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We consider the problem of reconstruction of an unknown characteristic transient thermal source
inside a domain. By introducing the definition of an extended dirichlet-to-Neumann map in the
time-space cylinder and the adoption of the anisotropic Sobolev-Hilbert spaces, we can treat the
problemwith methods similar to those used in the analysis of the stationary source reconstruction
problem. Further, the finite difference θ scheme applied to the transient heat conduction equation
leads to a model based on a sequence of modifiedHelmholtz equation solutions. For each modified
Helmholtz equation the characteristic star-shape source function may be reconstructed uniquely
from the Cauchy boundary data. Using representation formula, we establish reciprocity functional
mapping functions that are solutions of the modified Helmholtz equation to their integral in the
unknown characteristic support.

1. Introduction

Inverse source transient heat problem has been studied by a huge number of authors. In
relation to books with specific chapters in the subject, we can give special attention to Anger
[1] and Isakov [2]. Those gives specific results for the problem of source reconstruction
in models with different operators and overspecification of boundary conditions, and
specifically demonstrates an uniqueness theorem related with the moving characteristic
source studied in this work. Early works by Cannon and Pérez Esteva [3] studied stationary
support reconstruction under hypotheses of a known intensity function, f(t, x) = f(t)χω(x).
Some years later, Cannon and Pérez Esteva studied the same problem in a three-dimensional
case [4]. More recently, Lefevre and Le Niliot [5] used the boundary elements method for
identification of static and moving point sources. Also, it is important to mention the authors
Hettlich and Rundell [6] who model the unmoving characteristic domain and El Badia
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and Ha Duong [7], whose stationary source reconstruction and the transient point sources
reconstructions have a fundamental influence in the present work. The present work has
come from the investigation of the stationary source reconstruction by the fundamental
solution method in Alves et al. [8]. The adoption of the reciprocity gap functional method to
solve the stationary source in the Laplace Poisson equation, Roberty and Alves [9], and the
solution of the full identification of sources with the Helmholtz Poisson model, Alves et al.
[10], have developed to the modeling adopted to the transient heat transient characteristic
source reconstruction in this work. The model is based on the modified Helmholtz Poisson
equation that is obtained from the transient equation through the θ-scheme related to time
finite differences discretization. Analysis of the related mathematical and computational
work involved has been presented by the author in national conferences, Roberty and Alves
[11, 12], Roberty and Sousa [13], and Roberty and Rainha [14, 15].

This paper will be structured as follows. Some definitions and mathematical results
extracted from Lions and Magenes [16] that are important to the understanding of the
inverse problems are presented in Section 2. There we introduce the concept of consistent
Cauchy data, extended Dirichlet-to-Neumann map and the Green function formalism. The
inverse transient heat source problem is introduced in Section 3. Basic lemma and theorems
about the relative extended Dirichlet-to-Neumann map, existence of solution, reciprocity gap
functional in the transient model, uniqueness of solution are demonstrated and discussed.
These concepts present original aspects that we are introducing in the present work. We
show that the transient problem can be studied with aid of results demonstrated for
the Modified Helmholtz Dirichlet Source problem, in Section 4. There the iterative source
reconstruction scheme, the uniqueness theorem for these sequences of stationary problems,
and the reciprocity gapmethodology is presented.We conclude by pointing out the advances
introduced by the present work.

2. Direct Transient Heat Equation Problem

By Ω ⊂ �d, d = 1, 2, 3 we denote a bounded space domain with Lipschitz boundary Γ = ∂Ω,
which means that Ω is locally on one side of its connected boundary. The boundary may be
locally parametrized by a Lipschitz continuous function. The more regular boundary will be
named as smooth and will be locally parametrized with C∞ functions. In the spatial surface
Γ the normal ν is defined almost everywhere and the induced measure on the surface is
denoted by dσ. In the time-space�d+1, we consider the time interval I := (0, T), T > 0 to form
the bounded cylinder Q := I ×Ω, whose lateral time-space surface is Σ := I × Γ. A section in
this cylinder is Ωt := {t} ×Ω and the complete cylinder boundary is

∂Q = Σ ∪Ω0 ∪ΩT , (2.1)

where Ω0 and ΩT are, respectively, the cylinders’ bottom and top sections. At cylinder top
and bottom there exist the corners Γ0 = Ω0 ∩ Σ ⊂ �d−1 and ΓT = ΩT ∩ Σ ⊂ �d−1, respectively.

The direct transient heat source initial boundary value problem consists in finding
u(t, x) with (t, x) ∈ Q given a boundary input g(t, x) with (t, x) ∈ Σ, an initial input
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u0(x) with (t, x) ∈ Ω0 and a source distribution f(t, x) with (t, x) ∈ Q that verifies
the problem:

(
Pu0,g,f

)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂tu −Δu = f in Q,

u = u0 in Ω0,

u = g on Σ,

(2.2)

and Dirichlet data compatibility condition, u0 = g at the time-space cylinder corner Γ0.
It is well known that this direct problem is well posed with a classical unique

solution, Isakov introduced by [2], for initial and boundary data and coefficients in spaces
of continuous and Holder continuous functions. For Hilbert space framework we need to
introduce, following Lions and Magenes [16], anisotropic Sobolev spaces. For r, s > 0

Hr,s(Q) := L2(I;Hr(Ω)) ∩Hs
(
I;L2(Ω)

)
(2.3)

and the associated lateral boundary spaces

Hr,s(Σ) := L2(I;Hr(Γ)) ∩Hs
(
I;L2(Γ)

)
. (2.4)

HereHr(Ω) andHr(Γ), r ≥ 0 are the Hilbert family of Sobolev space in the L2 theory, and the
space L2(I;X) denotes the class of functions that are strongly measurable on I = [0, T] with
range in X with the following Hilbert norm:

‖v‖L2(I;X) =
(∫

I

‖v‖2Xdt
)1/2

< ∞. (2.5)

The normal space with null lateral boundary trace will be

Hr,s
0,•(Q) := L2(I;Hr

0(Ω)
) ∩Hs

(
I;L2(Ω)

)
⊂ Hr,s(Q). (2.6)

A comprehensive presentation of these spaces in the contest of boundary integral operators
related with the heat equation and the heat potential can be found in Costabel [17]. The
adjoint transient heat problem has a straightforward definition

(
P ∗
vT ,g,f

)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−∂tv −Δv = f in Q,

v = vT in ΩT ,

v = g on Σ,

(2.7)
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and Dirichlet data compatibility condition, vT = g, at the time-space cylinder corner ΓT . The
time reversal operator

κT : Hr,s(Q) −→ Hr,s(Q), v(t, x) �−→ κ[v](t, x) = v(T − t, x) (2.8)

can be used to change changes of variables u∗(t, x) = v(T − t, x) and convert the adjoint
problem into an equivalent direct problem. The following theorems, lemmas and proposition
are important in the well posing of the direct and inverse problems related with the source
reconstruction that we are investigating. We adapt the notation in order to make easy the use
of these results and address the proofs to the related part in the book Lions andMagenes [16].

Theorem 2.1 (first trace theorem). For u ∈ Hr,s(Q) with r > 1/2 and s ≥ 0. We can define the
continuous and linear mappings:

(1) γ[u] := u|Σ fromHr,s(Q) → Hr−1/2,s−s/2r(Σ) and

(2) γ1[u] := ∂νu|Σ fromHr,s(Q) → Hr−3/2,s−3s/2r(Σ).

Also, for r ≥ 0 and s > 1/2 the continuous mapping

(1) γ0[u] := u(0, x) fromHr,s(Q) → Hr−r/2s(Ω0) and

(2) γT [u] := u(T, x) fromHr,s(Q) → Hr−r/2s(ΩT ).

Proof. See Theorem 2.2 on Section 4 of Lions and Magenes [16].

Remark 2.2 (nonsurjectivity of traces). The following mappings are not onto:

(1) γ0, γT : Hr,s(Q) → Hr−r/2s(Ω0) if r > 1/2;

(2) γ : Hr,s(Q) → Hr−1/2,s−s/2r(Σ) if s > 1/2;

(3) γ1 : Hr,s(Q) → Hr−3/2,s−3s/2r(Σ) if s > 3/2.

Two important spaces for applications are H2,1(Q) and H1,1/2(Q). For the first, only the
normal trace γ1 is surjective. For the second, both the traces on lateral boundary are surjective,
that is, γ and γ1. In both cases the traces on initial and final time are not onto.

Since we need traces for treating nonhomogeneous problems such as (2.2), Pu0,g,f with
its associated inverse source problem, we will introduce the following definitions.

Definition 2.3 (Cauchy datum). By Cauchy datum associated with Problem (2.2)wemean the
functions:

(
u0, g, uT , gν

) ∈ Hr−r/2s(Ω0) ×Hr−1/2,s−s/2r(Σ) ×Hr−r/2s(ΩT ) ×Hr−3/2,s−3s/2r(Σ). (2.9)
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Definition 2.4 (consistent Cauchy datum). By consistent Cauchy datum associated with
Problem (2.2) we mean the functions:

(
u0, g, uT, gν

) ∈ (
γ0, γ, γT , γ1

)
[Hr,s], (2.10)

and by the first trace Theorem 2.1, we have that

(
γ0, γ, γT , γ1

)
[Hr,s] ⊂ Hr−r/2s(Ω0) ×Hr−1/2,s−s/2r(Σ) ×Hr−r/2s(ΩT ) ×Hr−3/2,s−3s/2r(Σ).

(2.11)

Now, since the consistent datum are in the range of the trace operators, the nonhomogeneous
problem will be always well posed. From now on, by Cauchy data we will always mean
consistent Cauchy data.

The well posedness of the problem holds for regular boundaries and may be resumed
as follows.

Theorem 2.5 (regular data r ≥ 0). Consider the problem Pu0,g,f .
The regular nonhomogeneous problem with consistent data

(
u0, g, f

) ∈ H2(r+1/2)(Ω0) ×H2r+3/2,r+3/4(Σ) ×H2r,r(Q), r ≥ 0, 2r, r /∈�+
1
2

(2.12)

and appropriated compatibility relations in corner Γ0 admit a unique solution u ∈ H2r+2,r+1(Q). The
associated mapping G : (u0, g, f) → u is continuous. Note that for these initial time and Dirichlet
data the final time and normal trace are

(
γT[u], γ1[u]

) ∈ H2(r+1/2)(ΩT ) ×H2r+1/2,r+1/4(Σ). (2.13)

Proof. See Theorem 6.2 in Section 4 of Lions and Magenes [16].

Theorem 2.6 (distributional data −1 < r < 0). Consider the problem Pu0,g,f .
The distributional nonhomogeneous problem with consistent data

(
u0, g, f

) ∈ H2(r+1/2)(Ω0) ×H2r+3/2,r+3/4(Σ) ×H2r,r(Q), −1 < r < 0, (2.14)

and appropriated compatibility relations in corner Γ0 admit a unique solution u ∈ H2r+2,r+1(Q). The
associated mapping G : (u0, g, f) → u is continuous. Note that for these initial time and Dirichlet
data the final time and normal trace are

(
γT[u], γ1[u]

) ∈ H2(r+1/2)(ΩT ) ×H2r+1/2,r+1/4(Σ). (2.15)
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Here we have defined

Hβ(Ω) =

⎧
⎪⎨

⎪⎩

Hβ(Ω) if β ≥ 0,

(
H−β(Ω)

)′
if β ≤ 0,

Hα,
α

2 (Ω) =

⎧
⎪⎨

⎪⎩

Hα,α/2(Ω) if α ≥ 0,

(
H−α,−α/2(Ω)

)′
if α ≤ 0.

(2.16)

Proof. See Subsection 15.1 on Section 4 of Lions and Magenes [16].

Definition 2.7 (the dual operator domain Xr+1(Q)). If r ≥ 0 with 2r and r /∈�+ 1/2,

Xr+1(Q) =
{
v ∈ H2(r+1),r+1(Q), γ[v] = 0, γT[v] = 0, −∂tv −Δv ∈ H2r,r

0,0 (Q)
}
, (2.17)

where H2r,r
0,0 (Q) is the closure of D(Q) inH2r,r(Q).

Lemma 2.8 (adjoint isomorphis of order r + 1). Xr+1(Q) with the graph norm

‖v‖Xr+1(Q) =
(
‖v‖2H2(r+1),r+1(Q) + ‖(−∂t −Δ)v‖2H2r,r(Q)

)1/2
(2.18)

is a Hilbert space. For r ≥ 0 and with 2r and r /∈�+1/2, the adjoint operator −∂t−Δ is an isomorphism
of Xr+1(Q) ontoH2r,r

0,0 (Q).

Proof. See Section 7.2 on Section 4 of Lions and Magenes [16].

Definition 2.9 (the space Ξ2(r+1),r+1(Q)). By definition Xr+1(Q) ⊂ H2(r+1),r+1(Q). We need a
space Ξ2(r+1),r+1(Q) with the following properties:

(1) the space D(Q) is dense in Ξ2(r+1),r+1(Q) for r > −1;

(2) Xr+1(Q) ⊂ H2(r+1),r+1(Q) ⊂ Ξ2(r+1),r+1(Q) for r ≥ 0, 2r and r /∈�+ 1/2;

(3) it is least space with these two properties.

This space is independent of properties of the boundary operators and is defined in
Section 9.1 of Lions and Magenes [16] by using functions equivalent to the distance to the
boundary and interpolation Theorems.
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Definition 2.10 (the dual space Ξ−2(r+1),−(r+1)(Q)). The dual space

Ξ−2(r+1),−(r+1)(Q) =
(
Ξ2(r+1),r+1(Q)

)′
(2.19)

for r ≥ −1 is a distribution-space-appropriated definition of continuous linear forms on
Xr+1(Q) and consequently for source definition.

Theorem 2.11 (distributional data r ≤ −1). Consider the problem Pu0,g,f .
The distributional nonhomogeneous problem with consistent data

(
u0, g, f

) ∈ Ξ2(r+1/2)(Ω0) ×H2r+3/2,r+3/4(Σ) × Ξ2r,r(Q), r ≤ −1, 2r, r /∈�+
1
2

(2.20)

and appropriated compatibility relations in corner Γ0 admit a unique solution u ∈ H2r+2,r+1(Q). The
associated mapping G : (u0, g, f) → u is continuous. Note that for these initial time and Dirichlet
data the normal trace is

(
γT[u], γ1[u]

) ∈ Ξ2(r+1/2)(ΩT ) ×H2r+1/2,r+1/4(Σ). (2.21)

Proof. See Theorem 12.1 of Lions and Magenes [16].

The following theorems represent an effort based on domain and range operator
modification found on Chapter 4 of the book Lions and Magenes [16], in order to make
traces mappings onto. We include them to illustrate the complexity involved. Since our main
commitment is with the inverse source problem, we consider it more efficient to simplify
the process to assure Cauchy data consistence by restricting its range in the first trace
Theorem 2.1.

Definition 2.12 (the domain spaceD−r
∂t−Δ(Q)). One has

D−r
∂t−Δ(Q) =

{
u ∈ H−2r,−r(Q), (∂t −Δu) ∈ Ξ−2(r+1),−(r+1)(Q)

}
(2.22)

with r ≥ 0, 2r and r /∈�+ 1/2. Provided the graph norm

‖v‖D−r
∂t−Δ(Q) =

(
‖v‖2H−2r,−r(Q) + ‖(∂t −Δ)v‖2Ξ−2(r+1),−(r+1)(Q)

)1/2
, (2.23)

it is a Hilbert space.

Theorem 2.13. The mappings

γ : D−r
∂t−Δ(Q) −→ H−2r−1/2,−r−1/4(Σ),

γ1 : D−r
∂t−Δ(Q) −→ H−2r−3/2,−r−3/4(Σ)

(2.24)
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for every r ≥ 0 with 2r and r /∈�+ 1/2 are continuous and linear. Further these mappings are onto if
their domains and range are restricted to

γ : V(Q) −→ H2r+1/2,r+1/4
0,• (Σ),

γ1 : V(Q) −→ H2r+3/2,r+3/4
0,• (Σ),

(2.25)

where V = {v ∈ H
2(r+1),r+1
0,• (Q), (−∂t −Δ)v ∈ H2(r−1),r−1(Q)}.

Theorem 2.14. The mappings

γ0 : D−r
∂t−Δ(Q) −→ H−2r+1/2(Ω0),

γT : D−r
∂t−Δ(Q) −→ H−2r+1/2(ΩT )

(2.26)

for every r ≥ 0 with 2r and r /∈�+ 1/2 are continuous and linear. Further these mappings are onto if
their domains and range are restricted to

γ0 : V1(Q) −→ H2r+1/2
0 (Ω0),

γT : V1(Q) −→ H2r+3/2
0 (ΩT ),

(2.27)

where V1 = {v ∈ H2(r+1),r+1(Q), (−∂t −Δ)v ∈ H
2(r−1),r−1
0,0 (Q)}.

Proof. See Theorem 10.4 and Lemma 10.2 in Section 4 of Lions and Magenes [16].

Remark 2.15. The data in the lateral and bottom d-dimensional surfaces of time-space cylinder
can be considered as Dirichlet prescribed boundary data in the extended boundary Ω0 ∪ Σ of
the transient heat equation problem. This set is adjoint by the extended boundary ΩT ∩ Σ
for the adjoint problem. Since the transient heat problem has one derivative in time and two
derivatives in space, the problem and its adjoint are posed with the following set of Cauchy
data: prescribed only Dirichlet on the bottom Ω0 and on the top ΩT of the cylinder and both
Dirichlet andNeumann data at the lateral cylinder surfaceΣ. If there exists data compatibility
at corners Γ0 and ΓT , it will give to the transient heat problem a character similar to the Poisson
Laplace equation.

Lemma 2.16 (solution operator). The solution operator is a continuous but not injective linear
operator associated with the Direct Problem (2.2) Pu0,g,f

(1) for regular data with r ≥ 0 and if 2r and r /∈�+ 1/2

S : H2(r+1/2)(Ω) ×H2r+3/2,r+3/4(Σ) ×H2r,r(Q) −→ H2r+2,r+1(Q), (2.28)

(2) for distributional data with −1 < r < 0

S : H2(r+1/2)(Ω) ×H2r+3/2,r+3/4(Σ) ×H2r,r(Q) −→ H2r+2,r+1(Q), (2.29)
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(3) for distributional data with r ≤ −1 and if 2r and r /∈�+ 1/2

S : Ξ2(r+1/2)(Ω) ×H2r+3/2,r+3/4(Σ) × Ξ2r,r(Q) −→ H2r+2,r+1(Q), (2.30)

defined by

S
(
u0, g, f

)
= u (2.31)

when u ∈ H2r+2,r+1(Q) is solution of Problem (2.2) with initial data (u0, g) = (u|Ω0 , u|Σ).

Proof. It is a combination of results found in Theorem 6.2, Subsection 15.1 and Theorem
12.1 on Chapter 4 of Lions and Magenes [16]. Note that operator S is continuous, but not
necessarily one to one.

Definition 2.17 (extended dirichlet-to-neumann map). We call The extended Dirichlet-to-
Neumann map for the Problem (2.2)

(1) for regular data with r ≥ 0 and 2r and r /∈�+ 1/2:

Λf

Ω,Σ : H2r+1(Ω0) ×H2r+3/2,r+3/4(Σ) −→ H2r+1(ΩT ) ×H2r+1/2,r+1/4(Σ), (2.32)

(2) for distributional data with −1 < r < 0

Λf

Ω,Σ : H2r+1(Ω0) ×H2r+3/2,r+3/4(Σ) −→ H2r+1(ΩT ) ×H2r+1/2,r+1/4(Σ), (2.33)

(3) for distributional data with r ≤ −1 and 2r and r /∈�+ 1/2:

Λf

Ω,Σ : Ξ2r+1(Ω0) ×H2r+3/2,r+3/4(Σ) −→ Ξ2r+1(ΩT ) ×H2r+1/2,r+1/4(Σ), (2.34)

defined by

Λf

Ω,Σ

[(
u0, g

)]
=
(
u|ΩT

, ∂νu|∂Ω
)

(2.35)

when u ∈ H2r+2,r+1(Q) is solution of Problem (2.2) with initial data (u0, g) =
(u|Ω0 , u|Σ).

Note that this operator can be viewed as a combination of the standard Dirichlet to
Neumann map in the spatial boundary with the input-to-output map in the time boundary,
that is, in initial and final interval times, found in control theory.

Definition 2.18 (dirichlet green function). By the Dirichlet Green’s function G(t, x, τ, ζ) for
the Problem (2.2) we mean its solution with source δ(x − ζ, t − τ), (t, x, τ, ζ) ∈ Q × Q, and
homogeneous Dirichlet data on the extended boundary ΩT × Σ, that is, G(t, x, τ, ζ) = 0 for
(t, x) on ΩT × Σ.
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Remark 2.19. For regular data the Green’s function exist, Costabel [17], and we can show that

u(t, x) =
∫

Ω0

u0(ζ)G(t, x, 0, ζ)dζ +
∫

Σ
g(τ, ζ)

∂G(t, x, τ, ζ)
∂ν(τ,ζ)

dσ(τ,ζ) +
∫

Q

f(τ, ζ)G(t, x, τ, ζ)dζdτ

(2.36)

for (t, x) ∈ Q is an explicit solution S to Problem (2.2). By using problem’s (2.2) linearity we
formally decompose the solution in three parts

u = S
[
u0, g, f

]
:= S[u0, 0, 0] + S

[
0, g, 0

]
+ S

[
0, 0, f

]
,

S
[
u0, g, f

]
: H2(r+1/2)(Ω) ×H2r+3/2,r+3/4(Σ) ×H2r,r(Q) −→ H2r+2,r+1(Q),

(2.37)

where

S[u0, 0, 0] : H2(r+1/2)(Ω) −→ H2r+2,r+1(Q) (2.38)

is the homogeneous Dirichlet zero source initial value auxiliary problem solution and

S
[
0, g, 0

]
: H2r+3/2,r+3/4(Σ) −→ H2r+2,r+1(Q) (2.39)

is the zero source zero initial value auxiliary Dirichlet problem solution and

S
[
0, 0, f

]
: H2r,r(Q) −→ H2r+2,r+1(Q) (2.40)

is the zero data auxiliary Dirichlet auxiliary problem.

Lemma 2.20 (composition of trace and solution). The extended Dirichlet-to-Neumann map is a
composition of the final time trace and the lateral boundary normal trace with the Solution operator:

Λf

Ω,Σ

[
u0, g

]
=
(
γT , γ1

)
S
[
u0, g, f

]
=
(
γT ◦ S, γ1 ◦ S

)[
u0, g, f

]
=
(
uT , g

ν). (2.41)

Proof. Consequence of the definition.

3. Inverse Transient Heat Equation Source Problem

The inverse source problem that we address consists in the recovery of the source f , knowing
the extended Dirichlet-to-Neumann map Λf

Ω,Σ. When r = 0, the data are regular, the Green’s
function exists and f ∈ L2(Q). Let us investigate this situation, and then, we will show that
the unique information available in this inverse problem is given only by one measurement,
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say, the bottom and topDirichlet data and lateral cylinder Cauchy boundary data. The inverse
problem IPf

(u0,g),(uT ,gν) is to find f ∈ L2(Q) such that

(
IPf

(u0,g),(uT ,gν)

)
(
uT , g

ν) = Λf

Ω,Σ

(
u0, g

)
(3.1)

for all given data pair (u0, g) × (uT , gν) corresponding to different solutions to the direct
problem. By taking the normal trace at lateral cylinder boundary of the solution (2.36), we
obtain that

γ1[u] =
∂u

∂ν(t,x)

∣∣
∣∣
Σ
= Λf

•,Σ
[(
u0, g

)]
= γ1[S[u0, 0, 0]] + γ1

[
S
[
0, g, 0

]]
+ γ1

[
S
[
0, 0, f

]]
(3.2)

or

γ1[u](t, x) =
∫

Ω0

u0(ζ)
∂G(t, x, 0, ζ)

∂ν(t,x)

∣∣
∣∣
Σ
dζ −

∫

Σ
g(τ, ζ)

∂2G(t, x, τ, ζ)
∂ν(t,x)∂ν(τ,ζ)

∣
∣∣∣∣
Σ

dσ(τ,ζ)

+
∫

Q

f(τ, ζ)
∂G(t, x, τ, ζ)

∂ν(t,x)

∣∣∣
∣
Σ
dζdτ

(3.3)

is an explicit expression of the lateral part of the extended Dirichlet-to-Neumann map Λf

•,Σ.
mapping for f ∈ L2(Q)

Λf

•,Σ : H1(Ω) ×H3/2,3/4(Σ) −→ H1/2,1/4(Σ). (3.4)

Note that it appears decomposed in its partial traces

Λf

•,Σ
[(
u0, g

)]
:= Λ0

•,Σ[(u0, 0)] + Λ0
•,Σ

[(
0, g

)]
+ Λf

•,Σ[(0, 0)], (3.5)

where

Λ0
•,Σ[(·, 0)] : H1(Ω0) −→ H1/2,1/4(Σ) (3.6)

is the zero source auxiliary initial value zero Dirichlet problem solution lateral normal trace
and

Λ0
•,Σ[(0, ·)] : H3/2,3/4(Σ) −→ H1/2,1/4(Σ) (3.7)

is the zero source nonhomogeneous Dirichlet zero initial auxiliary problem solution lateral
normal trace and

Λf

•,Σ[(0, 0)] ∈ H1/2,1/4(Σ) (3.8)
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is the homogeneous Dirichlet zero initial source auxiliary problem solution lateral normal
trace.

By taking the final time trace at cylinder top boundary of the solution (2.36)we obtain
that

γT [u] = u(T, ·) = Λf

Ω,•
[(
u0, g

)]
= γT

[
S
[
u0, 0, f

]]
+ γT

[
S
[
0, g, 0

]]
+ γT

[
G
[
0, 0, f

]]
(3.9)

or

γT[u](t, x) =
∫

Ω0

u0(ζ)G(T, x, 0, ζ)dζ −
∫

Σ
g(τ, ζ)

∂G(T, x, τ, ζ)
∂ν(τ,ζ)

dσ(τ,ζ)

+
∫

Q

f(τ, ζ)G(T, x, τ, ζ)dζdτ

(3.10)

is an explicit expression of the final part of the input-to-output map

Λf

Ω,• : H
1(Ω0) ×H3/2,3/4(Σ) −→ H1(ΩT ). (3.11)

Note that its appears decomposed in its partial traces

Λf

Ω,•
[(
u0, g

)]
:= Λ0

Ω,•[(u0, 0)] + Λ0
Ω,•

[(
0, g

)]
+ Λf

Ω,•[(0, 0)], (3.12)

where

Λ0
Ω,•[(·, 0)] : H1(Ω0) −→ H1(ΩT ) (3.13)

is the zero source auxiliary initial value zero Dirichlet problem solution final trace,

Λ0
•,Σ[(0, ·)] : H3/2,3/4(Σ) −→ H1(ΩT ) (3.14)

is the zero source nonhomogeneous Dirichlet zero initial auxiliary problem solution final
trace and

Λf

Ω,•[(0, 0)] ∈ H1(ΩT ) (3.15)

is the homogeneous Dirichlet zero initial source auxiliary problem solution final trace.

Definition 3.1 (relative extended dirichlet-to-neumann map). Consider two problems Pu0,g,f

and Pu0,g,0, one with source f and two other with zero source, but both with the same
consistent initial time and Dirichlet data. By the Relative extended Dirichlet-to-Neumann
map for f ∈ L2(Q) we mean the application:

Λf

Ω,Σ −Λ0
Ω,Σ : H1(Ω0) ×H3/2,3/4(Σ) −→ H1(ΩT ) ×H1/2,1/4(Σ). (3.16)
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Note that the consistence of data (u0, g) is necessary to existence of solution to the
problems Pu0,g,f and Pu0,g,0.

Lemma 3.2. Let uj , j = 1, 2, 3, . . . be different solutions of Problem (2.2) with the same source f ∈
L2(Q) and different initial time and Dirichlet data (u0j , gj), j = 1, 2, 3, . . ., respectively. Then

(i) the relative extended Dirichlet-to-Newman operator Λf

Ω,Σ − Λ0
Ω,Σ is an operator whose

functional value depends only on the source function f ∈ L2(Q), but is independent of
the initial time and Dirichlet data (u0, g),

(ii) tor all solution of consistent data problems Pf,u0j ,gj
, j = 1, 2, 3, . . ., with the same source, the

source satisfies the systems of integral equations

∫

Q

f(τ, ζ)
(
G(T, x, τ, ζ),

∂G(t, x, τ, ζ)
∂ν(t,x)

)
dζdτ =

(
Λf

Ω,Σ −Λ0
Ω,Σ

)[
u0j , gj

]
= Λf

Ω,Σ[0, 0] (3.17)

which depend only on the Relative extended Dirichlet-to-Neumann map.

Proof. Both results (i) and (ii) are trivial consequences of (3.3) and (3.10).

Remark 3.3. Note that in this case the unique information available for source reconstruction
is given by only one measurement, that is, that final-Neumann boundary measurement

(
uT , ∂ν(t,x)u

)
= Λf

Ω,Σ

[
u0, g

]
= Λf

Ω,Σ[0, 0] ∈ H1(ΩT ) ×H1/2,1/4(Σ) (3.18)

corresponding to some specific initial-Dirichlet data (u0, g), which may be assumed as zero
without loss of generality.

3.1. Existence of Regular Solution

The fact that only one Cauchy data can be used in a nonredundant source reconstruction
suggests a method for solved inverse source problem that is based on the formulation of
a high-order well posed Dirichlet equation problem. As observed by Friedman [18] and
explored in this work, the parabolic transient heat equation behavior is similar to that of
elliptic stationary equation. They coexist in a larger class of partial differential equations. In
that class we found also the fourth-order in space and second order in time equation that
is obtained if we apply simultaneously the transient heat operator (2.2) and its adjoint (2.7)
to an auxiliary field related with the fields u as in problem (3.20). We have thus existence
of solution in an especial class analogous to the class introduced in Alves et al. [10] for the
Helmholtz operator problem,

Hr,s
∂t−Δ =

{
f ∈ Hr,s(Q) | (−∂t −Δ)f = 0

}
. (3.19)

Proposition 3.4. Suppose that the available consistent Cauchy data to be used in the reconstruction
is (u0, g) × (uT , gν) ∈ (H1(Ω0),H3/2,3/4(Σ)) × (H1(ΩT ),H1/2,1/4(Σ)), then there exist a solution
to inverse source problem, problem (3.1).



14 Mathematical Problems in Engineering

Proof. In order to determine the Relative extended Dirichlet-to-Neumann Map, we first use
the data to solve the zero source auxiliary problem Pu0,g,0, obtaining Λ0

Ω,Σ(u0, g) = (u0
T , g

0
ν).

Since this datum is consistent, this solution exists. Then Λ0
Ω,Σ(0, 0) = Λf

Ω,Σ(u0, g)−Λ0
Ω,Σ(u0, g).

We can now consider the following fourth-order problem formulated, as it has been
suggested in the introduction of this subsection:

(
P 4
0,u0,uT ,g,gν

)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−∂t −Δ)(∂t −Δ)v =
(−∂2t + Δ2)v = 0 in Q,

v = 0 in Ω0,

v = Λ0
Ω,•(0, 0) in ΩT ,

v = 0 on Σ,

∂νv = Λ0
•,Σ(0, 0) on Σ.

(3.20)

The fourth-order operator (−∂2t + Δ2) can be separated with an unbounded sequence of
parameters λ into two elliptic operators, one being biharmonic type in space (−λ + Δ2), and
the other second order in time (−∂2t + λ). Since the initial condition is zero, by finite energy
method, the regularity of these operators is H1(I, L2(Ω)) and L2(I;H2(Ω)), respectively, and
it is well posed and has a unique solution v = S(u0, g, uT , gν) ∈ H2,1(Q). The inverse source
solution will be f = (−∂t −Δ)v.

Remark 3.5. The fourth-order problem used to show existence has the same equation used for
modeling the direct problem involving elastic vibration of beams or plates, −∂2u− c2Δ2u = F,
but with an unphysical imaginary parameter c = 1i. Obviously, as a direct problem equation
(3.20) is unphysical, but as a fourth-order model for the inverse source reconstruction with
source in the class (3.19), it is just a method for source reconstruction based on higher order
equation. Analytical solutions for this equation in one-dimension and two-dimensions polar
geometry can be determined by noting the following complete and dense sets, respectively:

(1) {Xn(x) = cosh(κnx) − cos(κnx) − ((cosh(κn) − cos(κn))/(sinh(κn) − sin(κn)))
(sinh(κnx)− sin(κnx)}) ⊂ L2(0, 1) where κn, n = 1, 2, . . . are positive roots of the
equation cosh(κ) cos(κ) = 1;

(2) {φmn(r, θ) = [Im(κmnJm(κmnr) − Jm(κmnIm(κmnr)] exp(1 im θ)} ⊂ L2(B(0, 1)) where
κmn, m,n = 1, 2, . . . are the positive roots of the systems of equations

Jm(κ)I ′(κ) − Im(κ)J ′(κ) = 0, m = 1, 2, . . . . (3.21)

Note that m,n → ∞, κn → ∞ and κm,n → ∞. In the case of the hyperbolic behavior
of the wave-type equation that appears in beams and plates, the data in time are initial
and the initial derivative traces and can be adjusted in the non-homogeneous case (this is
expected since the boundary control is exact, Alves et al. [19]). In our fourth-order problem
that combines the heat equation and its adjoint, we have a two-point boundary at times t = 0
and t = T that cannot be simultaneously controlled (this parabolic type problem is only null
controllable, Tucsnak and George Weiss [20]) and it is not possible to adjust at the same time
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the two time boundaries. Since by Lemma 3.2. we can always avoid nonhomogeneous initial
condition, the problem is well posed. So, we have here a heat equation control analogous to
the harmonic control in the LaplacianDirichlet operator source reconstruction from boundary
Neumann data problem.

3.2. The Regular Data Class

Definition 3.6 (regular class). We call a class of distributional consistent data R regular if its
relative extended Dirichlet-to-Neumann map is regular

R =
{(

u0, g
)
,
(
uT , gν

) ∈
(
H2r+1(Ω0) ×H2r+3/2,r+3/4(Σ)

)
×
(
H2r+1(ΩT ) ×H2r+1/2,r+1/4(Σ)

)
|

− 1 < r < 0;
(
Λf

Ω,Σ −Λ0
Ω,Σ

)[
u0, g

] ∈ (
γT , γ1

)[
H2,1(Q)

]
⊂ H1(ΩT ) ×H1/2,1/4(Σ)

}

(3.22)

or

R =
{(

u0, g
)
,
(
uT , gν

) ∈
(
Ξ2r+1(Ω0) ×H2r+3/2,r+3/4(Σ)

)
×
(
Ξ2r+1(ΩT ) ×H2r+1/2,r+1/4(Σ)

)
|

r < −1;
(
Λf

Ω,Σ −Λ0
Ω,Σ

)[
u0, g

] ∈ (
γT , γ1

)[
H2,1(Q)

]
⊂ H1(ΩT ) ×H1/2,1/4(Σ)

}
.

(3.23)

Theorem 3.7. An inverse problem IPf

(u0 ,g),(uT ,gν) admits a solution f ∈ L2(Q) only if
(u0, g), (uT , g

ν) ∈ R.

Proof. Necessity: Suppose the IPf

(u0,g),(uT ,gν) has a solution f ∈ L2(Q). Let us consider the
following auxiliary problems: P0,0,f with solution w0 = S[0, 0, f] and Pu0,g,0 with solution
w1 = S[u0, g, f]. Then, by the additivity principle for linear operators

Λf

Ω,Σ

[
u0, g

]
= Λf

Ω,Σ[0, 0] + Λ0
Ω,Σ

[
u0, g

]
=⇒

(
Λf

Ω,Σ −Λ0
Ω,Σ

)[
u0, g

]
= Λf

Ω,Σ[0, 0]. (3.24)

Since f ∈ L2(Q) implies by regularity that w0 ∈ H2,1(Q), by the first trace Theorem 2.1. the
data are in R.

Sufficiency: suppose the data are in the regular class. Consider the fourth-order problem
(3.20). As we have shown in Section 3.4, it is well posed with a solution v ∈ H2,1(Q) and the
source f = (−∂ −Δ)v ∈ L2(Q) is solution to the inverse problem with data in the class R.
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3.3. The Reciprocity Gap Functional

The second Green formula

∫

Q

((∂tu −Δu)v − u(−∂tv −Δv))dx dt

=
∫

Σ

(
γ[u]γ1[v] − γ1[u]γ[v]

)
dσ(t,x) −

∫

ΩT

γT[u]γT [v]dx +
∫

Ω0

γ0[u]γ0[v]dx

(3.25)

applied to problems Pu0,g,f with normal trace at the cylinder lateral boundary Σ, γ1[u] = gν,
initial value at Ω0, γ0[u] = u0 and the adjoint problem P ∗

uT ,γ[v],0
with uT time T value and

zero source yield the following expression for reciprocity gap functional in the transient heat
equation context:

∫

Q

fv dx dt =
∫

Σ

(
gγ1[v] − gνγ[v]

)
dσ(t,x) −

∫

ΩT

uTγT[v]dx +
∫

Ω0

u0γ0[v]dx (3.26)

or, by using the extended Dirichlet-to-Neumann notation,

∫

Q

fv dx dt =
∫

Σ

(
gγ1[v] −Λf

•,Σ
[
u0, g

]
γ[v]

)
dσ(t,x) −

∫

ΩT

Λf

Ω,•
[
u0, g

]
γT[v]dx +

∫

Ω0

u0γ0[v]dx

(3.27)

By subtracting the extended Dirichlet-to-Neumann map for the zero source problem Pu0,g,0

with the same data, we obtain the following weak form for the systems (3.17):

∫

Q

fv dx dt = −
∫

ΩT

Λf

Ω,•[0, 0]γT[v]dx −
∫

Σ
Λf

•,Σ[0, 0]γ[v]dσ(t,x) (3.28)

We call (3.28) as the transient heat reciprocity gap equation. This is a weak variational
equation that must be tested for all functions in

H2,1
−∂t−Δ(Q) =

{
v ∈ H2,1(Q) | −∂tv −Δv = 0

}
. (3.29)

3.4. Nonobservability

Let

R0 :=
{(

u0, g
)
,
(
uT , g

ν) ∈ R such that Λf

Ω,Σ[0, 0] = 0
}
. (3.30)

Let us consider the following set of sources:

F0 :=
{
f ∈ L2(Q); f is a solution of IPf

(u0,g),(uT ,gν);
(
u0, g

)
,
(
uT , g

ν) ∈ R0

}
. (3.31)
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Note that by the Transient Reciprocity Gap equation (3.28)

f ∈ F0 =⇒
∫

Q

fv dx dt = 0 ∀v ∈ H2,1
−∂t−Δ(Q) (3.32)

and F0 ⊂ (H2,1
−∂t−Δ(Q))⊥ is a set of non observable sources.

Remark 3.8 (ill-posed problem). Since the extended Dirichlet-to-Neumann map is a composi-
tion of the solution operator S and the trace operator, this non uniqueness result is expected.
Also, trace operator may not be onto, as we have pointed in Remark 2.2, and problems with
existence may occur if the data are not consistent. Finally, we note that the integral systems
(3.17) and the variational (3.28) are compact operators, so instability problems are expected
in numerical solutions. In that bad situation, a generalized concept of inverse need to be
adopted, Engl et al. [21].

3.5. Uniqueness of Solution in Classical Spaces

The source reconstruction of consistent boundary data is not possible, if we do not have
additional information about the source. As an example, we may reconstruct a time
independent source in the transient model or even a source in the source class (3.19). In this
work, we are interested in the reconstruction of a source which is given by a characteristic
function defined with a star-shaped support. This is a generalization of the classical results
for reconstruction of star-shape sources in the Laplace Poisson Dirichlet Problem, Roberty
and Alves [9], and in the Helmholtz Poisson Dirichlet Problem, Roberty and Rainha [15].
Isakov [2] treats a problem for reconstruction of an unknown domain moving in time with
the prescribed exterior thermal potential. He proves the following theorem.

Theorem 3.9. Consider ω with ω ⊂ Ω. Let Qj ⊂ Q, for j = 1, 2, with Qj ⊂ ω × [0, T], with spatial
boundaries Σj := ∂xQj of class C1+λ and satisfying:

the sets Qj ∩ {t = τ},
(
Q \

(
Q1 ∪Q2

))
∩ {t = τ},

(
Q \Qj ∩ {t = τ}

)
(3.33)

are connected for 0 < τ < T . Let ωj =
o

(Qj ∩ {t = 0}) and

f ∈ Cλ,λ/2
(
Q
)
, f > 0 on Q. (3.34)

If solutions uj to the problems:

∂tuj −Δuj = fχ
(
Qj

)
on Q,

uj = 0 in Ω0

(3.35)

coincides on Q \ω × (0, T), thenQ1 = Q2.
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In his proof, he first demonstrates in two auxiliary lemmas that:

(1) in the initial time the two source support, Q1 ∪ {t = 0} = Q2 ∪ {t = 0}, must coincide
and that

(2) there is a time t0 > 0 such that the relative potential associated with the sources

u = U
(·, fχ(Q2 ∩ω1 × (−T, 0])) −U

(·, fχ(Q1 ∩ω1 × (−T, 0])) (3.36)

satisfies uf(χ(q2) − χ(Q1)) ≤ 0 on�n × (0, t0)

and he uses these results to prove that the hypotheses that the source may be unequal are
contradictory.

In this way, we expect that when the data are sufficiently regular, the moving
characteristic source can be reconstructed. A common method for numerical solution of the
transient heat equation is based on the construction of time marching schemes by the solution
of a sequence of modified Helmholtz equations. In these schemes, at each time increment
the source must be reconstructed. For the class of problems we also have demonstrated a
uniqueness theorem in Roberty and Rainha [15]. We will return to this theorem after the
presentation of this scheme.

4. The θ-Scheme and the Modified Helmholtz Model for
the Transient Heat Problem

One type of source that can be uniquely reconstructed from Neumann boundary mea-
surements in a model based on Poisson equation with the Laplace operator Δ is star-
shaped characteristic sources. This uniqueness resulted may be easily extended to a modified
Helmholtz equation based model, Roberty and Rainha [15], and thus we present now an
algorithm formoving transient source reconstruction in the heat equation based on this result.
Let the source be given by

f(t, x) = χω(t)(x) in Q, (4.1)

where ω(t), t ∈ [0, T] is a representation of the star-shape source boundary. For one-
dimensional problems it is a set with two points. For two or three-dimensional problems it
is a moving Lipschitz parametric curve or surface in which the parameter has been omitted.
With this in mind, we may rewrite the transient problem as

(
Pχω

)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂tu −Δu = χω(t)(x) in Q,

−Δu0 = χω(0)(x) in Ω0,

u = 0 on Σ;

(4.2)

with transient Neumann history γ1[u] = ∂νu = gν in the lateral cylinder boundary.
The initial u0 can be determined as solution of the Poisson problem −Δu0 = χω(0),

if the initial shape ω(0) is known. If it is not known, then we can use the Cauchy data,
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g(0) and gν(0), to solve the static inverse problem, by using the methodology in Roberty
and Alves [9]. Consider a partition of the time interval [0, T] into N subintervals of length
τ > 0. Let {t0, t1, t2, . . . , tn, tn+1, . . . , tN} be the knots of this partition, with t0 = 0 and tN = T .
For tn < t < tn+1, n = 0, 1,N − 1 we use the θ-scheme approach for the discretization of (4.2).
Define, for a function h(t, x), a linear θ weighted approximation δθ(h)(x) by

δθ(h)(x) = θh(tn+1, x) + (1 − θ)h(tn, x) (4.3)

We start by approximating the time derivative ∂tu in (4.2), by a first order forward difference

∂u

∂t
(t, x) ∼= u(tn+1, x) − u(tn, x)

τ
, x ∈ Ω. (4.4)

The diffusion and the characteristic source respectively by

Δu(t, x) ∼= δθ(Δu)(x), x ∈ Ω,

χω(t)(x) ∼= δθ
(
χω

)
(x), x ∈ Ω.

(4.5)

By denoting un+1(x) with x ∈ Ω, the approximate solution at the time step tn+1, the
transient system (4.2) is approximated by the following sequence of stationary problems:

(
Hn+1

χω

)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−Δun+1 + λun+1 = fn + χω(tn+1) in Ω,

un+1 = 0 on Γ,

with gν(tn+1) := ∂νu
n+1 on Γ;

(4.6)

for n = 0, 1, 2, . . . ,N. Here λ = 1/τθ and

fn =
un + τ(1 − θ)Δun + τθχω(tn)(x)

τθ
. (4.7)

Note that Δun + χω(tn) = ∂un/∂t and that the initial Poisson problem determining the u0 and
χω(0) is

(
H0

g,χω

)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−Δu0 = χω(0)(x) in Ω,

u0 = 0 on Γ,

with gν(0) := ∂νu0 on Γ.

(4.8)

The sequence of modified Helmholtz source inverse problem (4.6) starting with
stationary problem (4.8) may be used to model a scheme for the reconstruction of star-
shaped sources χω(tn)(x), for a time knot sequence, showing its movement and deformation
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in the external domain Ω. For this, we only need to know the transient Neumann data with
zero Dirichlet datum on the external boundary Γ = ∂Ω. Since we do not have experimental
data, we will solve the direct problem with a different method, adding noise, and do an
experimental data synthesis.

4.1. Iterative Source Reconstruction Scheme

The source at time tn may be further calculated as

fn =
λ

θ
un − 1 − θ

θ
fn−1, for n = 1, 2, . . . (4.9)

with f−1 = 0 and f0 = λu0. Since the discretized direct problem (4.6) and (4.8) are linear, it
may be decomposed into two subproblems separating the known part of the source from the
part to be reconstructed, that is, fn and χω(tn+1). Let y

n+1, n = −1, 0, 1, . . . be a solution of

(
Hn+1

fn

)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−Δyn+1 + λyn+1 = fn in Ω,

yn+1 = 0 on Γ,

with gν
y(tn+1) := ∂νyn+1 on Γ;

(4.10)

and let wn+1, n = −1, 0, 1, . . . be solution of

(
Hn+1

χω

)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−Δwn+1 + λwn+1 = χω(tn+1)(x) in Ω,

wn+1 = 0 on Γ,

with gν
w(tn+1) := ∂νwn+1 on Γ.

(4.11)

Then, by the superposition principle, the solution of (4.6) is un+1 = wn+1 +yn+1 and the
Neumann data will be the sum of the decomposed parts gν(tn+1) = gν

w(tn+1) + gν
y(tn+1). The

Y -problems (4.10) form a discrete sequence of problems with continuous source fn that may
be solved before the time increment at tn begins. Its normal derivatives may be calculated
and

gν
y(tn+1) := ∂νy

n+1 on Γ, (4.12)

subtracted from the synthetic transient Neumann data at knot tn+1

gν
w(tn+1) = gν(tn+1) − gν

y(tn+1), (4.13)

to produce the data for the modified Helmholtz (4.11) that will be used in the reconstruction
of the source χω(tn+1) at time tn+1. Note that by using the Reciprocity gap functional
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the characteristic star-shaped sourcemay be reconstructedwithout solving the direct problem
(4.11). By using the second Green’s formula, this inverse problem is modeledwith a nonlinear
Fredholm integral equation of first kind.

In this modified Helmholtz equation formulation to the transient problem the
uniqueness can be proved for each time interval.

Theorem 4.1. Consider the direct problem (4.11) and its associated inverse problem with two sources
χω1(tn+1) and χω2(tn+1). Letω1(tn+1),ω2(tn+1) ⊂ Ω domains withC2 boundary andω1(tn+1)\ω2(tn+1),
ω2(tn+1) \ω1(tn+1), ω1(tn+1)∩ω2(tn+1) be connected. If the Cauchy data for the two problems are the
same, then ω1(tn+1) = ω2(tn+1).

Proof. The proof can be found in Roberty and Rainha [15]. It is based on contradictory
consequences of the maximum principle and the initial hypotheses that the sources are
unequal.

5. Conclusions

We have presented a methodology for star-shape source reconstruction in the transient heat
problem by using one set of Cauchy data history. With the adoption of an anisotropic Sobolev
Hilbert mathematical framework, we can treat the problemwith a methodology analogous to
that used to study stationary elliptic problems. Therefore, by introducing a finite differences
time θ-scheme, we developed an algorithm based on amodifiedHelmholtz system, for which
we have already studied the mathematically inverse source reconstruction problem.
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