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This paper presents a high accuracy combination algorithm for solving the systems of nonlinear
Volterra integral and integro-differential equations with weakly singular kernels of the second
kind. Two quadrature algorithms for solving the systems are discussed, which possess high
accuracy order and the asymptotic expansion of the errors. By means of combination algorithm,
we may obtain a numerical solution with higher accuracy order than the original two quadrature
algorithms. Moreover an a posteriori error estimation for the algorithm is derived. Both of the
theory and the numerical examples show that the algorithm is effective and saves storage capacity
and computational cost.

1. Introduction

In this paper, we first consider the following system of differential equations:

xi(t) = fi(t, x(t), z(1)),
(1.1)
x;(0)=x, i=1,...,m,

where .X'(t) = (xl (t)/ cee rxm(t))/ Z(t) = (le(t)r ey Zlm(t)/ ceer Zml (t)/ ey me(t))/ and Zl](t) =
fé (t-s)% (In(t - s))ﬂ"fkij(t, s,x(s))ds, 0 > a;; > =1, f;j = 0or 1,4,j = 1,...,m as well as
kij(t,s, x),i,j=1,...,m, are continuous functions for 0 < s <t <T and x € R™.
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The problem (1.1) can be transformed to the following system of nonlinear integral
equations: find z(t) and x(t) satisfying

zij(t) = JZ (t-9)"(In(t - s))ﬂ""k,-,-(t, s, x(s))ds, i,j=1,...,m,
(1.2)

xi () = xj0 + Jt fi(s,x(s),z(s)ds, i=1,...,m,
0

which is a special case of nonlinear Volterra integral system with weakly singular kernels of
the second kind

m t
ui(t) = yi(t) + IO (t— )" (In(t - 5))Pkij(t, s,u(s))ds, i=1,...,m, (1.3)
j=1

where -1 < a;; < 0, and k;j(t,s,u) is continuous function on 0 < s < t < T and
u=(uy,..., u,) €R™.

Nonlinear Volterra integral and integro-differential equations with weakly singular
kernels of the second kind play important roles in the mathematical modeling of many
physical and biological phenomena, particularly in such fields as heat transfer, nuclear reactor
dynamics, and thermoelasticity, in which it is necessary to take into account the effect of
past history. Plenty of work has been done to develop and analyze numerical methods for
solving the Volterra integral and integro-differential equations with weakly singular kernels
of the second kind; see [1-5] and reference therein. The recent progress in this research area
has been achieved for the extrapolation method [6], the spline collocation method [7], and
the Galerkin method [8, 9]. However, there are few works for solving the systems of these
types of equations, which are more important than single equation for many applications.
For example, the elastodynamic problems for piezoelectric and pyroelectric hollow cylinders
under radial deformation can be successfully transformed into a system of two second kind
Volterra integral equations.

The combination method as an accelerating convergence technique for solving integral
equations was firstly presented in 1984 [10]. Similar to the extrapolation method, the
combination method combines several approximations to obtain an approximation of higher
accuracy. One important advantage of the extrapolation method and the combination
method is parallel computation since those original approximations can be computed
independently. However, the extrapolation method uses a coarse grid and some finer grids.
We must do much more work on the finer grids than the coarse one, which lowers the
degree of parallelism. On the other hand, the loads of computing the approximations in
the combination method are close to each other. Hence the combination method is an
efficient parallel method to obtain an approximation of high accuracy with a high degree of
parallelism. Recently this method has been used to solve the first kind Abel integral equations
[11]. In this paper, we will apply the high accuracy combination method for solving the
systems of nonlinear Volterra integral and integro-differential equations with weakly singular
kernels of the second kind, for which there are few results, even for the general convergence
to be proved in Section 4 of this paper.

In this paper, based on Lyness’s [12] modified mid-point rectangular quadrature rule
and modified trapezoidal quadrature rule, we will construct two quadrature methods to solve
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the systems. By means of the asymptotic expansions of the errors for both algorithms, we
present a high accuracy combination algorithm. Then by using the generalization of discrete
Gronwall inequality [13], the convergence rate, stability, and the asymptotic expansion of the
error of the combination approximate solution are proved. Comparing to other algorithms,
for example, extrapolation methods [6, 14], the combination algorithm has the advantage of
less computation complexity because both of the modified mid-point rectangular quadrature
rule and the modified trapezoidal quadrature rule have the same step size. Moreover an a
posteriori error estimation is obtained, by which we can rectify the accuracy of our algorithm
in processing.

2. Existence and Uniqueness of the Solution

Since the uniqueness, existence, and numerical methods of (1.2) can be decided by (1.1), we
only discuss the problem (1.3) in the following.
Let k;;(t, s, u) satisfy Lipschitz condition (A):

|kij(t,s,u) — kij(t,s,v)| < Lllu-vll, YuveR", 0<s<t<T, 1<ij<m, (2.1)

then there is a unique solution in (1.3). In fact a = min; ja;; > -1, u(t) = (u1(t),. ..,um(t))T,
and [|u(f)||ec = maXi<i<m|ui(t)]. We can choose 7 > 0 such that @ — 7 > —1. Thus we have

N = max %o
1<i,j<m,0<t<T

(1nt)f‘ff| < . (2.2)

Let (Cjo))™ = Clor % - -+ x Cpo,r] be a continuous function space which maps [0, T] into R™
and let F be a mapping from (Cjor))™ to itself. Then we have

t m
Fi(u)(t) = yi(t) + jo > (t=s)"i(In(t - S))Zkij(t/ s,u(s))ds, 1<i<m, (2.3)
j=1

where y = (y1,...,Ym) € (Cjor))™, and
|Fi(u)(t) — Fi(v)(t)]
m t
j=170

(In(t - s))g. | |Kij(t,s,u(s)) - kij(t, s, v(s))|ds

<y f (- )" "NL|u(s) - v(s)|.ds
j=170

t
= mNLI (t—3)"Mu(s) —v(s)|,ds, 1<i<m,
0

where f(t) = t*" € Ly, 1), which is due to a — 77> -1.

01]”

Lemma 2.1. Suppose that condition (A) is satisfied, then there is a unique solution to (1.3).
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Proof. Assume that u(t) = (ui(t),... Jum(D)T and v(H) = (01(t), ..., vm(t)T are two different
solutions to (1.3). Defining w(t) = u(t) — v(t), we get

wit) =Y. f (- 5 - s (ke ,(5)) - Ky 5,0())ds, i= 1,00,
j=170
(2.5)

t
lw®lle, < mNLJ M (s) [l o ds.
0

Therefore using Gronwall inequality, we get w(t) = 0, which leads to the uniqueness.
In order to prove existence, we use a simple iterative process: let u® (t) = 0, u™(t) =

y(t) and

u"™ (1) = yi(t) + f t i(t — )% (In(t - 5))Pk;;(t, s)u™ V(s)ds, n=1,2,....  (2.6)
0 j=1

Now we will prove that u™ (t) is a convergent sequence. Let

V(")(t) — ||u(")(t) _ u(n—l)(t)|

(2.7)

7
oo

then from (2.6) and (2.4) we get

t
vy < M f (t—8)* TV (5)ds = Mt x VW = M P s ... x tP x VO, (2.8)
0

where t# * V(" denotes convolution, M = mNL,and = a — 7.
Taking Laplace transformation, we can easily deduce that

Ve (1) < <M%> VD (s). (2.9)

Taking inverse Laplace transformation, we get

v () () < (Mr—z;fg : :Li) ; Ay ) (t—7)dr. (2.10)

Note that for n > m, we have

w (1) = u (1) = (u @) - u D @) + (V@) = uD @)+ (WD @) - u (1))
(2.11)
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or

”wmm—uwamwngaywn+vwmay

But using (2.10), we easily prove that

MT(B+1))"

n+l (
ZV( )(t)<Z I'(np+n)

"W+”V“®(t—7jd7
0

is a convergent series, which means that

lim ||u(") (t) - u(m)(t)”OO =0 or u™(t) — u(t)

n,m-— oo

and u(t) is the solution to (1.2).

3. The Numerical Methods

(2.12)

(2.13)

(2.14)

In this section two quadrature algorithms which are based on [12] will be given to solve the

systems. Consider the weakly singular integral
b
I(G) =I (b-x)"g(x)dx,  G(x)=(b-x)"g(x)

and Navot’s modified trapezoidal rule [15]
h N-1
QﬂG)zEGM)+h§KX@)—Qﬂ@W”gw)
j=1

There is an error estimate as follows:

E}(G) = QH(G) - 1(G) = ~4(-a - )h*g'(b) + O(?).

We differentiate with respect to a in (3.3) and get

E}(G) = Q(G) - I(G) = [¢/(~a = 1) = §(-a - 1) In k] 178 (b) + O(?).

Then we have

b
HGQ=I (b-x)*(In(b - x))Pg(x)dx, G'(x) = (In(b-x))(b-x)"g(x),

f=0,1

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)
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such that
h N-1
Q}(G) = 3G (@) +h 3G (x)) - [-hL (-a) + L (-a) 1) | g (b). (3.6)
j=1
Thus we have
ENG) = QH(G) - 1(G) = [y (-a-1) - g(-a - 1) (in b’ | g (b) + O(K?).  (37)

Equations (3.5) and (3.6) are the integral functions with logarithm singularity and their
modified trapezoidal rule, and (3.7) is an asymptotic expansion of the error.
From [16], we have the modified mid-point rectangular rule

N-1
Qi (G) =h > G(xj1/2) — (27 = 1)¢(-a)h" g (b). (3.8)
i=0
Hence we get
E! (G) = Q1 (G) - I(G) = —(27* = 1)¢(-a — )R> (b) + O<h2>. (3.9)

From (3.4)—(3.7), we get

Ey(G) = Qu(G) - 1(G)
= —[-p2 2y (-a - 1) - B2 = 1) ¢ (-a - 1) (3.10)

+(2-“-1 - 1>§(—(x ~1)(In h)ﬂ] h2* g (b) + O(h2>.
More generally we have
Qi (G)

N-1
=h Y G (xju12) — [—ﬁZ“" In2¢(-a) - f(27° = 1) (—a) + (27 = 1)¢(~a)(In h)f’] h'* ¢ (b).
=0

(3.11)
Therefore from (3.7) and (3.10), if § = 0, we get

(27 = 1)E}(G) - Ely(G) = O(h?) (3.12)



Mathematical Problems in Engineering 7

or
1-p-a-1 , , , i
2 _pa 1QT(G) i 1QM(G) -I1(G)) =O<h ) (3.13)

Note that the combination has a high accuracy order O(h?), which is higher than O(h***) in
(3.7) and (3.10).
Ifa=0,p=1in(3.5), then

QG = G’(a)+hZG’(x])+ ln( h >hg(b),

o (3.14)
QU(G) =1 3G (xj02) - 5 In2hg(b),
=0
where §(0) = 0.5, {'(0) = —In(2sr) /2, and (3.13) becomes
1 ! 2 ! !
<§Q¥(G)+§Q';A(G)> -1(G) =0o(1?). (3.15)

Using (3.14) and (3.15), we can construct two algorithms for solving Volterra integral system
of equations. Since the kernels of the systems are weakly singular, the following Navot’s
quadrature rule is used. Setting t = t;, we get

m t
ui(ty) = yi(t) + ZJ‘ (t = s)™ (Injt; - s|)Piki; (4, s, u(s))ds, i=1,2,...,m. (3.16)
=1 o

Now we recall the following lemma from [8].

Lemma 3.1. Let g(t) € C*"[a,b], G(x) = (b-t)*(In|b - t|)ﬂg(t), h=({b-a)/N,ty =a+kh (k=
0,...,N), then modified trapezoidal rule

N-1
Tn(G) = 5Gltn) +h Y, - [ (-a) + L) in ) | g B (317)
j=1

has an asymptotic error expansion

En(G) = Z (22])'(;(2] D (a)h?
i (3.18)

N Z( 1)][ e (—a - ])+§(—a ])(lnh)ﬂ] g(])h7+a+1 O<h27>/
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where a > =1, p = 0,1, {(t) and ¢'(t) are Riemann-Zeta function and its derivative function, and Bo;
are Bernoulli numbers.

From the above, we obtain the following discrete system of equations for modified
trapezoidal quadrature method:

uio = yi(to),
m -1

wp = yi(t) + >, [hzwzk(tz — 1) x (Inlt; = t))P ki (1, e, U) + wnih ki (b, 1, Ul)],
=1L k=0

i=12,....m, 1=1,2,...,N,

(3.19)
where h =1/N, tx = kh, U; = (wj, u2j, ..., Umj), j =1,2,...,m, and
% if k=0,
Wik = 1 if1<k<I-1, (3.20)

ﬂijg'(—aij) + g(—ai]-)(ln h)ﬁij — ﬁijg’(—aij) if k= l, | = 1,2,...,N.

On the other hand, we also obtain the discrete system for modified mid-point
rectangular quadrature method

ujo = yi(to),
m -1
wi = yi(t) + Z I:hzwlk(tl — trr1/2)™
=1L k=0
y (Inlt; — tar o)) P kij (b1, b, U + U /2) (3.21)
2
+w11,i]'h1+aijkij(tl/ tl/ ul)]/ 1 = 1/2/ oo, m, l = 1/21 sy N/
where
1 if0<k<lI-1,
wi = 4 ~[-Bi2 " N2 (-a) - B2~ 1) (~a) ifk=1,1=1,2,...,N, (3.22)

+27 = g (-a) (In )] pij=0, or 1.

Because the discrete system is nonlinear diagonal system of equations, we introduce
the following iterative algorithms.
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Algorithm 3.2 (modified trapezoidal quadrature method). We have the following steps.

Step 1. Take ¢ > 0 sufficiently small and let
W(ty) = (w9 1) = (k) ym()), G=1,2., N (3.23)

and n :=0.

Step 2. Compute ui*! (I< N, i=1,2,...,m) in parallel by the following simple iteration:

m -1
Wi =yt + Y [thzkaz — ) (Inlty ~ )P Ky (b, b, U) + ouh"*® ki (1, 1, U} >]' (3.24)
=1L k=0

where Uk = (w1, - - -, umk), U} = (uf}, ..., uy,), and wy is defined by (3.20).

Step 3. 1f max15i§m|ul'.}+1 - uj| < ¢, then let u:;” = #; and stop the iteration, otherwise set
n:=n+1, go to Step 2.

Algorithm 3.3 (modified mid-point rectangular quadrature method). We have the following
steps.

Step 1. Take € > 0 sufficiently small and let
@) = (W i) = i) ymt), §=12..,N (3.25)

and n :=0.

—n+1

Step 2. Computeu;; (I < N, i=1,2,...,m) in parallel by the following simple iteration:

m -1
= yit) + Y [th,k(t, — 1) (Int; — ti|)P
j=1L k=0

—n —n (3.26)
(uk + uk+1/2>

xkij| ti, tk, 5

T+aj; 7
+wyiih " kj <f1,f1,U1> ,

where Uy = (u1k, - - ., Umi), U,n = (uy, ..., Uy;), and wy is defined by (3.22).

Step 3. Tf maxicicn |l — )| < &, then let %™ = &y and stop the iteration, otherwise set
n:=n+1, go to Step 2.
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4. Convergence and Error Estimation

In this section we will analyze the convergence of Algorithm 3.2 proposed in Section 3. The
proof of convergence rate of Algorithm 3.3 is similar. When t = #;, the system can be expressed
as

m 1-1
ui(ty) = yi(t) + >, [hzwlk(tl — b))% (Infty — )P keij (1, e, Uie) + ™ ks (11, 11, UL)
7L k=0

(4.1)
+ 3 [Eijua (= % (nlty = 1)k 11, £, 1)) )|
j=1
By Lemma 3.1, the remainder has the following estimate:
S [Eijae (5= % (nlty = )Pk, £, ut)) )| = O(H***(n h)F), (42)

j=1

where a = ming; j<paij > —1 and f = maxiq; j<mPij-
Letting e;; = u;(t;) — uy and {u;;} be the solution of the discrete equations, we derive
ep =0,

m -
e = > hwi(t - te)® (Inft; - te])P
=1 k=0

[y

~
=~
i}

x (kij(tr, ti, ur (b, - -t (b)) = kij (b, by g, - o Umk))

m
+ Dl (kij(t, t, ur (B), - (81)) = K (b, b, v, - )
=1

+ DB (= % (nlts = )Pk (1, £ (), um ()], =1,2,.0,m, 11,2, N.

j=1
(4.3)
Lemma 4.1. Suppose that the sequence {e; ), satisfies
ey =0,
i-1 (4.4)
leil < > Bijlej] + A, 1<i<N,

j=1

where Bij = 2Lh(t; — t;)*(In|t; - t,-|)ﬂ, -1 <a <0, p=0,1,and his sufficiently small such that
Lhw;; <1/2. Then

lei] < HA, (4.5)

where H = 3% R*/(k!)°, R = 2L(b — a)°T(s)e'/'**(e/s)h®, and s = 1 + a.
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Theorem 4.2. Assume that h is sufficiently small, then the system of the nonlinear discrete equation
(3.19) has a unique solution and the simple iteration (3.24) is geometrically convergent.

Proof. Firstly, if U; = (u11, ugi, ..., um) and V; = (v1, 021, ..., 0pg) (1 =1,2,..., N) are solutions
to (3.19), then {Z; = U; — V}} satisfies the inequality

m -1
i — o] < [hzwlk(tl — b)) (It — t)P ke (1, b, Uk) — kij(tl/tk,Vk)I]
j=1L k=0

+ [wlzhlm” ij (t, 0, Un) = kij (t, t, Vi) |]
j=1 (4.6)

Ms

[hzwlk(tz—tk)a” (Inlt; = te )P LIU = Vielloy + wonh™* I LIIU; = Vi, ]

.
]
—_

where we use ujp = vio = y(t;). Note that || Zx||, = maxi<j<m|zjk|, then we easily deduce that

1Zolle, =

-1 (4.7)
1Zill, < M1k D (t = )™ (It = )Pl Zill,,  1=1,2,...,N,
k=0

where My = mmaXo<k<i<n |[wik (f = t) ™ (1 + c)(In |t; - tk|)ﬂLiJ'|'
If h is sufficiently small such that M; h** < 1/2, we have

1Zolle, =
I-1 (4.8)

1Zilloe <2M1h > (t = t)* (nlt — )P Zell,,  1=1,2,...,N.
k=0

Then by Lemma 4.1, we get || Z;||., =0,1=1,2,..., N. Hence the uniqueness is shown.
Secondly, from the iteration (3.24) we have

= | = 35 [eonh i o, 1,017) ~ K (11, ) |
= (4.9)
m
<[ whLfur - ] i=12.mi=12, N
j=1
Then
upt -y < e |up-up | g%]ur-uy-l o 1=12.,N,  (410)
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where M = mwy L. We assume that h is small enough such that Mh!'** < 1/2. Thus we prove
that the simple iteration (3.24) is geometrically convergent, and its limit is the unique solution

of (3.19). O

Theorem 4.3. There is a positive constant C independent of h such that
||u, - CI1|| < Cehl*e, (4.11)

where Uy = (i, T, .. ., t) = (0, ., w1 s defined in Algorithm 3.2.

Proof. Letting V; = U; - U, we get
ujo — tjp = 0,

m -1 ~
ENTEDY [hzwlk(tl — 1) (Inlt; — ti[)P (kij(tl/ ti, Uk) = kij <t1, t, Uk))]

=1L k=0

+ D wph™ i (kij(t, 1, Uy) = ki (1,4, U]'))
i1

m -1 ~
= Z [thlk (t — t) ™ (In|t; — tk|)ﬂ"f (kij (t1, tre, Uy) — kij (tl, tr, Uk>>]

j=1 k=0

+ gwllhlJraij (kij (t;, t;,U;) - kij (tl/tl, U?H))

+ Emlw”h““ff (ij (o b UFY) = kg 0, U7) ), =12, ,m; 1=1,2,.., N,

j=1
(4.12)
By Algorithm 3.2 and Lipschitz condition, we have
1-1
Vil < Mth(tl —t)*(Injt; — tkl)ﬂ”Vk”m +2Meh'**, (4.13)
k=0
Using Lemma 3.1, we get ||[U; — U], < Ceh'*®. O

Theorem 4.4. There is a positive constant C independent of h such that the errors e; = u;(t;)—uy (i =
1,2,...,m, 1=1,2,...,N) have the following error bound:

max ey < ChH***|Inh|f. (4.14)

0<I<N;1<i<m
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Proof. Taking E; = maxi<i<n|ei|, we get

Ey=0,

-1 (4.15)
Ei < Mihy (- t)*(Inlty — tel)’ Ex + Myh"E; + O<h2*"’>, 1=1,2,...,N.
k=0

If h is sufficiently small such that M1h'** < 1/2, we have
1-1

E; <2MihY (k- )" (Inft; — P Ex + o(h2+“>, 1=1,2,...,N. (4.16)
k=0

Using inequality (4.5), we can get

max |ey| < ChH***|InhP. (4.17)

0<I<N;1<i<m

Corollary 4.5. Assume that € = O(h) in Algorithm 3.2, one can obtain the estimate

max |u;(t) - U] = O<h2+a(1n h)ﬂ>. (4.18)

1<i<m;1<ISN

5. Asymptotic Expansion, Combination, and a Posteriori
Error Estimate

In the following we only derive the asymptotic expansions of the errors and the a
posteriori error estimation of Algorithm 3.2. For Algorithm 3.3 we just simply present the
corresponding result.

From Lemma 3.1 and (4.1) by using Taylor’s expansion, we have

m -1
ui(ty) = yi(t) + >, [hZWZk(tl — b))% (Infty — )P keij (b, B, Ulie) + wnh ™ ki (11, 11, UL)

=1L k=0
(5.1)
+ h?*%(In h)ﬂleg.(t,) + hzmle%(tl) + O<h2+“1 IIn h|ﬂ1), i=1,...,m,
1= 1=

where a; = minlgi,jsm{ai]- : ai]‘ > a}, ﬂl = maxlsi,jgm{ﬂij = om }, and

—{(-a— 1)ik~(t Lu(t)) ifaj=a

Tl(;(t) — dt 1] It = 7

0 if aij >a,
(5.2)

d
'(— _1_i't1ti t f ij — &,
(e = { A D ggkylhnbu®) ity =

0 if xij > a.
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For e; = u;(t;) — u;, we have
eio = ui(to) —uip =0,

eir = u;(t) —uy

m I-
= > > hwy(t — )" (In |t - te)P7 (kij (b, te, u(ti)) — kij(h, te, Ui))
i1 k=0 (5.3)

+ D lwph" i (kij(t, 1, u(h)) — kij(t, 1, UD)) + B> (In hPT (1)
j=1

+ BT (t) +o(h2+“l|1nh|ﬂl>, i=1,2,...,m, 1=1,2,...,N.

Here 371, TfS = TF (), k = 0, 1.
Using Theorem 4.4 and Taylor’s expansion, we get

kij(tr, te, ua (te), - -« um (b)) — kij (f1, e, vk, -« Umk)
= Kija, (t1, b, un (b), - -t (b)) (i (Fi) — vai) + -+
 Kija (b1 b 41 (8, -t (1)) (e (t) = 10c) + 0 () (5.4)
= kiju, (1, te, ua (b)), - um (b)) erk + -+

+ kij,um (tl/ tkr u (tk)/ ceey um(tk))emk + O<h2>/

where we assume that k;; (s, t, u) is derivable for u;, [ =1,...,m and let

Kiju (s, t,u) = aiulkij(s, tu), l=1,...,m (5.5)

Then

eio = u;i(ty) —ujp =0,

e = ui(t) —up

m -1 m
=> [hzunk(fz — t)¥ (Inft; - tk|)ﬂijzkij,u,(tl/tkru(tk))erk:I

i1 L k=0 r=1 (5.6)

m m
+ > wonh™ Y Kkiju, (bt u(t))en + B (Inh)PTY () + KT} (1)
i1 =1

+O<h2+“1|1nh|ﬂ1), i=1,2,...,m,1=1,2,...,N.

Obviously if p = 0, then T} (t;) = 0.



Mathematical Problems in Engineering 15

Now we construct the following auxiliary system of linear Volterra integral equations:
find {(D]r.(s), j=12,...,m, r =0,1} satisfying

m t m
(1) =T/ (t) + >, f (t = s)% (In|t — s|)P [Zki,,up(t, s,u(s))cpq(s)] , i=1,2,...,m, r=0,1,
j=170

p=1
(5.7)
and their discrete system of equations: find {®, i =1,2,...,m, [ =1,..., N} satisfying
D} =0,
m -1 m
O =T/ (1) + Y, [ h 3 wie(t— )™ (nlty — 5P S ki, (b, b, (1) D
=1 | k=0 p=1 (58)
m m
+ N wph i Y ki, (it u(te)®,, i=12,...,m 1=12,..,N;r=0,1
=1 p=1
From Theorem 4.4, we have
r _ 2+a P —
L max_|@) - @] (t)] o(r* k"), r=0,1. (5.9)

Substituting (5.8) and (5.7) into (5.6), we get
Eip =0,
m -1 m
Ej= Z [hzunk(fz — tr) T Kija, (t, fk,uj(tk))Ejk] + > wyh" " ikij, (b, t,ui(4)) Eji (5.10)
71l k=0 i=1

+o<h2+“l(1nh)ﬂ1>, i=1,2,...,m, 1=1,2,...,N.

Note that Ej; = e; — h2**(In h)? Tl.(lJ - h***T}. Using Lemma 4.1, we get

wi(ty) — uig — W (In PO (1) — KD} (1) = O<h2*"‘1 (In h)l’1>, i=1,2,...,m 1=1,2,...,N.
(5.11)

From (5.9) we obtain

wi(t) — i — K2 (In )P0 (1) — K@) () = O<h2+"” |1nh|ﬁ1), i=1,2,...,m, 1=1,2,...,N,
(5.12)
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where @ (t) = 0 if § = 0. Similarly for Algorithm 3.3 we have
i) — T — K2 (In h)P Dy — W20, = O(K* Inh") (5.13)
or
wi(ty) — iy — K2 (In )P, (1) — K2, (1)) = o(r* = nhf"), i=12,..,m 1=12,.,N,
(5.14)
where Ei(t) =0if p=0and

@ (1) = - [2-“—1 m2éa-b (21 - 1)] @ (1),

¢(-a-1)
@, (1) = (2= - 1)@ ).

(5.15)

From the above discussion, we have proved the following theorem for the combination
method.

Theorem 5.1. (1) If p =0, then

1- 27y + 7
s = { . 221_2 S =wt)+O(R), i=12,...,m 1=12,. N (516)

Furthermore, one has the following a posteriori error estimate:

min{u, uy} < uj <max{ug, up) or  |ui(t) - Hi ;uil < el ; Hil (5.17)
That is, one can estimate the average errors |u;(t;) — (uy + ) /2| by |(wiy — uir) /2|.
(2)Ifp =1, then
1-271= U + Uj .
= 2_221_’“ S=w)+0(B), i=12,...,m 1=12,.. N (518)

Hence one can obtain a high order of accuracy, which is better than O(h***(In h)). One also easily
deduces that the modified mid-point rectangular quadrature method is better than modified trapezoidal
quadrature method when 1 - 2717 — (.

6. Numerical Examples

In this section, we present two numerical examples to illustrate the features of the
combination method discussed in this paper. Let Er denote the error of modified trapezoidal
quadrature method, E s the error of modified mid-point rectangular quadrature method, and
Ec the error of combination method.
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Table 1: The errors and the a posterior error estimate of x(s) in Example 6.1 at mesh point (h = 1/10,
a = —1/2 in combination coefficient).

s Er Em Ec lx(si) = (T + Mxi) /2] [(Txi — Mx;)/2]
0.1 -3.871E-03  9.519E-04 -1.406E-04 1.459E-03 2.411E-03
0.2 -4559E-03  1.313E-03  -1.764E-05 1.623E-03 2.936E-03
0.3 -4.664E-03  1.381E-03 1.129E-05 1.642E-03 3.022E-03
0.4 -4.758E-03  1.428E-03 2.692E-05 1.665E-03 3.093E-03
0.5 —-4908E-03  1.480E-03 3.323E-05 1.714E-03 3.194E-03
0.6 -5.130E-03  1.546E-03 3.369E-05 1.792E-03 3.338E-03
0.7 -5.434E-03  1.630E-03 2.996E-05 1.902E-03 3.532E-03
0.8 -5.824E-03  1.735E-03 2.281E-05 2.044E-03 3.779E-03
0.9 -6.310E-03  1.864E-03 1.249E-05 2.223E-03 4.087E-03
1.0 -6.904E-03  2.021E-03 -1.165E-06 2.442E-03 4.462E-03

Maximum error  6.904E-03 2.021E-03 1.406E-04 2.442E-03 4.462E-03

Table 2: The errors and the a posterior error estimate of x(s) in Example 6.1 at mesh point (b = 1/20,
a = —1/2 in combination coefficient).

s Er Eym Ec [x(si) = (Txi + Mx;) /2] [(Txi — Mx;) /2]
0.1 -1.526E-03 4.376E-04 -7.358E-06 5.444E-04 9.820E-04
0.2 -1.560E-03 4.709E-04 1.082E-05 5.446E-04 1.016E-03
0.3 -1.557E-03 4.786E-04 1.750E-05 5.391E-04 1.018E-03
0.4 -1.576E-03 4.871E-04 1.963E-05 5.446E-04 1.032E-03
0.5 -1.625E-03 5.013E-04 1.957E-05 5.620E-04 1.063E-03
0.6 -1.705E-03 5.228E-04 1.821E-05 5.909E-04 1.114E-03
0.7 -1.815E-03 5.522E-04 1.596E-05 6.314E-04 1.184E-03
0.8 -1.958E-03 5.901E-04 1.297E-05 6.837E-04 1.274E-03
0.9 —-2.135E-03 6.373E-04 9.312E-06 7.487E-04 1.386E-03
1.0 —-2.350E-03 6.948E-04 4.944E-06 8.278E-04 1.523E-03
Maximum error 2.350E-03 6.948E-04 1.963E-05 8.278E-04 1.523E-03
Maximum error ratios 2.937 2.908 7.162 2.950 2.931

Example 6.1. Consider the following system of integral equations with algebraic singularity:

x(s) = 255/3

J‘
+ S —
0

Vs —t

(x(t)+y(t))dt, 0<s<1,

6.1)

_ T 165 r ! <12 124y -y ) <s<
y(s)_zs 55 st ot 2x(i?)+2y(i‘) y(t) )dt, 0<s<1

with the exact solution x(s) = s, y(s) = s.

The errors of the approximation solutions obtained by Algorithms 3.2 and 3.3 and
their combination are presented in Tables 1, 2, 3, and 4. Numerical results show that the
combination method has higher order convergence rate than the two original algorithms.
Tables 1-4 also show that the error ratios of Algorithms 3.2 and 3.3 are close to the theoretic
value, which is 22*(-1/2) = 2. 828 and the error ratio of the combination method is better than

the 22+(-1/2),
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Table 3: The errors and the a posterior error estimate of y(s) in Example 6.1 at mesh point (h = 1/10,
a = —1/2 in combination coefficient).

s Er Em Ec ly(si) = (Tyi + My:) /2| |(Ty: — My:) /2|
0.1 7.256E-03 -2.096E-03 2.280E-05 2.580E-03 4.676E-03
0.2 4.454E-03 —1.246E-03 4.548E-05 1.604E-03 2.850E-03
0.3 4.207E-03 —1.184E-03 3.705E-05 1.511E-03 2.696E—-03
0.4 4.472E-03 —1.254E-03 4.324E-05 1.609E-03 2.863E—-03
0.5 4.976E-03 -1.388E-03 5.327E-05 1.794E-03 3.182E-03
0.6 5.646E-03 -1.568E-03 6.621E-05 2.039E-03 3.607E-03
0.7 6.465E-03 -1.787E-03 8.219E-05 2.339E-03 4.126E-03
0.8 7.436E-03 -2.046E-03 1.017E-04 2.695E-03 4.741E-03
0.9 8.577E-03 -2.350E-03 1.257E-04 3.114E-03 5.463E-03
1.0 9.917E-03 -2.704E-03 1.555E-04 3.607E-03 6.310E-03

Maximum error 9.917E-03 2.704E-03 1.555E-04 3.607E-03 6.310E-03

Table 4: The errors and the a posterior error estimate of y(s) in Example 6.1 at mesh point (h = 1/20,
a = —1/2 in combination coefficient).

s Er Em Ec ly(si) = (Tyi + Myi) /2| |[(Tyi — My,)/2]
0.1 1.748E-03 —4.874E-04 1.914E-05 6.305E-04 1.118E-03
0.2 1.298E-03 —-3.659E-04 1.110E-05 4.662E-04 8.321E-04
0.3 1.311E-03 -3.680E-04 1.234E-05 4.715E-04 8.396E-04
0.4 1.450E-03 —-4.058E-04 1.467E-05 5.222E-04 9.280E-04
0.5 1.657E-03 —-4.622E-04 1.778E-05 5.972E-04 1.059E-03
0.6 1.915E-03 -5.328E-04 2.164E-05 6.909E-04 1.224E-03
0.7 2.221E-03 -6.166E-04 2.628E-05 8.023E-04 1.419E-03
0.8 2.579E-03 -7.143E-04 3.179E-05 9.324E-04 1.647E-03
0.9 2.995E-03 -8.277E-04 3.834E-05 1.084E-03 1.912E-03
1.0 3481E-03 -9.597E-04 4.618E-05 1.260E-03 2.220E-03
Maximum error 3.481E-03 9.597E-04 4.618E-05 1.260E-03 2.220E-03
Maximum error ratios 2.817 2.800 3.137 2.824 2.814

Example 6.2. Consider the following system of integro-differential equations with algebraic
singularity:

x'(s) = 25—8x(s)7/5 - 18%512/5 +1+ fo 5;3 <x2(t) - 11—0x(t)>dt, 0<s<1,
(s—1) (6.2)
x(0)=0
with the exact solution x(s) = s. Let
u(s) = x(s),

v(s) = 25—8x7/5(s) - %512/5 +1+ fo {/ﬁ <x2(t) - f—ox(t))dt. (6:3)
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Table 5: The errors and the a posterior error estimate of x(s), that is, u(s) in Example 6.2 at mesh point
(h=1/10, « = =3/5 in combination coefficient).

s Er Em Ec [u(si) = (Tu; + Mu;) /2| |(Tu; — Mu;) /2|
0.1 5977E-05 -1.630E-05 -1.470E-06 2.174E-05 3.804E-05
0.2 2.767E-04  -7.095E-05 -3.177E-06 1.029E-04 1.738E-04
0.3 7.027E-04 -1.738E-04 -2.926E-06 2.645E-04 4.382E-04
0.4 1.374E-03  -3.342E-04 -1.214E-06 5.199E-04 8.541E-04
0.5 2.348E-03  -5.659E-04 2.229E-06 8.912E-04 1.457E-03
0.6 3.717E-03  —-8.898E-04 8.219E-06 1.414E-03 2.303E-03
0.7 5.621E-03  —1.338E-03 1.830E-05 2.141E-03 3.480E-03
0.8 8.278E-03  -1.961E-03 3.525E-05 3.159E-03 5.119E-03
0.9 1.202E-02  -2.832E-03 6.397E-05 4.595E-03 7.427E-03
1.0 1.737E-02  -4.066E-03 1.134E-04 6.653E-03 1.072E-02

Maximum error 1.737E-02 4.066E-03 1.134E-04 6.653E-03 1.072E-02

Table 6: The errors and the a posterior error estimate of x(s), that is, u(s) in Example 6.2 at mesh point
(h=1/20, a = -3/5 in combination coefficient).

s Er Em Ec [u(si) = (Tu; + Mu;) /2| |(Tu; — Mu;) /2|
0.1 1.576E-05 -5.207E-06 -1.119E-06 5.279E-06 1.049E-05
0.2 9.596E-05 -2.543E-05 -1.763E-06 3.527E-05 6.069E-05
0.3 2.555E-04 -6.436E-05 -2.019E-06 9.554E-05 1.599E-04
0.4 5.067E-04 -1.252E-04 -2.052E-06 1.907E-04 3.159E-04
0.5 8.701E-04 -2.130E-04 -1.870E-06 3.286E-04 5.416E-04
0.6 1.379E-03 -3.356E-04 —1.398E-06 5.216E-04 8.571E-04
0.7 2.083E-03 —-5.049E-04 —4.622E-07 7.890E-04 1.294E-03
0.8 3.060E-03 -7.394E-04 1.267E-06 1.160E-03 1.900E-03
0.9 4428E-03 -1.067E-03  4.395E-06 1.680E-03 2.747E-03
1.0 6.366E-03 —-1.529E-03 1.003E-05 2.419E-03 3.948E-03
Maximum error 6.366E-03  1.529E-03 1.003E-05 2.419E-03 3.948E-03
Maximum error ratio 2.729 2.659 11.307 2.751 2.715

Then the original system of integro-differential equations can be transformed to the following
system of Volterra integral equations:

u(s) = IS v(t)dt, u(0) =0,

0

s (6.4)
5 75 125 125 f 1 < 2 1 >
v(s) = —=u'’’(s) — —s +1+ | ————u"(t) - —u(t) )dt, v(0) = 1.
() = ot%(5) - o e GUR G ©

The two equations contain algebraic singularity with the coefficient « = -3/5. The exact

solution is
u(s) =s,
(6.5)

v(s) =1.
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The errors of the numerical solutions obtained by Algorithms 3.2 and 3.3 and
their combination are presented in Tables 5 and 6. Numerical results still show that the
combination method has obviously higher convergence rate than the two algorithms, as well
as better maximum error ratio, which is greater than 2**(-3/% = 2.639.

7. Conclusions

In this paper we use the combination method to solve the systems of integral and integro-
differential equations with weakly singular kernels of the second kind, which are important
to many applications but have few results. High accuracy and high parallelism are two
features of this method. Our numerical results also confirm the theoretical conclusions.
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