the ratio of the joint-fin maximum
heat transfer rate to maximum heat transfer rate through a rectangular joint-fin with uniform
cross-section (b = 0). It is mathematically defined as

γ3 ≡
qf[(

qf
)∣∣
Ac=constant

]
Joint-fin

. (2.40)

The heat transfer rate through the joint fin when b = 0 is obtainable from [17]. It is equal to

[(
qf
)∣∣
H=Hb

]
Joint-fin

=

√
h1kPAc

1 +
√
h1/h2

(T∞1 − T∞2) (2.41)

As such, γ3 can be written in the following forms:

(
γ3
)
s =

1
2

(
1
X1

+
1
X2

)
⌊√

4X2
1 + 1 + 1

⌋⌊√
4X2

2 + 1 − 1
⌋

{√
4X2

1 + 1 +
√

4X2
2 + 1

} ,

(
γ3
)
P =

{
N

M(M +N)

}(
X2

X1
+ 1
)
,

(
γ3
)
T =

X2 +X1

2X1X2
.

(2.42)
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Figure 3: Effect of the fin dimensionless parameter X on the effective thermal length mL∞ for straight
exponential fins with b > 0 and b < 0 (m =

√
2h/(kt)).

3. Discussion of the Results

Figure 3 illustrates the effects of the fin dimensionless parameter X on the effective thermal
length mL∞ for a straight exponential fin. When b > 0, mL∞ increases as X increases. It also
increases as X increases for the other case (b > 0) until X reaches almost unity. For both cases,
mL∞ approaches to an asymptotic value of 2.65 as X → ∞. Similar findings can be noticed
for exponential pin fins except that, when b < 0, mL∞ increases as X increases until X reaches
almost the value of 1.7 as shown in Figure 4. On the other hand, mx0 decreases as X increases
for pin fins with exponential decaying temperature when X > 1.0. For exponential pin fins,
the effective thermal lengths mL∞ values shown in Figure 4 are correlated to the parameter
X by the following correlations:

mL∞ = 0.8233

(
X0.8804 − 0.0047

0.2945X0.8934 + 0.2428

)
, b > 0, (3.1)

mL∞ = 0.7237

(
X0.6906 + 3.3301X1.4019 + 0.3939X0.6902 − 0.0302

0.9547X1.3923 + e−0.6311X1.9309 − 0.7425

)
, b < 0. (3.2)

These correlations were obtained using the least square method by utilizing a specialized
iterative statistical software. The maximum percentage error between correlations (3.1), and
(3.2) and the results shown in Figure 4 are found to be 7.5% and 13% at X = 0.01 when b > 0,
and b < 0, respectively.

Figure 5 shows the relation between the effective thermal length mL∞ on the fin
thermal efficiency ηf for a straight exponential fin. It is seen that ηf when b > 0 is greater than
the fin thermal efficiency of rectangular, triangular, and parabolic straight fins having the
same thermal length. However, the latter thermal efficiencies are greater than the fin thermal
efficiency for the straight exponential fin when b < 0. It can be shown using Figure 5 that
the maximum ratio between the thermal efficiency of the exponential straight fin to that of
the rectangular fin is 1.58 at an effective thermal length of 2.0. For pin exponential fins with
b > 0, ηf is found to be higher than ηf for the rectangular pin fins and lower than those
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Exponential pin (L∞ = x0)

Exponential pin (b > 0)

Exponential pin (L∞ = x0)

Exponential pin (b < 0)
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L
∞
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|X|
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Figure 4: Effect of the fin dimensionless parameter X on the effective thermal length mL∞ for exponential
pin fins with b > 0, b < 0 and L∞ = x0 (m =

√
2h/(krb)).

Exponential fin
(b > 0)

Rectangular fin [20]

Triangular fin [20]

Parabolic fin [20]

Exponential fin (b < 0)

η
f

0
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1
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(1)
∞
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Figure 5: Effect of the fin dimensionless parameter mL∞ on the fin efficiency ηf for straight exponential
fins with b > 0, or b < 0 (m =

√
2h/(kt); other than exponential fin mL∞ is replaced with mL).

for triangular and parabolic pin fins having the same thermal length as shown in Figure 6.
It is recommended to operate pin exponential fins, b < 0, at smaller values of mL∞ as their
efficiencies increase asmL∞ decreases as can be seen from Figure 6. In addition, the maximum
ratio between the thermal efficiency of the exponential pin fin to that of the rectangular pin
fin is found to be 1.17 at an effective thermal length of 1.5.

Exponential straight or pin fins having increasing cross-sectional areas (b < 0) always
exhibit higher fin heat transfer rates relative to rectangular straight or pin fins as can be seen
from Figures 7 and 8. However, γ1 values for those having decreasing cross-sectional areas
(b > 0) are always smaller than unity as shown in Figures 7 and 8. Exponential joint-fins
are found to transfer more heat than rectangular joint-fins fins at smaller values of X1 and
larger values of X2 as can be seen from Figures 9 and 10. On the other hand, pin joint-fins
with exponentially decaying temperatures were found to be preferable over rectangular pin
joint-fins at smaller X1 and X2 values as shown in Figure 11.
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Parabolic pin [20]Rectangular pin [20]

Triangular pin [20]
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Figure 6: Effect of the fin dimensionless parameter mL∞ on the fin efficiency ηf for exponential pin fins
with b > 0, b < 0 and L∞ = x0 (m =

√
2h/(krb); other than exponential fin mL∞ is replaced with mL).
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Figure 9: Effect of the parameters X1 and X2 on the performance indicator (γ3)s for a straight exponential
joint-fin with one side having b < 0 and the other side having b > 0.
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Figure 10: Effect of the parameters X1 and X2 on the performance indicators (γ3)P for an exponential pin
joint-fin with one side having b < 0 and the other side having b > 0.

X1 = 0.01

X1 = 0.1

X1 = 1
X1 = 100

X1 = 10

(γ
3)
T

0.01

0.1

1

10

100

X2

0.01 0.1 1 10 100
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The effect of increasing the exponential index b on γ3 can be illustrated using Figures
9 and 10, for example, increasing b by a factor of 10 while maintaining the other parameters
results in reductions in both X1 and X2 values by a factor of 0.1, for example, if X1 = 10 and
X2 = 10. This produces (γ3)s = 1.52 and (γ3)P = 0.857. Increasing b by factor of 10 changes the
joint-fin performance indicators (γ3)s = 0.894 and (γ3)P = 0.167 which are smaller than the
initial values. In contrast, initially selecting X1 = 0.1 and X2 = 10 which produce (γ3)s = 9.22
and (γ3)P = 414 results in final X1 = 0.01 and X2 = 1.0 which lead to (γ3)s = 38.6 and
(γ3)P = 10.91. As such, we can conclude that only (γ3)s may increase as b increases when
X2 −X1 is relatively large.

4. Conclusions

Exponential fin systems were modeled and mathematically analyzed in this work. The possi-
bility of having decreasing or increasing cross-sectional areas was considered. Rectangular
and circular cross-sectional areas are considered. Special thermal performance indicators
were derived. The maximum ratio between the thermal efficiency of the exponential straight
fin to that of the rectangular fin was found to be 1.58 at an effective thermal length of 2.0.
This ratio was found to be larger when the exponential fin was compared with triangular
and parabolic fins. Meanwhile, the maximum ratio between the thermal efficiency of the
exponential pin fin to that of the rectangular pin fin was found to be 1.17 at an effective
thermal length of 1.5. However, exponential pin thermal efficiency was found to be lower
than those of triangular and parabolic pin fins. In addition, exponential joint-fins may transfer
more heat than rectangular joint-fins especially when differences between their senders and
receivers portions dimensionless indices are very large. Finally, the summary of the closed-
form solutions and correlations reported in this work as compared to those of rectangular,
triangular, and parabolic fin systems are summarized in Table 1.

Nomenclature

a, b: Exponential functions indices
H: Half-fin width
Hb: Half-fin width at its base
h: Convection heat transfer coefficient between the fin and the fluid stream
h1: Convection heat transfer coefficient for the joint-fin source side
h2: Convection heat transfer coefficient for the joint-fin sink side
In(x): Modified Bessel functions of the first kind of order n
Kn(x): Modified Bessel functions of the second kind of order n
k: Fin thermal conductivity
L: Fin length
L∞: Effective fin length
m: Fin thermal index
qf : Fin heat transfer rate
r: Pin fin radius
rb: Pin fin radius at its base
T: Fin temperature
Tb: Fin base temperature
T∞: Free stream temperature of the adjoining fluid
T∞1: Free stream temperature of the source side adjoining fluid
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T∞2: Free stream temperature of the sink side adjoining fluid
t: Fin thickness
X: Dimensionless exponential fin parameter
X1: Dimensionless exponential parameter of the receiver fin portion
X2: Dimensionless exponential parameter of the sender fin portion
x: Coordinate axis along the fin centerline
x0: Pin fin length for exponential fins with exponentially decaying temperature
x: Dimensionless x-coordinate.

Greek Symbols

θ: Dimensionless fin temperature
γ1,2: Fin second thermal performance indicators
γ3: Joint-fin thermal performance indicator
ηf : Fin thermal efficiency.
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