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This paper focuses on the transient analysis of nonlinear dispersion of a pollutant ejected by
an external source into a laminar flow of an incompressible fluid in a channel. The influence
of density variation with pollutant concentration is approximated according to the Boussinesq
approximation, and the nonlinear governing equations of momentum and pollutant concentration
are obtained. The problem is solved numerically using a semi-implicit finite difference method.
Solutions are presented in graphical form and given in terms of fluid velocity, pollutant
concentration, skin friction, and wall mass transfer rate for various parametric values. The model
can be a useful tool for understanding the polluting situations of an improper discharge incident
and evaluating the effects of decontaminating measures for the water body.

1. Introduction

Pollution of water sources like rivers and lakes, say resulting from industrial waste discharge,
is a serious socioecological hazard. If the problem is not carefully controlled and monitored,
large communities can be exposed to extensive health risks. Early detection of such pollution
accidents, both in terms of extent and impact, is thus of major primary importance, and
the subsequent requirement to take immediate corrective measure to redress the pollution
problem and mitigate against its impact is equally so. In line with prevention better than
cure adage, the development of accurate methods to predict the spread of a pollutant
once a discharge has been detected and hence also the development of equally reliable
preventive/corrective techniques is thus of paramount importance [1]. Spread of pollutants
in a fluid flow depends largely on concentration coefficients [2]. These can be determined
empirically for each type of pollutant. Investigations such as [3] and also the current one can
help identify the pollutant physical properties (and the related mathematical parameters)
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Figure 1: Flow configuration and coordinate system.

likely to cause the greatest harm in the spreading the pollutant downstream. The importance
of these kinds of investigations as well as the complimentary experimental works, say in
large-scale water treatment and redistribution networks, thus makes them of great relevance
[4–9].

It should however be remarked that to date, the literature on the transient analysis
of problems consisting of buoyancy effects and nonlinear pollutant injection is still quite
sparse. This then forms the crux of the current investigation. We suppose that a pollutant
is introduced nonlinearly into a channel flow via an external source and proceed, under
Boussinesq approximations, to investigate the transient diffusion and resultant spatial-
temporal concentration.

In Section 2, the model problem is formulated and in particular the mathematical
governing equations, initial and boundary conditions are outlined. We outline, in Section 3,
the finite difference schemes that will be employed in the solution process, and graphical
results and discussions follow in Section 4.

2. Formulation of the Problem

We consider a transient problem of fluid flow and nonlinear dispersion of pollutant in a
rectangular channel as shown in Figure 1. In order to derive the governing equations, the
following assumptions are made:

(i) the fluid is viscous and incompressible;

(ii) initially, the flow is fully developed through a rectangular channel;

(iii) at time t > 0, a given pollutant is injected into the flow from an external source;
the viscosity of the fluid and the pollutant mass diffusivity then vary with its
concentration;

(iv) the influence of density variation with pollutant concentration has been considered
only in the body-force term of the momentum equation and is approximated
according to the Boussinesq approximation.
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Under laminar flow conditions, the problem is reduced mathematically to a transient
coupled fluid flow and mass transfer problem given in one dimension as [1, 3, 8, 9]
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where u is the fluid axial velocity, (r, z) are the radial and axial coordinates, respectively,
C is the pollutant concentration, C0 is the pollutant reference concentration, Cw is the
pollutant concentration at the walls, S is the pollutant external source function, g is the
gravitational acceleration, ρ is the density, β is the concentration expansion coefficient, a
is the channel half width, and P is the fluid pressure. As shown in (2.3), we employed
a fully developed Poiseuille parabolic velocity profile as the initial condition for the flow.
The pollutant concentration-dependent fluid dynamic viscosity μ, mass diffusivity D, and
external source are prescribed as follows:

μ = μ0 exp[b1(C − C0)], D = D0 exp[b2(C − C0)], S = Q exp[b3(C − C0)], (2.6)

where μ0, D0, b1, b2, and b3 are the viscosity coefficient, mass diffusivity coefficient, viscosity
variation parameter, mass diffusivity variation parameter, and the pollutant external source
variation parameter, respectively. The following dimensionless variables are introduced:
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Substituting (2.7) into (2.1)–(2.6), we obtain the following dimensionless coupled governing
equations:
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where λ is the pollutant external source parameter, Gc is the solutal Grashof number, K is
the axial pressure gradient parameter, Sc is the Schmidt number, α is the viscosity variation
parameter, γ is the mass diffusivity variation parameter, and n is the pollutant external source
variation parameter. The dimensionless shear stress (Cf) and the mass transfer rate (Sh) at
the channel wall are given by

Cf = − ∂w

∂y

∣∣∣∣
y=1

, Sh = −
∂φ

∂y

∣∣∣∣
=1
. (2.9)

In the following section, (2.8) is solved numerically and the skin-friction together with the
wall mass transfer rate given in (2.9) are computed.

3. Numerical Solution

Our numerical algorithm is based on the semi-implicit finite difference scheme given in [10]
for the isothermal viscoelastic case. As in [11], we extend the algorithm to the temperature
equation and take the implicit terms at the intermediate time level (N + ξ) where 0 ≤ ξ ≤ 1.
The algorithm employed in [11] uses ξ = 1/2; we will however follow the formulation in [10]
and thus take ξ = 1 in this article so that we can use larger time steps. The discretization of
the governing equations is based on a linear Cartesian mesh and uniform grid on which
finite-differences are taken. We approximate both the second and first spatial derivatives
with second-order central differences. The equations corresponding to the first and last grid
point are modified to incorporate the boundary conditions. The semi-implicit scheme for the
velocity component reads

(
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The equation for w(N+1) then becomes

−r1w
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(N+1)
j+1 = explicit terms, (3.2)

where r1 = exp(αφN)Δt/Δy2. The solution procedure for w(N+1) thus reduces to inversion
of tri-diagonal matrices which is an advantage over a full implicit scheme. The semi-
implicit integration scheme for the concentration equation is similar to that for the velocity
component. Unmixed second partial derivatives of the concentration are treated implicitly:
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The equation for φ(N+1) thus becomes
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(N+1)
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where r2 = exp(γφN)Δt/Δy2. The solution procedure again reduces to inversion of tri-
diagonal matrices. The schemes (3.2) and (3.4) were checked for consistency. For ξ = 1, these
are first-order accurate in time but second order in space. The schemes in [11] have ξ = 1/2
which improves the accuracy in time to second order. We use ξ = 1 here so that we are free
to choose larger time steps and still converge to the steady solutions. The algorithm was also
tested for both spatial and temporal convergences and shown to be independent of both mesh
size and time step size.

4. Results and Discussion

Unless otherwise stated, we employ the parameter values: Gc = 0.1, Sc = 0.6, α = 0.1, γ =
0.1, λ = 0.5, n = 0.1, m = 0.1, K = 1, Δr = 0.02, Δt = 0.005, and t = 50.

4.1. Transient Solutions

Figures 2 and 3 show the time development of the velocity and pollutant concentration
profiles. The velocity profile eventually settles to a steady parabolic flow which is
qualitatively similar to the initial profiles but quantitatively higher than the initial. This is
expected since the injection of pollutant into the flow acts as a momentum source and hence
naturally increases the flow velocity at subsequent times after the injection. Since the injection
ceases at some point, we also naturally expect the velocities to eventually settle to steady state
as illustrated in Figure 2.

The observed increase in the pollutant concentration with time shown in Figure 3 is a
trivial consequence of the fact that pollutant is injected into the flow at time > 0. The cessation
of the injection process at some future time leads to the eventual steady concentration profiles
displayed.
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Figure 2: Developing velocity profiles.
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Figure 3: Developing concentration profiles.

4.2. Dependence on Flow Parameters

As already noted, the pollutant injection is connected to momentum source terms and hence
leads to increased steady flow velocities. Increase of the pollutant injection parameter, λ, thus
expectedly (indirectly) increases flow velocity as illustrated in Figure 4.

The increases pollutant concentration however also increases fluid viscosity and hence
the competing effects of higher viscosity and higher pollutant injection result in the marginal
velocity increases shown in Figure 4.
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Figure 4: Effects of λ on velocity.
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Figure 5: Effects of λ on concentration.

Figures 3 and 5 show that at a fixed value of parameter lambda, the pollutant
concentration in the flow increases with time until it reaches a saturation state. Further
injection of pollutant into the flow does not lead to any appreciable increase in saturation state
concentration. We should however remark (as will be illustrated shortly) that large values of
λ may not allow for the attainment of steady solutions but rather lead to finite time blowup
phenomena.

For large values of λ, the possibility of blowup phenomena is clearly illustrated in
Figure 6. Physically, this results primarily from flow blockage due to excessive discharge of
pollutant into the channel flow.
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Figure 6: Blowup of concentration, n = 1.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Velocity

Gc = 0.1
Gc = 0.5

Gc = 1
Gc = 3

Figure 7: Effects of Gc on velocity.

In Figure 6, we compute and plot (for each value of λ) the corresponding pollutant
maximum concentration (φmax) in steady state (t = 10) until a value of λ is reached (around
λ < 0.4 for the current parameter values) at which no (steady) solutions exist but instead
blowup phenomena is observed.

We next look at the effects of the solutal Grashof number Gc on both the flow velocity
and pollutant concentration. Clearly Gc is connected to momentum source terms and thus
flow velocities should directly increase with increasing Gc. This is illustrated in Figure 7.

On the other hand, since the flow velocity, w, is uncoupled from the pollutant
concentration, φ, then changes in flow velocities are not expected to have any influence on
the concentration. The solutal Grashof number only appears in the momentum equation and
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Figure 9: Effects of Sc on velocity.

its increase will (even though it leads to increased velocities) thus not have any influence on
the pollutant concentration as illustrated in Figure 8.

The Schmidt number of various chemical substances which may act as pollutant
varies depending on the chemical species. The values of Schmidt number (Sc) are chosen for
hydrogen (Sc = 0.22), water vapour (Sc = 0.62), ammonia (Sc = 0.78), and Propyl Benzene
(Sc = 2.62). The minor increases noted in the flow velocity, Figure 9 are, as explained before,
due to competing effects of increased Boussinesq source terms and increased fluid viscosity,
both due to increased Sc and hence increased φ.
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Figure 10: Effects of Sc on concentration.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Velocity

y

α = 0.1
α = 0.5
α = 1

Figure 11: Effects of α on velocity.

Figure 9 shows that pollutant substances with higher Schmidt numbers lead to
correspondingly higher pollutant concentrations within the flow.

Increasing the parameter α leads to corresponding increases in the fluid viscosity and
hence leads to reduced flow velocities. This is well illustrated in Figure 11.

As with the Grashof number, the fluid viscosity only plays a role in the momentum
equations and since the velocity is uncoupled from the concentration equation, any changes
in the viscosity (even though they result in changes in the velocity field) will have no effect
on the pollutant concentration as shown in Figure 12.
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Figure 12: Effects of α on concentration.
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Figure 13: Effects of γ on velocity.

The diffusion parameter γ manifests itself appreciably in the pollutant concentration
but barely plays a role in the flow velocity as illustrated in Figures 13 and 14.

Due to limited fluid motion close to the wall, due to viscous effects, increased diffusion
values would not be able to redistribute pollutant concentration around the flow hence the
observed increases in pollutant concentration close to the walls. On the other hand, higher
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Figure 14: Effects of γ on concentration.
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Figure 15: Effects of n on velocity.

diffusion values within the main flow will help distribute the pollutant around the bulk flow
hence leading to the reduced pollutant concentrations depicted in Figure 14.

The parameter n plays an almost similar role to λ and hence the effect on the
velocity and concentration with varying values of n can be similarly explained. In particular,
increasing n directly increases the pollutant source strength and hence leads to increased
pollutant concentration as shown in Figure 16. The resultant increase in φ leads to the
aforementioned competing effects of increased Boussinesq source terms and increased fluid
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viscosity and hence changes (increase) in the velocity filed in response to changes (increase)
in n are quite marginal as illustrated in Figure 15.

4.3. Shear Stress and Mass Transfer Rate

According to Figures 4, 5, 13, and 14, the velocity increases with λ and hence the wall shear
stress should also correspondingly increase with λ as shown in each graph of Figure 17.
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Similarly, the velocity decreases with increasing γ and hence the observed decrease in Cf with
increasing γ also shown in Figure 17. A similar reasoning is applied to explain the features
observed in Figure 18.

According to Figures 7, 8, 9, and 10, the velocity increases with Gc and hence the wall
shear stress should correspondingly increase with Gc as shown in each graph of Figure 19.
Similarly, the velocity increases (even though marginally) with increasing Sc and hence the
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Figure 21: Wall shear stress dependence on t and n.

observed increase in Cf with increasing Sc also shown in Figure 19. A similar reasoning is
applied to explain the features observed in Figure 20.

According to Figures 2, 3, 15, and 16, the velocity increases with t until a steady state is
reached and hence the wall shear stress should correspondingly increase with t until also
a steady state is reached when the time dependence ceases. This is shown in Figure 21.
Similarly, the velocity increases (even though marginally) with increasing n and hence the
observed marginal increases in Cf with increasing n also shown in Figure 21.
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A similar reasoning is applied to explain the features observed in Figure 22 except in
this case, based on the scalings on the vertical axis, the increase in Sh with increasing n is
more significant as compared to that for Cf .

5. Conclusion

We computationally investigate the transient dynamics of pollutant dispersion in a channel
with a nonlinear waste discharge concentration subjected to one-dimensional gravity driven
flow under Boussinesq approximations. We observe that there is a transient increase in the
flow velocity with an increase in the pollutant injection. Larger increases in the injection
are also shown to potentially lead to blockage due to excessive discharge of pollutant into
the channel flow. We also similarly investigated the effects of the various other physical
parameters on the flow velocity, the pollutant concentration, and hence also on the wall shear
stress and wall mass transfer rates.
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