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This paper deals with the analysis of a nonlinear dynamical system which characterizes the
axons interaction and is based on a generalization of FitzHugh-Nagumo system. The parametric
domain of stability is investigated for both the linear and third-order approximation. A
further generalization is studied in presence of high-amplitude (time-dependent) pulse. The
corresponding numerical solution for some given values of parameters are analyzed through the
wavelet coefficients, showing both the sensitivity to local jumps and some unexpected inertia of
neuron’s as response to the high-amplitude spike.

1. Introduction

The classical model of one excitatory neuron [1-11] is considered under a spike train (time-
dependent) excitation. The dynamical system as well as its evolution are investigated under
the dependence on some featuring parameters and in presence of a high-amplitude time-
dependent pulse. It was already shown, in a previous paper [12], dealing with Hodgkin-
Huxley model, that neuron’s multiple firing does not reflects immediately on a direct
response and there is some kind of time delay (inertia) before the pulse becomes effective.
It should be noticed that there are different models of neurons (see, e.g., [1] and references
therein) such as the Integrate-and-fire, FitzHugh-Nagumo [2, 9], Morris-Lecar, and the more
general Hodgkin-Huxley model [6-8]. In the early sixties, FitzHugh [2] proposed, as a
simplified model, a generalization of the Van der Pol equation thus showing the existence
of a limit cycle and some periodicity. In all models, if we consider a simple system consisting
of a neuron and a synapse, it is known that the activity of stimulated axons can be detected
by an abrupt change in the electrical potential. These pulse in a short time are called spikes or
axons firing. However, as shown later these abrupt changes do not appear immediately, thus
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showing, even in this simplified model of neurons interactions, the existence of some kind of
neurons inertia, which can be physically explained by their cooperative responce to firing.

In the following we will propose a suitable generalization of the FitzHugh-Nagumo
model (FHN) and we will study both on the linear and third-order approximation.
Equilibrium points, parametric domain of stability will be outlined in absence of time-
dependence. The presence of high-amplitude time-dependent source of pulses can be studied
on the nonlinear time series of the numerical approximation. The pulse action of the firing
process, based on FitzHugh suggestion of delta Dirac function, is proposed in the form of a
high-amplitude localized function with compact support in a short interval, which replicates
a few times before it disappears. According to FitzHugh any change in the electrical potential
are localized in a short time interval and within this interval has a significant amplitude.

2. Simplified FitzHugh-Nagumo Model

The most successful and general model in neuroscience describes the neuron activity in terms
of two conductances and electric potentials. The Hodgkin-Huxley model [6-8] considers the
neuron activity as an electrical circuit. Cells membrane store charges, electrochemical forces
arise because of the imbalanced ion concentration inside and outside the cell. It can be written,
in adimensional form, as

AU (@ — 1) + asmh(as — u) + as(ag — 1) - Toa(t),

dt

d
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d 2.1)

ER — @) (1= m) - (),
d
A ) (1) - puaoh,

being
an(u) = 4) : %, ﬂm(u) = 4) . ame—(ll—aw)/am’ (2.2)

az

an(u) = ¢ - aroe” VB, Puu) = - 1+ oGan)/an’

An alternative simplified 2-dimensional model (FHN) that has been proposed by
FitzHugh-Nagumo [2, 9] can be substantially represented by the system

d—x—a x—x—3 -by+yz
dr - 3 ) Y=

dy
i ax - Py,

(2.3)
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where z = z(t) is a pulse function defined in a very short-range interval (pulse function),
having as limiting case the delta Dirac. In the following we will consider a spike train.

Parameter y defines the amplitude of the pulse function z(t).

This dynamical system depends [2, 9] on a, b, a, B, and y in the sense that the
evolution would be completely different, starting from some critical values. In the following

we will show that the solution tends asymptotically to a constant value.

A suitable generalization of system (2.3) is

Z—: = asinx - bh(y) +yz(t),

d
T =af(x) - pg(v),

with nonnegative parameters

and odd functions

fx)=-f(-x),  h(y)=h(-y), g)=8(-v)

f(xo) = f"(x0) = f"(x0) =0,
h(xo) = h"(x0) = h"(x0) =0,

g(x0) = g"(x0) = " (x0) = 0.

Up to the first-order it is

dx
i ax —by +yz(t),

dy
i ax — Py,

and to the third-order it is

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

so that the FHN system (2.3) might be considered as the third-order approximation of system

(2.4).
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2.1. Autonomous System y = 0
2.1.1. Linear Case

When y = 0, and assuming by analogy with system (2.3) that

a=1, b=1, (2.9)
from the linear system (2.7), we have
% =x-Y, (210&)
dy
I~ ax— 2.10b
T Py. ( )

There is only one equilibrium point at the origin:
(x,y) =(0,0). (2.11)

The eigenvalues are
m:%(l—ﬁi\/x), A=1-da+2p+p (2.12)

The parametric domain of feasible values for & and f is defined according to (2.5) and by the
parabolic curve as in Figure 1:

a= }L(p +1)° (2.13)
Thus we have
2
A=A €R, a:%+§+1, (214)

where f > 1, stable equilibrium in (0,0), and f < 1, unstable equilibrium in (0, 0);

2
MibeR, astiPiq (2.15)
4 2

where A1 < 0, A, < 0, stable equilibrium in (0,0), A; < 0, A, > 0, unstable equilibrium in
(0,0) (saddle), and A; > 0, A > 0, unstable equilibrium in (0, 0);

2
A=l eC, cx<%+g+1, (2.16)

where f > 1, stable equilibrium in (0, 0), and f < 1, unstable equilibrium in (0, 0).
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Figure 1: Parametric domain for the linear FHN model (8).

As a special case, by assuming that ty = 0, x(0) = xp, and y(0) = yo with a = 0, #0,
from (2.10b) we have

y(t) = yoe ', (2.17)
and from (2.10a) we have
xoet + 1}'/"0ﬁ [e_ﬂt - et]/ .[575 - 1/
x(t) = (2.18)
e’ (xo - yot), p=-1

Analogously, by assuming thatty = 0, x(0) = xp, and y(0) = yo with f =0, a#0, from (2.10b)
we have (a#1/4)

x(t) = e [xm/@cosh(@t) + (x0 — 2y0) sinh(@t>],

v1-4a
t/2 1= N
y(t) = \/f_ﬁ [yovl —4a Cosh< 12 4at> + (2ax0 — o) sinh< 12 4at>], 2.19)
et/?
x(t) = S [+ 1) - 2yot],
t/2

y(t) = S [t —2y0(t-2)],

when a = 1/4.
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Figure 2: Null clines for (2.21).

2.1.2. Third-Order Approximation

Assuming that
a=1 b=l (2.20)
from the third-order system (2.8), we have

dx [  x\
dr 6 Y.
(2.21)

dy
i ax - Py.

The null clines intersect at the points

(ylryl) = (0/ 0)/

=)« felp-w)
(x2/y2)_< \/ ﬂ ’ ﬂ [5 >’ (2.22)

— —_(.6(p-a) a [6(f-a)
<x3,y3>—<\/ SO >
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so that, being 3 > 0, there are 3 disjoint equilibrium points (Figure 2) when
p>a,
and only one when

a< —p.

T(xy) = <1—x7 —1>
a —p

1
J(%2,Y,) = J(%3,y5) = <ﬁ(3a_2ﬁ) _1>'

a P

The Jacobian of (2.21) is

so that

The eigenvalues are

M = i(3a—2ﬁ—ﬂ2i\/AT), Ay = (3a-2p)° + (B - 4P + 2a).

2p

The parametric domain of feasible values for a and p is defined by the curve
(3a—2p)" + (B — 4B +2a) = 0

as in Figure 3.

2.1.3. The General Case (2.4)

When y = 0, assuming that
a=1,  b=1 f(x)=x,  gy)=vy

from the system (2.4), we have
— =sinx -y,

E=zxx—[3y.

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)
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Figure 3: Parametric domain of (2.21).

The null clines have at least two intersections (Figure 4) when

a<p or p>-46a (2.31)

and only one when

a<p. (2.32)

otherwise, there are more than one intersection.
The Jacobian of (2.30) and eigenvalues coincide with the linear case.

3. FHN Model with a High-Amplitude Spike

Let us consider the general nonautonomous system (2.4) when y #0:

X .
3 Ssinx-y+ yz(t),
p (3.1)
Y _ ax-
a5 = ox By.
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Figure 4: Null clines for (2.8).

The time-dependent function z(t) is a high-amplitude function (Figure 5), based on Haar
wavelets

3
z(t) = > 10¢s(t - k) + 5955 (t — k) + ¢s{0(t — k) (3.2)
k=-3

which replicates itself in a finite interval (Figure 6).
The basic wavelet function ¢ (t) is defined as

k k+05
1 — <t
a zn —_ < 2n a
(,UZ(t) = on/2 1 k 42-35 <t< kz-:;l, (3.3)

0, elsewhere.

3.1. Numerical Simulation

Let us assume for the values of parameters the following: y = 10, § = 2 and two different
values for a, thatis, a = =0.01, « = 2 in the interval ¢ € [0, 8]. As initial conditions it is assumed
that x(0) = 0, y(0) = 0. By using the Runge-Kutta 4th-order method, with the accuracy 107,
we obtain in the interval (0 < t < 8), the solution in correspondence with different initial
conditions.

From a direct inspection of the solution (see Figures 7 and 8) it can be seen that under
a spike firing there is some delay effect so that the perturbation show its influence only after
some time delay. This perturbation of the system makes the orbits nearby the origin unstable.
The uniqueness in phase space is going to be lost at least in the initial time interval. The orbit
in the phase plane is self-crossing. The uniqueness of motion is lost. When a = —0.01, the
origin behaves as an attractor, while in the case a = 2, x, y diverge asymptotically.
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Figure 5: High-amplitude function 10gsg (£) + 5¢55 (£) + ) (#).

4. Wavelet Analysis

The Haar scaling function ¢(t) is the characteristic function on [0,1]. By translation and

dilation we get the family of functions defined (in [0, 1]) as

@r(t) =2"2p(2"t —k), (0<n, 0<k<2'-1),

1, teQp, k k+1
p(2"t =~ k) = Y= [7%)
0, tégn, 2. 2

The Haar wavelet family {¢s}’(t)} is the orthonormal basis [13]:

g () =22 2"t - k), |grt)],.=1

( k k+1/2
-1 t —
7 € [2", on )/

e TISER ST k+21/2’k2+1>, (0<n, 0<k<2"-1),

L0, elsewhere.

(4.1)

(4.2)

Without loss of generality, we can restrict ourselves to 0 <n,0 < k <2" -1 = Q} C [0,1].
LetY = {Y;}, i =0,....2M -1, 2M = N < oo, M € N), be a finite energy time-series;

ti =i/(2M - 1), is the regular equispaced grid of dyadic points.
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Figure 6: z(f).

The discrete Haar wavelet transform is the operator J0N which maps the vector Y into
the vector of the wavelet coefficients {a, B }:

Y = {a B, B ) Y=Y, Yaa), (4.3)

However in order to reduce the computational complexity it has been proposed [14] the short
wavelet transform as follows. Let the set Y = {Y;} of N data be segmented into o segments (in
general) of different length. Each segment Y?, s =0,...,0-1ismade of p; = 2™, (3, ps = N),
data:

Y= {Yz} 0,..N-1 = {YS}/ Y= {YspS/Ysszrl/---/Ysp5+p5—1}/ (4-4)

,,,,,

being, in general, p; # pr. The short discrete Haar wavelet transform of Y is (see [14]) W0F-°Y,

o-1 o-1
W =Pul, Y=EPY,
s=0 s=0

o-1 o-1 (4 5)
Py = <@ is>¥ _ <@ wmys>, -
s=0 s=0

2ms s _ | 0(s) p0(s) 51(s) 5l(s) ms=1(s)
w YS_ {ao /ﬂ() 7F0 7F1 A }/

<7 Poms-1_4

with 2™ = p, 2;’;01 ps = N.
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Figure 7: Numerical solution of (3.1) with y = 102, p=2anda=-001(a,ce),a=2(b,d,f)in theinterval
t € [0, 8]; the initial conditions are xo = 0, yo = 0.

There follows that, the matrix of the wavelet transform is expressed as a direct sum
of lower-order matrices so that the short transform is a sparse matrix [14]. When the short
wavelet transform maps short interval values into a few set of wavelet coefficients, it can be
considered as a first-order approximation. However, since the wavelet transform maps the
original signal into uncorrelated sequences, the short wavelet transform describes, for each
sequence of detail coefficients, its local behavior. When ps = p = N, o = 1, the above coincides
with the ordinary wavelet transform. We assume, in the following, that ps = p = N/o, s =
0,...,.0-1, (c>1).
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Figure 8: Phase orbits of (3.1) with y = 102, § = 2,and a = -0.01 (a), a = 2 (b) in the interval t € [0, 8]; the

initial conditions are xy = 0, 1o = 0.
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Figure 9: Wavelet coefficients of (3.1) with y = 10%, = 2, and a = -0.01 in the interval ¢ € [0, 8]; the initial

conditions are xg = 0, 1o = 0.
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Figure 10: Wavelet coefficients of (3.1) with y = 10?, § = 2, and a = 2 in the interval ¢ € [0, 8]; the initial
conditions are xg = 0, 1o = 0.

4.1. Critical Analysis through the Wavelet Coefficients

Let us take the short Haar wavelet transform for the two time series, obtained by using the
Runge-Kutta 4th order method, with the accuracy 107, of system (3.1) with the following
values of parameters-initial conditions:

y=10%, p=2, x=0, =0 te][0,8] (4.6)

The two time series correspond to the two values of « : a = —0.01 and a = 2. It can be seen
from Figures 9 and 10 that the jump is more visible in some coefficients. For instance both in
Figure 9 and in Figure 10 the highest value of the amplitude of wavelet coefficients for x(t) is
in B} while for y(t) is in ). Probably this difference is due to the fact that x(t) is less regular
than y(t).
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5. Conclusion

In this paper the FitzHugh-Nagumo model has been considered with a high-amplitude pulse.
The analysis was done by using wavelet coefficients and it has been shown that the dynamical
system shows some kind of inertia against the rapid jumps. In fact, the jumps are detected
with some delay with respect to the time they appear.
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