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The problem of stabilizing vibrations of flexible cable related to an overhead crane is considered.
The cable vibrations are described by a hyperbolic partial differential equation (HPDE) with an
update boundary condition. We provide in this paper a systematic way to derive a boundary
feedback law which restores in a closed form the cable vibrations to the desired zero equilibrium.
Such a control law is explicitly constructed in terms of the solution of an appropriate kernel PDE.
The pursued approach combines the “backstepping method” and “semigroup theory”.

1. Introduction

In this paper, we are concerned with the problem of boundary feedback stabilization of a
second-order HPDE describing vibrations of a flexible cable related to an overhead crane. As
illustrated in Figure 1, the rigid load with massM is related to cart of the overhead crane by
a flexible cable.

The cable displacement z(t, x), at time t and height x, is mathematically modeled by
the following hyperbolic equation:

z̈(t, x) = [ε(x)zx(t, x)]x + b(x)zx(t, x) + a(x)z(t, x), in (0,∞) × (0, 1),

Mz̈(t, 0) = ε(0)zx(t, 0), in (0,∞),

mz̈(t, 1) = −ε(1)zx(t, 1) + βz(t, 1) − u(t), in (0,∞),

z(0, x) = z0(x), ż(0, x) = z1(x), in (0, 1),

(1.1)
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Figure 1

coupled with the update boundary condition imposed at the level x = 0,

zx(t, 0) = ρz(t, 0). (1.2)

The parameter ε(x) = g(M + x) denotes the tension force of the cable at the height x, g being
the gravitational acceleration, m the mass of the cart, and M the mass of the rigid load. It is
assumed that the line density of the cable is homogeneous and equal to 1. The vibrations in
system (1.1) are not only being diffused and bifurcated ((εzx)x + bzx) but also a destabilizing
displacement (az) is generated. Here, β, ρ are two constants and u(t) is a control placed
at the extremity x = 1. The boundary condition (1.2) corresponds to situations where the
displacement z is subject to a dispositive effect when the rigid load is arrived to the soil, that
is, x = 0. Such effect arises in (1.2) as an external force which depends on the displacements.
System (1.1)-(1.2) serves also as a linearized model of strings. Hereafter, we assume that the
parameters a, b and the initial data z0, z1 satisfy the regularity conditions

z0 ∈ H2, z1 ∈ H1, a ∈ C1[0, 1], b ∈ C2[0, 1], with b(0) = 0, (H)

whereH1,H2 are the usual Sobolev spaces on (0, 1), see Section 2.
The control objective that we are interested in, is to construct a feedback controller u

which restores the displacements z(t) to the equilibrium z ≡ 0 (as t → ∞). From a practical
point of view, Rao [1] treated the stabilization problem of suppressing vibrations of the
distributed overhead crane model with one rigid load, when a = b = β = 0. The exponential
stability of the closed loop is proved by exploiting an energy functional. In the study by Rahn
et al. in [2], a study has been conducted to develop control algorithms for flexible cable crane
models. An appropriate coupling amplification controller which asymptotically stabilizes all
modes of a linear gantry crane model is constructed. Sano and Otanaka [3] generalized the
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stabilization problem of a flexible cable with two rigid loads. The model is described by two
HPDEs, but the model contained a defect by neglecting the mass of the cart, that is, m = 0.
The defect of [3] is surmounted by H. Sano in [4] by using the LaSallse’s invariance principle.
Kim and Hong [5] augmented the simple model with an axially moving system concept. The
crane was modeled as an axially moving string system. The dynamics of the moving string
is derived using Hamilton’s principle for systems with changing mass. Simplified versions
of the concerned model was the subject, with respect to the stability, of several works by
deferent approaches, see, for example, [6–10].

In comparison with the existing works, the model treated in this paper generalizes
HPDEs describing vibrations of overhead crane cable, (a/= 0, b /= 0, β /= 0). Moreover, the
concerned model contains a perturbing actuation due to the update boundary condition
(1.2) which has a nonneglected effect on the behavior analysis of the cable displacements.
The proposed method provides a systematic way to construct a boundary feedback law
which restores the cable displacements z(t), described by the HPDE (1.1)-(1.2), to the desired
equilibrium z ≡ 0, as t → ∞. Further, the boundary feedback law is explicitly represented in
terms of the solution of an adequate kernel PDE.

The paper is organized as follows: in Section 2, we derive an appropriate kernel PDE,
and we convert system (1.1)-(1.2) into a well-known open-loop system. A control law for
the new system is constructed, and the well-posedness of the resulting closed-loop system
is shown in Section 3. In Section 4, we derive a feedback controller which asymptotically
stabilizes the solution of the closed-loop system associated with (1.1)-(1.2).

2. Preliminaries

To simplify the reading, we denote Δ := {(x, y) : 0 ≤ y ≤ x ≤ 1}. Hi, i = 0, 1, 2, are the usual
Sobolev spaces on the interval (0, 1). 〈·, ·〉 will denote the inner product on the Hilbert space
H0 = L2. If (A, D(A)) is the generator of a C0-semigroup T on a Hilbert space X, we denote
byX1 the space D(A) endowed with the graph norm ‖x‖ := ‖x‖X + ‖Ax‖X.

First, using the transformation

z̃(t, x) := e
∫x
0 (b(s)/2ε(s))dsz(t, x), (2.1)

with the compatible changes of parameters

ε̃(x) := ε(x), ã(x) := a(x) − b′(x)
2

− b2(x)
4ε(x)

,

˜β := β − b(1)
2

, ρ̃ = ρ, ũ(t) := e
∫1
0 (b(s)/2ε(s))dsu(t),

(2.2)

one can eliminate the bifurcation term (bz) from (1.1). In fact, direct computations give

¨̃z − (εz̃x)x − ãz̃ = {z̈ − (εzx)x − bzx − az}e
∫x
0 (b(s)/2ε(s))ds,

M ¨̃z(t, 0) − ε(0)z̃x = 0,

m ¨̃z(t, 1) + ε(1)z̃x(t, 1) = ˜βz̃(t, 1) − ũ(t).

(2.3)
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Then, z satisfies (1.1) if and only if z̃ satisfies (1.1)with the parameters 0, ã, ˜β, and ũ, instead
of b, a, β, and u. Moreover, provided that b ∈ C2, the parameters ã ∈ C1. So, without loss of
generality, we set in what follows b ≡ 0.

The following lemma is due to [11, Lemma 2.4]. It describes an integral transformation
which will be used to convert (1.1)-(1.2) into a well-known one.

Lemma 2.1. Let k ∈ H2(Δ), and define the bounded operator Tk : Hi → Hi by

(

Tkϕ
)

(x) := ϕ(x) +
∫x

0
k
(

x, y
)

ϕ
(

y
)

dy. (2.4)

Then, Tk has a linear bounded inverse T−1
k

: Hi → Hi, i = 0, 1, 2.

Next, assume that z(t) satisfies (1.1)-(1.2) and set for t ≥ 0, x ∈ [0, 1]

w(t, x) := (Tkz(t))(x) = z(t, x) +
∫x

0
k
(

x, y
)

z
(

t, y
)

dy. (2.5)

By integrating by parts from 0 to x, we get for t > 0,

ẅ(t, x) = z̈(t, x) +
∫x

0
k
(

x, y
)

z̈
(

t, y
)

dy

= z̈(t, x) +
∫x

0
k
(

x, y
)

[

[

ε
(

y
)

zy
(

t, y
)]

y
+ a
(

y
)

z
(

t, y
)

]

dy

= z̈(t, x) + ε(x)k(x, x)zx(t, x) − ε(0)k(x, 0)zx(t, 0) − ε(x)ky(x, x)z(t, x)

+ ε(0)ky(x, 0)z(t, 0) +
∫x

0

[

[

ε
(

y
)

ky
(

x, y
)]

y
+ a
(

y
)

k
(

x, y
)

]

z
(

t, y
)

dy.

(2.6)

Moreover,

[εwx]x = [ε(x)zx(t, x)]x + ε(x)k(x, x)zx(t, x) + [ε(x)k(x, x)]xz(t, x)

+ ε(x)kx(x, x)z(t, x) +
∫x

0

[

ε(x)kx
(

x, y
)]

xz
(

t, y
)

dy.
(2.7)

Taking into account of (1.2), we obtain

ẅ − [εwx]x =
[

a(x) − 2ε(x)
d

dx
(k(x, x)) − ε′(x)k(x, x)

]

z(t, x)

+
∫x

0

[

a
(

y
)

k
(

x, y
)

+
(

[

ε
(

y
)

ky
(

x, y
)]

y
−
[

ε(x)kx
(

x, y
)]

x

)]

z
(

t, y
)

dy

+
[

ky(x, 0) − ρk(x, 0)
]

ε(0)z(t, 0).

(2.8)
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Then, ẅ − [ε(x)wx]x = 0, in (0,∞) × (0, 1), if and only if the kernel k verifies the PDE

[

ε(x)kx
(

x, y
)]

x −
[

ε
(

y
)

ky
(

x, y
)]

y
= a
(

y
)

k
(

x, y
)

, 0 ≤ y ≤ x ≤ 1,

ky(x, 0) = ρk(x, 0), 0 ≤ x ≤ 1,

k(x, x) =
1

2
√

ε(x)

∫x

0

a(s)
√

ε(s)
ds, 0 ≤ x ≤ 1.

(2.9)

We note that the third (boundary) equation of (2.9) is obtained by solving the first order
differential equation

2ε(x)
d

dx
(k(x, x)) + ε′(x)k(x, x) = a(x), (2.10)

with the initial condition k(0, 0) = 0. Due to [12], for a given C2-function ε, the kernel PDE
(2.9) has a unique solution k ∈ H2(Δ), see also [13] for ε = const. Further, the function k can
be approximated numerically via scheme of successive approximations.

Now, let k be the solution of (2.9). In view of (2.8), the new state w satisfies

ẅ(t, x) = [ε(x)wx(t, x)]x, in (0,∞) × (0, 1),

Mẅ(t, 0) = ε(0)wx(t, 0), in (0,∞),

mẅ(t, 1) = −ε(1)wx(t, 1) −U(t), in (0,∞),

w(0, x) =: w0(x), ẇ(0, x) =: w1(x), in (0, 1),

(2.11)

with w0 = Tkz0, w1 = Tkz1, and

U(t) =: u(t) − c0z(t, 1) − c1zx(t, 1) −
〈

p, z(t)
〉

, (2.12)

where

c0 := β + ε(1)k(1, 1) −mε(1)ky(1, 1),

c1 := mε(1)k(1, 1),

p
(

y
)

:=
(

ε(1) +mg
)

kx
(

1, y
)

+mε(1)kxx
(

1, y
)

, y ∈ (0, 1).

(2.13)

We note here that the expression ofU(t) is obtained using (1.1) and the first equation of (2.9).
We summarize these results in the following.

Lemma 2.2. Let k be the solution of (2.9), and consider c0, c1, p with representation (2.13). Then,
the isomorphism Tk converts (1.1)-(1.2) into (2.11)-(2.12).
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3. Stabilization of the Transformed System

We proceed in this section to construct an appropriate control U(t) which stabilizes the
new open-loop system (2.11), and we show the well-posedness of the resulting closed-loop
system. To do so, it is logical to think about the energy of the system as Lyapunov function.
So, let us introduce the following energy associated with (2.11)

E(t) =
1
2

{

∫1

0

[

ε(x)wx(t, x)2 + ẇ(t, x)2
]

dx +Mẇ(t, 0)2 +mẇ(t, 1)2 + αw(t, 1)2
}

, (3.1)

where α is a positive constant. The integral term corresponds to the inner energy of the cable.
The coefficient ẇ2(t, 0)+ẇ2(t, 1) is proportional to the kinetic energy of the cart. However, the
term w2(t, 1) guarantees the position convergence, it can be replaced by (w − wd)

2 in order
to reach any desired position wd by the cart, see [7] and the reference therein for a more
discussions on the functional energy E associated with hybrid systems.

Differentiating (3.1) with respect to t, we get by using (2.11)

Ė(t) = −ẇ(t, 1)(U(t) − αw(t, 1)). (3.2)

To cause E(t) to decrease, a simple choice of the feedback law is

U(t) = αw(t, 1) + γẇ(t, 1), γ > 0. (3.3)

Substituting (3.3) in (3.4), we obtain

Ė(t) = −γẇ(t, 1)2. (3.4)

This means that under the boundary feedback law (3.3), the energy E decreases with time t.
Now, let us consider the Hilbert space X := H1 × L2 × R × R endowed with the inner

product

〈

(

f, g, ξ, η
)

,
(

˜f, g̃, ˜ξ, η̃
)〉

:=
∫1

0

[

εfx ˜fx + gg̃
]

dx +Mξ˜ξ +mηη̃ + αf(1) ˜f(1), (3.5)

and introduce the operator

D(A0) :=
{

(

f, g, ξ, η
)� ∈ H2 ×H1 × R × R : g(0) = ξ, g(1) = η

}

,

A0

⎛

⎜

⎜

⎜

⎜

⎜

⎝

f

g

ξ

η

⎞

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

g
(

εfx
)

x

ε(0)fx(0)
M

−
[

ε(1)fx(1) + αf(1) + γη
]

m

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, for

⎛

⎜

⎜

⎜

⎜

⎜

⎝

f

g

ξ

η

⎞

⎟

⎟

⎟

⎟

⎟

⎠

∈ D(A0).
(3.6)
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Setting now v(t) := (w(t), ẇ(t), ẇ(t, 0), ẇ(t, 1))�, for t ≥ 0. Then, (2.11)-(3.3) can be
represented on the state space X by the abstract Cauchy problem

v̇(t) = A0v(t), t ≥ 0, v(0) = v0, (3.7)

where v0 := (w0, w1, w1(0), w1(1))�. In the following lemma, we will confirm the well-
posedness of (2.11)-(3.3).

Lemma 3.1. A0 generates a C0-semigroup of contraction (T0
t )t≥0 on X.

Proof. Obviously, A0 is densely defined. Moreover, by integrating by parts, we get

〈A0v, v〉X = −γη2, (3.8)

for v = (f, g, ξ, η) ∈ D(A0). Therefore, A0 is dissipative. By the Lumer-Philips theorem [14,
page 85], the proof will be accomplished if one can show that (I − A0) is surjective. In fact,
for a given v0 = (f0, g0, ξ0, η0) ∈ X, we have to solve the functional equation

(I −A0)v = v0, v =
(

f, g, ξ, η
)

∈ D(A0), (3.9)

which means that

f ∈ H2, g ∈ H1,

g = f − f0, ξ = g(0), η = g(1),
(3.10)

g −
(

εfx
)

x = g0,

Mξ − ε(0)fx(0) =Mξ0,

ε(1)fx(1) + αf(1) +
(

m + γ
)

η = mη0.

(3.11)

Substituting (3.10) in (3.11), we obtain the PDE

(

εfx
)

x − f = −
(

f0 + g0
)

,

ε(0)fx(0) −Mf(0) = −M
(

ξ0 + f0(0)
)

,

ε(1)fx(1) +
(

α +m + γ
)

f(1) = mη0 +
(

m + γ
)

f0(1).

(3.12)
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Following the method of [15, VIII.4], one can see that the system (3.12) has a unique solution
φ ∈ H2. Of course, the vector v = (φ, ψ; r0; r1)

� is given by

φ solution of (3.12),

ψ = φ − f0,

r0 :=

[

Mξ0 + ε(0)φx(0)
]

M
,

r1 :=

[

mη0 +
(

m − α − β
)

f0(1) − ε(1)φx(1)
]

(

α + β + γ
) ,

(3.13)

which is a D(A0)-solution of the functional equation (3.9). This leads us to conclude that
I −A0 is surjective.

Since A0 generates a C0-semigroup of contraction, then (0,∞) ⊆ �(A0), and the
resolvent R(μ,A0) is well-defined for all μ > 0.

Lemma 3.2. R(μ,A0) is compact for all μ > 0. In particular, T0 is relatively compact.

Proof. In view of [14, page 117], it remains to show that the injection j : X1 → X is compact.
To do so, we introduce the auxiliary Hilbert spaceV := H2×H1×R×R with the inner product

〈v, ṽ〉V :=
〈

f, ˜f
〉

H2
+
〈

g, g̃
〉

L2 + ξ˜ξ + ηη̃ + f(1) ˜f(1), (3.14)

for v = (f, g, ξ, η) ∈ V and ṽ = ( ˜f, g̃, ˜ξ, η̃) ∈ V. Obviously, X1 ⊆ V ⊆ X. Moreover, from
the Sobolev’s embedding theorem, the embedding from H1 in L2 and the one of H2 in H1

are compact. It follows that the injection j1 : V ↔ X is compact. On the other hand, direct
computations show that

‖v‖V ≤ C‖v‖X1
, (3.15)

for some constant C. Therefore, the injection j2 : X1 → V is continuous. Consequently, j :=
j1 ◦ j2 is compact from X1 into X. Thus, A0 has a compact resolvent, and by [14, Corollary
V.2.15], we conclude that the semigroup T0 is relatively compact.

Taking into account of [14, page 318], and the fact that T0 is relatively compact, the
following decomposition holds

X = Xs ⊕ Xr , (3.16)

where

Xs =
{

v ∈ X :
∥

∥

∥T0
t v
∥

∥

∥

X
−→ 0 as (t −→ ∞)

}

,

Xr = lin{v ∈ X : ∃σ ∈ R, Av = iσv}.
(3.17)
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We point out here that, due to (H), the initial data v0 belongs to D(A0). SinceA0 generates a
C0 semigroup T0, then, by [14, page 145], the evolution equation (3.7) has a unique solution
v ∈ C1([0,∞),X) ∩ C([0,∞),D(A0)), given by v(t) = T0

t v
0. Which implies that the closed-

loop system (2.11)-(3.3) has a unique solution w satisfying

w ∈ C1
(

[0,∞),H1
)

∩ C
(

[0,∞),H2
)

,

ẇ ∈ C1
(

[0,∞), L2
)

∩ C
(

[0,∞),H1
)

,

(w(t), ẇ(t), ẇ(t, 0), ẇ(t, 1))� = v(t) = T0
t v

0.

(3.18)

Equation (3.18) explains that the solution of (2.11)-(3.3) is represented by the semigroup T0.
For that reason, we will adopt in this work the concept of stability associated with semigroup
theory as defined in [14]. One says that (2.11)-(3.3) is asymptotically stable, if T0 is strongly
stable, that is, for all v ∈ X, ‖T0

t v‖X → 0 as (t → 0). In the following theorem, we show how
the controller (3.3) affects on either the stability and the energy of (2.11).

Theorem 3.3. (i) T0 is strongly stable. In particular, (2.11)-(3.3) is asymptotically stable.
(ii) The energy E(t) decreases with time t: E(t) ↘ 0 as t → ∞.

Proof. In view of (3.16), it suffices to show that Xr = {0}. In fact, let v = (f, g, g(0), g(1))� ∈
D(A0) satisfying

A0v = iσv, (3.19)

for some σ ∈ R. Equation (3.19) is equivalent to

f ∈ H2, g = iσf, (3.20)
(

εfx
)

x + σ
2f = 0,

ε(0)fx(0) +Mσ2f(0) = 0,

ε(1)fx(1) +
(

α + iσγ −mσ2
)

f(1) = 0.

(3.21)

By using the method of [15, VIII.4] and taking into consideration of the regularity condition
f ∈ H2, one can see that f ≡ 0 is the unique solution of (3.21). From (3.20), we conclude that
g ≡ 0. Therefore, Xr = {0} and X = Xs.

On the other hand, in view of the third equation of (3.18), we have

E(t) =
1
2

∥

∥

∥T0
t v

0
∥

∥

∥

2

X
−→ 0, (t −→ ∞). (3.22)

This proves the statement (ii).
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4. Closed-Loop Stability of the Cable Displacements

We will derive in this section a controller u which restores, in a closed form, the cable
displacements z(t) of the concerned system (1.1)-(1.2) to the equilibrium z ≡ 0. In fact, by
substituting (2.12) in (3.3), we reach, by using (2.5), the following expression of the control
u(t)

u(t) = (α + c0)z(t, 1) + c1zx(t, 1) + γż(t, 1) +
〈

q, z(t)
〉

+
〈

γk0, ż(t)
〉

, (4.1)

where k0(y) := k(1, y), q := αk0 + p.
The system (1.1)-(1.2), (4.1) is well posed, since it can be obtained from the well-posed

system (2.11)-(3.3) via the isomorphism (Tk)
−1. Which means that the closed-loop system

(1.1)-(1.2), (4.1) has a unique solution z satisfying, in view of (3.18), the following regularity
conditions:

z ∈ C1
(

[0,∞),H1
)

∩ C
(

[0,∞),H2
)

, ż ∈ C1
(

[0,∞), L2
)

∩ C
(

[0,∞),H1
)

. (4.2)

Consider now the operator

D(A) := D(A0),

A

⎛

⎜

⎜

⎜

⎜

⎜

⎝

f

g

ξ

η

⎞

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

g
(

εfx
)

x + af

ε(0)fx(0)
M

−
[

(ε(1) + c1)fx(1) +
(

α + c0 − β
)

f(1) + γη +
〈

q, f
〉

+
〈

γk0, g
〉]

m

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,
(4.3)

for (f, g, ξ, η)� ∈ D(A).
By direct computations one can prove that the function ζ defined by

z solution of (1.1)-(1.2), (4.1),

ζ(t) := (z(t), ż(t), ż(t, 0), ż(t, 1))�, t ≥ 0,
(4.4)

is the unique classical solution of the evolution equation

Ż(t) = AZ(t), t ≥ 0, Z(0) = ζ0, (4.5)

where ζ0 = (z0, z1, z1(0), z1(1))�. This means that the operator A generates a C0-semigroup
Tt given byTtζ

0 := ζ(t). Moreover, the fact that (Tk)
−1 is bounded, then there exists a constant

C > 0 such that

‖z(t)‖H1 ≤ C‖w(t)‖H1 , ‖ż(t)‖L2 ≤ C‖ẇ(t)‖L2 ,

|ż(t, 0)| ≤ C|ẇ(t, 0)|, |ż(t, 1)| ≤ C|ẇ(t, 1)|,
(4.6)
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for t ≥ 0. Thus, ‖ζ(t)‖X ≤ C‖v(t)‖X, and so ‖Ttζ
0‖X ≤ C‖T0

t v
0‖X. By Theorem 3.3, we deduce

the strong stability of Tt. Therefore, the closed-loop system (1.1)-(1.2), (4.1) is asymptotically
stable. This proves the main result of this paper which can be reformulated in the following
theorem.

Theorem 4.1. The semigroup Tt is strongly stable. In particular, the closed-loop system (1.1)-(1.2),
(4.1) is asymptotically stable.

Remark 4.2. One can express the controller (4.1) using the solution w of (2.11)-(3.3). In fact,
let us denote by l the kernel of the inverse transformation

z(t, x) = w(t, x) +
∫x

0
l
(

x, y
)

w
(

t, y
)

, (4.7)

where w is the solution of (2.11)-(3.3). Substituting (4.7) in (1.1)-(1.2), we find the PDE
governing the kernel l

[

ε(x)lx
(

x, y
)]

x −
[

ε
(

y
)

ly
(

x, y
)]

y
= −a(x)l

(

x, y
)

, 0 ≤ y ≤ x ≤ 1,

ly(x, 0) = ρl(x, 0), 0 ≤ x ≤ 1,

l(x, x) = − 1

2
√

ε(x)

∫x

0

a(s)
√

ε(s)
ds, 0 ≤ x ≤ 1.

(4.8)

The PDE (4.8) is in the same class of (2.9). Hence, the PDE (4.8) has a unique solution l ∈
H2(Δ). Let now l be the solution of (4.8). Substituting (4.7) in (4.1), one obtains an expression
of the controller (4.1) in terms of w and l.

5. Conclusion

The proposed approach represents a blinding of the so-called “backsteeping method” and
“semigroup theory” to construct a controller which asymptotically stabilizes the solution
of the HPDE (1.1)-(1.2). Various properties of parabolic PDEs and hyperbolic PDEs can
be treated by using similar techniques. The idea of the study is to convert a complicated
(parabolic or hyperbolic) PDE into a well-known one by using the famous integral
transformation (2.4) with a kernel required to satisfy an adequate PDE. We also note that
the isomorphism (2.4) transforms such PDEs without effects on their topological properties.
Therefore, one can deal with others topological properties of complicated systems such as:
regularity, controllability, and observability, and so forth.
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