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This paper deals with the Multiobjective Linear Transportation Problem that has fuzzy cost
coefficients. In the solution procedure, many objectives may conflict with each other; therefore
decision-making process becomes complicated. And also due to the fuzziness in the costs, this
problem has a nonlinear structure. In this paper, fuzziness in the objective functions is handled
with a fuzzy programming technique in the sense of multiobjective approach. And thenwe present
a compensatory approach to solve Multiobjective Linear Transportation Problem with fuzzy cost
coefficients by usingWerner’s μand operator. Our approach generates compromise solutions which
are both compensatory and Pareto optimal. A numerical example has been provided to illustrate
the problem.

1. Introduction

The classical transportation problem (TP) is a special type of linear programming problem,
and it has wide practical applications in manpower planning, personnel allocation, inventory
control, production planning, and so forth. TP aims to find the best way to fulfill the demand
of n demand points using the capacities of m supply points. In a single objective TP, the
cost coefficients of the objective express commonly the transportation costs. But in real-life
situations, it is required to take into account more than one objective to reflect the problem
more realistically, and thus multiobjective transportation problem (MOTP) becomes more
useful. These objectives can be quantity of goods delivered, unfulfilled demand, average
delivery time of the commodities, reliability of transportation, accessibility to the users,
and product deterioration. Also in practice, the parameters of MOTP (supply&demand
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quantities and cost coefficients) are not always exactly known and stable. This imprecision
may follow from the lack of exact information, changeable economic conditions, and so forth.
A frequently usedway of expressing the imprecision is to use the fuzzy numbers. It enables us
to consider tolerances for the model parameters in a more natural and direct way. Therefore,
MOTP with fuzzy parameters seems to be more realistic and reliable.

A lot of researches have been conducted on MOTP with fuzzy parameters. Hussein
[1] dealt with the complete solutions of MOTP with possibilistic coefficients. Das et al.
[2] focused on the solution procedure of the MOTP where all the parameters have been
expressed as interval values by the decision maker. Ahlatcioglu et al. [3] proposed a model
for solving the transportation problem whose supply and demand quantities are given as
triangular fuzzy numbers bounded from below and above, respectively. Basing on extension
principle, Liu and Kao [4] developed a procedure to derive the fuzzy objective value of the
fuzzy transportation problem where the cost coefficients, supply and demand quantities are
fuzzy numbers. Using signed distance ranking, defuzzification by signed distance, interval-
valued fuzzy sets, and statistical data, Chiang [5] gets the transportation problem in the
fuzzy sense. Ammar and Youness [6] examined the solution of MOTP which has fuzzy
cost, source and destination parameters. They introduced the concepts of fuzzy efficient
and α-parametric efficient solutions. Islam and Roy [7] dealt with a multiobjective entropy
transportation problem with an additional delivery time constraint, and its transportation
costs are generalized trapezoidal fuzzy numbers. Chanas and Kuchta [8] proposed a concept
of the optimal solution of the transportation problem with fuzzy cost coefficients and an
algorithm determining this solution. Pramanik and Roy [9] showed how the concept of
Euclidean distance can be used for modeling MOTPwith fuzzy parameters and solving them
efficiently using priority-based fuzzy goal programming under a priority structure to arrive
at the most satisfactory decision in the decision making environment, on the basis of the
needs and desires of the decision making unit.

In this paper, we focus on the solution procedure of the multiobjective linear
Transportation Problem (MOLTP) with fuzzy cost coefficients. We assume that the supply
and demand quantities are precisely known. And the coefficients of the objectives are
considered as trapezoidal fuzzy numbers. The fuzziness in the objectives is handled with
a fuzzy programming technique in the sense of multiobjective approach [10]. And a
compensatory approach is given by using Werner’s μand operator.

This paper is organized as follows. Section 2 presents brief information about fuzzy
numbers. Section 3 contains the MOLTP formulation with fuzzy cost coefficients and some
basic definitions about multiobjective optimization. Section 4 introduces the compensatory
fuzzy aggregation operators briefly. Section 5 explains our methodology using Werners’
compensatory “fuzzy and” operator. Section 6 gives two illustrative numerical examples.
Finally, Section 7 includes some results.

2. Fuzzy Preliminaries

In this paper, we assumed that the fuzzy cost coefficients are trapezoidal fuzzy numbers. In
this section, brief information about the fuzzy numbers especially trapezoidal fuzzy numbers
is presented. For more detailed information, the reader should check [11, 12].

Definition 2.1. A fuzzy number ˜M is an upper semicontinuous normal and convex fuzzy
subset of the real line R.
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Definition 2.2. A fuzzy number ˜M = (m1, m2, m3, m4) is said to be a trapezoidal fuzzy number
(TFN) if its membership function is given by

μ
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x −m1

m2 −m1
, m1 ≤ x < m2,

1, m2 ≤ x ≤ m3,

m4 − x

m4 −m3
, m3 < x ≤ m4,

0, x > m4,

(2.1)

where m1, m2, m3, m4 ∈ R and m1 ≤ m2 ≤ m3 ≤ m4. The figure of the fuzzy number ˜M is
given in Figure 1. It should be noted that a triangular fuzzy number is a special case of a TFN
with m2 = m3. In the literature, a TFN can also be represented with the ordered quadruplets
(m2, m3, m2 −m1, m4 −m3). Herem2 −m1 is called as left spread of ˜M, wherem4 −m3 is right
spread. In this paper, we use ˜M = (m1, m2, m3, m4) fuzzy number notation and called these
ordered elements as characteristic points of ˜M.

Some algebraic operations on TFNs that will be used in this paper are defined as
follows.

Let ã = (a1, a2, a3, a4) and ˜b = (b1, b2, b3, b4) be TFNs.

(i) Addition:

ã + ˜b = (a1 + b1, a2 + b2, a3 + b3, a4 + b4). (2.2)

(ii) Multiplication with a Positive Crisp Number (k > 0):

k · ã = (ka1, ka2, ka3, ka4). (2.3)

One convenient approach for solving the fuzzy linear programming problems is based on the
concept of comparison of fuzzy numbers by use of ranking functions.

Definition 2.3. The set of elements that belong to the fuzzy number ã at least to the degree α
is called the α-level set: ãα = {x ∈ X | μã(x) ≥ α}.
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Figure 1: The membership function of ˜M.

Definition 2.4. Let R : F(R) → R be a ranking function which maps each fuzzy number into
the real line, where a natural order exists. We denote the set of all trapezoidal fuzzy numbers
by F(R). The orders could be defined on F(R) by

ã ≥R
˜b iff R(ã) ≥ R

(

˜b
)

,

ã ≤R
˜b iff R(ã) ≤ R

(

˜b
)

,

ã = ˜b iff R(ã) = R
(

˜b
)

,

(2.4)

where ã and ˜b are in F(R). Also we write ã ≤R
˜b if and only if ˜b ≥R ã. We restrict our attention

to linear ranking functions, that is, a ranking function R such that

R
(

kã + ˜b
)

= kR(ã) + R
(

˜b
)

. (2.5)

In this paper, we used the linear ranking function which was first proposed by Yager [13]

R(ã) =
1
2

∫1

0

(

inf ãλ + sup ãλ

)

dλ , (2.6)

which reduces to

R(ã) =
a1 + a2 + a3 + a4

4
. (2.7)

Then, for TFNs ã and ˜b, we have

ã ≤R
˜b iff a1 + a2 + a3 + a4 ≤ b1 + b2 + b3 + b4. (2.8)
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3. The MOLTP with Fuzzy Cost Coefficients

The MOLTP with fuzzy cost coefficients is formulated as follows:

min ˜fk(x) =
m
∑

i=1

n
∑

j=1

c̃kijxij , k = 1, 2, . . . , K,

s.t. :
n
∑

j=1

xij = ai, i = 1, 2, . . . , m,

m
∑

i=1

xij = bj , j = 1, 2, . . . , n,

xij ≥ 0, i = 1, 2, . . . , m; j = 1, 2, . . . , n.

(3.1)

xij is decision variable which refers to product quantity that is transported from supply point
i to demand point j. a1, a2, . . . , am and b1, b2, . . . , bn are m supply and n demand quantities,
respectively. We note that ai (i = 1, 2, . . . , m) and bj (j = 1, 2, . . . , n) are crisp numbers.K is the
number of the objective functions of MOLTP. c̃kij is fuzzy unit transportation cost from supply
point i to demand point j for the objective k, (k = 1, 2, . . . , K). For our fuzzy transportation
problem, the coefficients of the objectives c̃kij are considered as trapezoidal fuzzy numbers:

c̃kij =
(

ck1ij , c
k2
ij , c

k3
ij , c

k4
ij

)

. (3.2)

The membership function of the fuzzy number c̃kij and its figure are given in (3.3) and
Figure 2, respectively,
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0, x < ck1ij ,

x − ck1ij1

ck2ij − ck1ij
, ck1ij ≤ x < ck2ij ,

1, ck2ij ≤ x ≤ ck3ij ,

ck4ij − x

ck4ij − ck3ij
, ck3ij < x ≤ ck4ij ,

0, x > ck4ij .

(3.3)

Now, in the context of multiobjective, let us give the definitions of efficient or nondominated
or Pareto optimal solutions forMOLTP. These are used instead of the optimal solution concept
in a single objective TP.

Definition 3.1 (Pareto optimal solution forMOLTP). Let S be the feasible region of (3.1). x∗ ∈ S

is said to be a Pareto optimal solution (strongly efficient or nondominated) if and only if
there does not exist another x ∈ S such that R( ˜fk(x)) ≤ R( ˜fk(x∗)) for all k = 1, 2, . . . , K and
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Figure 2: The membership function of the fuzzy cost coefficient c̃kij .

R( ˜fk(x))/=R( ˜fk(x∗)) for at least one k = 1, 2, . . . , K where R is the ranking function defined
in (2.7).

Definition 3.2 (Compromise solution for MOLTP). A feasible solution x∗ ∈ S is called a
compromise solution of (3.1) if and only if x∗ ∈ E and R( ˜fk(x∗)) ≤ ∧x∈SR( ˜f(x)) where
R( ˜f(x)) = (R( ˜f1(x)), R( ˜f2(x)), . . . , R( ˜fk(x))), ∧ stands for “min” operator and E is the set
of Pareto optimal solutions.

When the fuzzy cost coefficients are given as trapezoidal fuzzy number in the form
c̃kij = (ck1ij , c

k2
ij , c

k3
ij , c

k4
ij ) by means of (2.2) and (2.3), the objectives can be written as follows for

each k = 1, 2, . . . , K:

˜fk(x) =
m
∑

i=1

n
∑

j=1

(

ck1ij , c
k2
ij , c

k3
ij , c

k4
ij

)

xij

=

⎛

⎝

m
∑

i=1

n
∑

j=1

ck1ij xij ,
m
∑

i=1

n
∑

j=1

ck2ij xij ,
m
∑

i=1

n
∑

j=1

ck3ij xij ,
m
∑

i=1

n
∑

j=1

ck4ij xij

⎞

⎠.

(3.4)

Since ˜fk(x) is a trapezoidal fuzzy number for a given x ∈ S, we need to define the minimum
of fuzzy valued objective function. In this paper, the fuzziness in the objectives is handled
with a fuzzy programming technique in the sense of multiobjective approach by means of
(2.7). The ranking value of ˜fk(x) can be written as follows:

R
(

˜fk(x)
)

=

∑m
i=1
∑n

j=1 c
k1
ij xij +

∑m
i=1
∑n

j=1 c
k2
ij xij +

∑m
i=1
∑n

j=1 c
k3
ij xij +

∑m
i=1
∑n

j=1 c
k4
ij xij

4
. (3.5)

For obtaining a better ranking value, we want to find a feasible solution x ∈ S that minimizes
all of the characteristic points of the fuzzy objective value ˜fk(x), simultaneously. It implies
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that the less the characteristic points of fuzzy objective value the better (preferable) the
solution. Thus, the minimum of objective function can be handled as

min ˜fk(x) =

⎛

⎝min
m
∑

i=1

n
∑

j=1

ck1ij xij ,min
m
∑

i=1

n
∑

j=1

ck2ij xij ,min
m
∑

i=1

n
∑

j=1

ck3ij xij ,min
m
∑

i=1

n
∑

j=1

ck4ij xij

⎞

⎠. (3.6)

And with (3.6), (3.1) can be reformulated to the following problem in the sense of
multiobjective approach [10]:

min fk1(x) =
m
∑

i=1

n
∑

j=1

ck1ij xij , (3.7a)

min fk2(x) =
m
∑

i=1

n
∑

j=1

ck2ij xij , (3.7b)

min fk3(x) =
m
∑

i=1

n
∑

j=1

ck3ij xij , (3.7c)

min fk4(x) =
m
∑

i=1

n
∑

j=1

ck4ij xij , (3.7d)

s.t. x ∈ S. (3.7e)

Thus, by constructing four objectives for each k ∈ K, fuzziness in (3.1) is eliminated. In other
words, our aim is to find the Pareto optimal solutions of (3.1) in the manner of multiobjective
linear programming problems. We note that since ck1ij ≤ ck2ij ≤ ck3ij ≤ ck4ij , the same order
is valid between fk1, fk2, fk3, fk4 for each k ∈ K. So, we want to find a Pareto optimal
solution that minimizes all of the objectives of (3.7a)–(3.7e) (all the characteristic points of
all objectives). Certainly, the solution of (3.7a)–(3.7e) is not the same with the individual
minima of objectives (3.7a)–(3.7d). In general, an optimal solution which simultaneously
minimizes all objective functions in (3.7a)–(3.7e) does not always exist when the objective
functions conflict with one another. When a certain Pareto optimal solution is selected, any
improvement of one objective function can be achieved only at the expense of at least one of
the other objective functions. A preferred compensatory compromise Pareto optimal solution
is a solution which satisfies the decision maker’s preferences and is preferred to all other
solutions, taking into consideration all objectives contained in (3.7a)–(3.7e).

4. Compensatory Operators
There are several fuzzy aggregation operators. The detailed information about them exists in
Zimmermann [11] and Tiryaki [14]. The most important aspect in the fuzzy approach is the
compensatory or noncompensatory nature of the aggregation operator. Several investigators
[11, 15–17] have discussed this aspect.

Using the linear membership function, Zimmermann [18] proposed the “min”
operator model to the multiobjective linear problem (MOLP). It is usually used due to its
easy computation. Although the “min” operator method has been proven to have several nice
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properties [16], the solution generated by min operator does not guarantee compensatory
and Pareto optimality [19–21]. The biggest disadvantage of the aggregation operator “min”
is that it is noncompensatory. In other words, the results obtained by the “min” operator rep-
resent the worst situation and cannot be compensated by other members which may be very
good. On the other hand, the decision modeled with average operator is called fully compen-
satory in the sense that it maximizes the arithmetic mean value of all membership functions.

Zimmermann and Zysno [22] show that most of the decisions taken in the real world
are neither noncompensatory (min operator) nor fully compensatory and suggested a class
of hybrid compensatory operators with γ compensation parameter.

Basing on the γ-operator, Werners [23] introduced the compensatory “fuzzy and”
operator which is the convex combinations of min and arithmetical mean

μand = γ min
i

(

μi

)

+

(

1 − γ
)

m

(

∑

i

μi

)

, (4.1)

where 0 ≤ μi ≤ 1, i = 1, . . . , m, and the magnitude of γ ∈ [0, 1] represent the grade of
compensation.

Although this operator is not inductive and associative, this is commutative, idem-
potent, strictly monotonic increasing in each component, continuous, and compensatory.
Obviously, when γ = 1, this equation reduces to μand = min (noncompensatory) operator.
In literature, it is showed that the solution generated by Werners’ compensatory “fuzzy
and” operator does guarantee compensatory and Pareto optimality for MOLP [14, 16, 17, 21–
23]. Thus this operator is also suitable for our MOLTP. Therefore, due to its advantages, in
this paper, we used Werners’ compensatory “fuzzy and” operator to aggregate the multiple
objectives.

5. A Compensatory Approach to MOLTP with Fuzzy Cost Coefficients
Now, we have a multi objective programming problem ((3.7a)–(3.7e)). In this paper, we used
a fuzzy programming technique to solve this problem. So, we need to define the membership
functions of objectives firstly.

5.1. Constructing the Membership Functions of Objectives

Now, the membership functions of 4K objectives will be defined to apply our compensatory
approach. Let Lkp and Ukp be the lower and upper bounds of the objective function fkp (k =
1, 2, . . . , K; p = 1, 2, 3, 4), respectively. In the literature, there are two common ways of
determining these bounds. The first way: solve the MOLTP as a single objective TP using
each time only one objective and ignoring all others. Determine the corresponding values for
every objective at each solution derived. And find the best (Lkp) and the worst (Ukp) values
corresponding to the set of solutions. And the second way: by solving 8K single-objective
TP, the lower and upper bounds Lkp and Ukp can also be determined for each objective
fkp(x), k = 1, 2, . . . , K; p = 1, 2, 3, 4 as follows:

Lkp = min
x∈S

fkp(x), Ukp = max
x∈S

fkp(x), (5.1)
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where S is the feasible solution space, that is, satisfied supplydemand and non-negativity
constraints. Here, we note that (5.1)will be used for determining the lower and upper bounds
of objectives. There are several membership functions in the literature, for example, linear,
hyperbolic and piecewise linear, and so forth. For simplicity, in this paper, we used a linear
membership function

μkp

(

fkp
)

=

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

1, fkp < Lkp,

Ukp − fkp

Ukp − Lkp
, Lkp ≤ fkp ≤ Ukp,

0, fkp > Ukp.

(5.2)

Here, Lk /=Uk, k = 1, 2, . . . , K and in the case of Lk = Uk, μkp(fkp(x)) = 1. The membership
function μkp(fkp) is linear and strictly monotone decreasing for fkp in the interval [Lkp,Ukp].

Using Zimmermann’s minimum operator [18], MOLTP can be written as

max
x

min
kp

μkp

(

fkp(x)
)

,

s.t. x ∈ S.

(5.3)

By introducing an auxiliary variable λ,

min
kp

μkp

(

fkp(x)
)

= λ =⇒ μkp

(

fkp(x)
)

≥ λ. (5.4)

(5.3) can be transformed into the following equivalent conventional LP problem:

max λ,

s.t. μkp

(

fkp(x)
)

≥ λ, k = 1, . . . , K; p = 1, 2, 3, 4,

x ∈ S,

λ ∈ [0, 1].

(5.5)

Here, we note that (5.5) is the “min” operator model for MOLTP. Its optimal objective value
denotes the maximizing value of the least satisfaction level among all objectives. And it can
also be interpreted as the “most basic satisfaction” that each objective in the transportation
system can attain.

5.2. Werners’ Compensatory μand Operator for MOLTP with
Fuzzy Cost Coefficients

It is pointed out that Zimmermann’s min operator model is a noncompensatory model and
does not always yield a Pareto optimal solution [19–21]. So we used Werners’ μand operator
to aggregate our objectives’ membership functions.
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For every objective, after satisfying its most basic satisfaction level in the transporta-
tion system, to promote its satisfaction degree as high as possible, we can make the following
arrangement:

μkp

(

fkp(x)
)

= λ + λkp, (5.6)

where λ = minμkp( ˜fkp).
This arrangement is introduced to the constraints with the following expressions:

(i) μkp(fkp(x)) = λ + λkp,

(ii) λ + λkp ≤ 1.

So, μand used in this paper (4.1) can be formed as

μand = γ min
kp

(

μkp

)

+

(

1 − γ
)

4K
(

μ11 + μ12 + μ13 + μ14 + μ21 + · · · + μK4
)

,

μand = γλ +

(

1 − γ
)

4K
((λ + λ11) + (λ + λ12) + (λ + λ13) + (λ + λ14) + (λ + λ21) · · · + (λ + λK4)),

μand = λ +

(

1 − γ
)

4K
(λ11 + λ12 + λ13 + λ14 + λ21 + · · · + λK4),

(5.7)

where the magnitude of γ ∈ [0, 1] represents the grade of compensation. Obviously, when
γ = 1 and 0, μand = “min” operator and μand = “average” operator, respectively.

Therefore, depending on the compensation parameter γ , (5.5) is converted to the
following compensatory model that is solved for obtaining compromise Pareto optimal
solutions for MOLTP:

max μand = λ +

(

1 − γ
)

4K

⎡

⎣

K
∑

k=1

4
∑

p=1

λkp

⎤

⎦,

s.t. : x ∈ S

μkp

(

fkp(x)
)

≥ λ + λkp, ∀k = 1, 2, . . . , K; ∀p = 1, 2, 3, 4,

λ + λkp ≤ 1, ∀k = 1, 2, . . . , K; ∀p = 1, 2, 3, 4,

γ, λ, λkp ∈ [0, 1],

xij ≥ 0, i = 1, 2, . . . , m; j = 1, 2, . . . , n.

(5.8)

It is noted that in order to avoid some possible computational errors in solution process, we
added the condition (i) as μkp ≥ λ+λkp to the formulated problem (5.8). So, our compensatory
model generates compensatory compromise Pareto optimal solutions for MOLTP.

We shall give this assertion in the following theorem.
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Table 1: The penalties of the single objective in Example 6.1.

1 2 3

1 (1, 2, 10, 100) (2, 4, 20, 80) (3, 6, 20, 60)
2 (4, 8, 10, 40) (5, 10, 20, 30) (6, 7, 7, 10)

Table 2: Bound values of objective.

f11 f12 f13 f14

Lkp 540 730 1590 6400
Ukp 540 1030 2370 6700

Theorem 5.1. If (x,λx) is an optimal solution of problem (5.8), then x is a Pareto optimal solution
for MOLTP, where λx = (λx, λx11, λ

x
12, λ

x
13, λ

x
14, . . . , λ

x
K1, λ

x
K2, λ

x
K3, λ

x
K4).

If required, the proof of the theorem can be found in [23]. Also, Pareto optimality test
[24] can be applied to the solutions of (5.8), and it could be seen that these solutions are
Pareto optimal for MOLTP.

We also note here that our approach is valid for single objective TPs with fuzzy cost
coefficients since our compensatory approach could be applied to four objectives which are
constructed from the original single objective function of TP.

6. Illustrative Examples
In this section, two numerical examples are given to explain our approach. The first example
contains only one objective. Second one dealt with the multiobjective version.

6.1. A Single Objective Transportation Problem with Fuzzy Cost Coefficients

In this paper, we studied MOLTP with crisp supply&demand parameters but fuzzy costs
which are given as trapezoidal fuzzy numbers. To our knowledge this combination is not
studied in the literature. But [8] dealt with the single objective version of TP which is studied
in our paper. In [8], single objective TP is converted to a bicriterial TP, and an algorithm is
given to solve this bicriterial problem by means of parametric programming. The numerical
example that is given in [8] is as follows:

Supplies: a1 = 70; a2 = 70;

Demands: b1 = 30; b2 = 30; b3 = 80;

Penalties of objective: c1ij see Table 1.

Using (5.1), the lower and upper bounds of objectives are determined to construct the
membership functions as mentioned in Table 2.



12 Mathematical Problems in Engineering

Using (5.8), the compensatory model is constructed as follows:

max μand = λ +

(

1 − γ
)

4

⎡

⎣

4
∑

p=1

λ1p

⎤

⎦,

s.t.
3
∑

j=1

x1j = 70,
3
∑

j=1

x2j = 70,

2
∑

i=1

xi1 = 30,
2
∑

i=1

xi2 = 30,
2
∑

i=1

xi3 = 80,

f11(x) + 0 · (λ + λ11) ≤ 540, f12(x) + 300(λ + λ12) ≤ 1030,

f13(x) + 780(λ + λ13) ≤ 2370, f14(x) + 300(λ + λ14) ≤ 6700,

λ + λ1p ≤ 1, p = 1, 2, 3, 4,

λ, λ1p, γ ∈ [0, 1], p = 1, 2, 3, 4,

xij ≥ 0
(

i = 1, 2; j = 1, 2, 3
)

.

(6.1)

This compensatory model generates the following compensatory compromise Pareto optimal
solutions for different 11 values of the compensation parameter γ with 0.1 increment.

For the value of γ = 0, we obtained three alternative solutions

X1∗ =

{

x11 = 30, x12 = 30, x13 = 10

x21 = 0, x22 = 0, x23 = 70

}

,

f11
(

X1∗
)

= 540, f12
(

X1∗
)

= 730, f13
(

X1∗
)

= 1590, f14
(

X1∗
)

= 6700;

X2∗ =

{

x11 = 0, x12 = 30, x13 = 40

x21 = 30, x22 = 0, x23 = 40

}

,

f11
(

X2∗
)

= 540, f12
(

X2∗
)

= 880, f13
(

X2∗
)

= 1980, f14
(

X2∗
)

= 6400;

X3∗ =

{

x11 = 10, x12 = 30, x13 = 30

x21 = 20, x22 = 0, x23 = 50

}

,

f11
(

X3∗
)

= 540, f12
(

X3∗
)

= 830, f13
(

X3∗
)

= 1850, f14
(

X3∗
)

= 6500.

(6.2)

The solution X3∗ is obtained for the value of γ = 0.1–γ = 1.0.
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Table 3: The penalties of the first objective in Example 6.2.

1 2 3 4

1 (6, 12, 15, 20) (7, 9, 12, 16) (6, 9, 10, 12) (3, 7, 8, 16)
2 (15, 16, 17, 20) (13, 16, 18, 19) (18, 20, 21, 25) (10, 12, 14, 16)
3 (6, 9, 14, 20) (10, 12, 15, 20) (6, 9, 10, 12) (15, 20, 21, 24)

These solutions imply following fuzzy objective values:

˜f1
(

X1∗
)

= (540, 730, 1590, 6700),

˜f1
(

X2∗
)

= (540, 880, 1980, 6400),

˜f1
(

X3∗
)

= (540, 830, 1850, 6500).

(6.3)

In [8], three alternative solution sets are obtained. Two of them are the same as our solution
sets X1∗, X2∗. And the other solution set is

X4∗ =

{

x11 = 0, x12 = 0, x13 = 70

x21 = 30, x22 = 30, x23 = 10

}

,

f11
(

X4∗
)

= 540, f12
(

X4∗
)

= 1030, f13
(

X3∗
)

= 2370, f14
(

X3∗
)

= 6400,

(6.4)

with the fuzzy objective value ˜f1(X4∗) = (540, 1030, 2370, 6400).
To compare our results, the ranking function which is defined in (2.7) can be used. The

ranking values of the solutions are as follows:

R
(

˜f1
(

X1∗
))

= 2390, R
(

˜f1
(

X2∗
))

= 2450,

R
(

˜f1
(

X3∗
))

= 2430, R
(

˜f1
(

X4∗
))

= 2585.
(6.5)

As it can be seen from the ranking values, our compensatory model generates better fuzzy
objective values according to the ranking function (2.7).

6.2. Multiobjective Transportation Problem with Fuzzy Cost Coefficients

Let us consider a MOLTP with the following characteristics:

supplies: a1 = 24; a2 = 8; a3 = 18;

demands: b1 = 11; b2 = 9; b3 = 21; b4 = 9;

penalties of the first objective: c1ij see Table 3;

penalties of the second objective: c2ij see Table 4.
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Table 4: The penalties of the second objective in Example 6.2.

1 2 3 4

1 (2, 3, 6, 10) (4, 8, 10, 14) (8, 10, 11, 12) (5, 8, 10, 12)
2 (6, 11, 13, 20) (10, 11, 12, 14) (16, 18, 20, 25) (14, 16, 17, 20)
3 (3, 4, 5, 8) (8, 10, 11, 14) (7, 10, 10, 12) (14, 15, 15, 18)

Table 5: Bound values of objectives.

f11 f12 f13 f14 f21 f22 f23 f24

Lkp 330 472 568 760 285 411 475 574
Ukp 513 697 787 972 452 532 603 754

Using (5.1), the lower and upper bounds of the objectives are determined to construct
the membership functions as mentioned in Table 5.

Using (5.8), the compensatory model is constructed as follows:

max μand = λ +

(

1 − γ
)

8

⎡

⎣

2
∑

k=1

4
∑

p=1

λkp

⎤

⎦,

s.t.
4
∑

j=1

x1j = 24,
4
∑

j=1

x2j = 8,
4
∑

j=1

x3j = 18,

3
∑

i=1

xi1 = 11,
3
∑

i=1

xi2 = 9,
3
∑

i=1

xi3 = 21,
3
∑

i=1

xi4 = 9,

f11(x) + 183(λ + λ11) ≤ 513, f12(x) + 225(λ + λ12) ≤ 697,

f13(x) + 219(λ + λ13) ≤ 787, f14(x) + 212(λ + λ14) ≤ 972,

f21(x) + 167(λ + λ21) ≤ 452, f22(x) + 121(λ + λ22) ≤ 532,

f23(x) + 128(λ + λ23) ≤ 603, f24(x) + 180(λ + λ24) ≤ 754,

λ + λkp ≤ 1, ∀k = 1, 2; p = 1, 2, 3, 4,

λ, λkp, γ ∈ [0, 1], ∀k = 1, 2; p = 1, 2, 3, 4,

xij ≥ 0
(

i = 1, 2, 3; j = 1, 2, 3, 4
)

.

(6.6)

By solving (6.6), the results for different 11 values of the compensation parameter γ with 0.1
increment are obtained and given in Table 6. The results are the values of objective functions
fkp (k = 1, 2; p = 1, 2, 3, 4); the satisfactory levels of the objectives corresponding to solution
x, (i.e. the values of membership functions) μkp (k = 1, 2; p = 1, 2, 3, 4); the most basic
satisfactory level λ; the compensation satisfactory level μand, respectively.

So, our compensatory model generates the following compensatory compromise
Pareto optimal solutions X1∗, X2∗, and X3∗ for our MOLTP.



Mathematical Problems in Engineering 15

Ta
b
le

6:
T
he

re
su

lt
s
of

ou
r
co
m
pe

ns
at
or
y
m
od

el
.

γ
=
0

γ
=
0.
1

γ
=
0.
2

γ
=
0.
3

γ
=
0.
4

γ
=
0.
5

γ
=
0.
6

γ
=
0.
7

γ
=
0.
8

γ
=
0.
9

γ
=
1.
0

f
11

33
0.
00
00

33
0.
00
00

33
0.
00
00

33
0.
00
00

33
0.
00
00

33
3.
70
13

33
3.
70
13

33
3.
70
13

33
3.
70
13

33
3.
70
13

33
3.
70
13

f
12

48
8.
00
00

50
6.
54
26

50
6.
54
26

50
6.
54
26

50
6.
54
26

50
3.
03
98

50
3.
03
98

50
3.
03
98

50
3.
03
98

50
3.
03
98

50
3.
03
98

f
13

59
2.
00
00

59
8.
18
09

59
8.
18
09

59
8.
18
09

59
8.
18
09

59
3.
31
19

59
3.
31
19

59
3.
31
19

59
3.
31
19

59
3.
31
19

59
3.
31
19

f
14

78
4.
00
00

78
4.
00
00

78
4.
00
00

78
4.
00
00

78
4.
00
00

78
0.
29
87

78
0.
29
87

78
0.
29
87

78
0.
29
87

78
0.
29
87

78
0.
29
87

f
21

32
3.
00
00

31
0.
63
83

31
0.
63
83

31
0.
63
83

31
0.
63
83

30
8.
03
84

30
8.
03
84

30
8.
03
84

30
8.
03
84

30
8.
03
84

30
8.
03
84

f
22

42
2.
00
00

41
5.
81
91

41
5.
81
91

41
5.
81
91

41
5.
81
91

42
1.
92
18

42
1.
92
18

42
1.
92
18

42
1.
92
18

42
1.
92
18

42
1.
92
18

f
23

47
5.
00
00

47
5.
00
00

47
5.
00
00

47
5.
00
00

47
5.
00
00

48
1.
16
89

48
1.
16
89

48
1.
16
89

48
1.
16
89

48
1.
16
89

48
1.
16
89

f
24

57
4.
00
00

58
6.
36
17

58
6.
36
17

58
6.
36
17

58
6.
36
17

59
8.
83
18

59
8.
83
18

59
8.
83
18

59
8.
83
18

59
8.
83
18

59
8.
83
18

μ
11

1.
00
00

1.
00
00

1.
00
00

1.
00
00

1.
00
00

0.
97
98

0.
97
98

0.
97
98

0.
97
98

0.
97
98

0.
97
98

μ
12

0.
92
89

0.
84
65

0.
84
65

0.
84
65

0.
84
65

0.
86
20

0.
86
20

0.
86
20

0.
86
20

0.
86
20

0.
86
20

μ
13

0.
89
04

0.
86
22

0.
86
22

0.
86
22

0.
86
22

0.
88
44

0.
88
44

0.
88
44

0.
88
44

0.
88
44

0.
88
44

μ
14

0.
88
68

0.
88
68

0.
88
68

0.
88
68

0.
88
68

0.
90
43

0.
90
43

0.
90
43

0.
90
43

0.
90
43

0.
90
43

μ
21

0.
77
25

0.
84
65

0.
84
65

0.
84
65

0.
84
65

0.
86
20

0.
86
20

0.
86
20

0.
86
20

0.
86
20

0.
86
20

μ
22

0.
90
91

0.
96
02

0.
96
02

0.
96
02

0.
96
02

0.
90
97

0.
90
97

0.
90
97

0.
90
97

0.
90
97

0.
90
97

μ
23

1.
00
00

1.
00
00

1.
00
00

1.
00
00

1.
00
00

0.
95
18

0.
95
18

0.
95
18

0.
95
18

0.
95
18

0.
95
18

μ
24

1.
00
00

0.
93
13

0.
93
13

0.
93
13

0.
93
13

0.
86
20

0.
86
20

0.
86
20

0.
86
20

0.
86
20

0.
86
20

λ
0.
77
25

0.
84
65

0.
84
65

0.
84
65

0.
84
65

0.
86
20

0.
86
20

0.
86
20

0.
86
20

0.
86
20

0.
86
20

μ
an

d
0.
92
35

0.
90
97

0.
90
26

0.
89
56

0.
88
86

0.
88
20

0.
87
80

0.
87
40

0.
87
00

0.
86
60

0.
86
20



16 Mathematical Problems in Engineering

For the value of γ = 0,

X1∗ =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

x11 = 0, x12 = 1, x13 = 14, x14 = 9

x21 = 0, x22 = 8, x23 = 0, x24 = 0

x31 = 11, x32 = 0, x33 = 7, x34 = 0

⎫

⎪

⎪

⎬

⎪

⎪

⎭

,

f11
(

X1∗
)

= 330, f12
(

X1∗
)

= 488, f13
(

X1∗
)

= 592, f14
(

X1∗
)

= 784,

f21
(

X1∗
)

= 323, f22
(

X1∗
)

= 422, f23
(

X1∗
)

= 475, f24
(

X1∗
)

= 574.

(6.7)

For the value of γ = 0.1–γ = 0.4,

X2∗ =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

x11 = 6.1809, x12 = 1, x13 = 7.8191, x14 = 9

x21 = 0, x22 = 8, x23 = 0, x24 = 0

x31 = 4.8191, x32 = 0, x33 = 13.1809, x34 = 0

⎫

⎪

⎪

⎬

⎪

⎪

⎭

,

f11
(

X2∗
)

= 330, f12
(

X2∗
)

= 506.5426,

f13
(

X2∗
)

= 598.1809, f14
(

X2∗
)

= 784,

f21
(

X2∗
)

= 310.6383, f22
(

X2∗
)

= 415.8191,

f23
(

X2∗
)

= 475, f24
(

X2∗
)

= 586.3617.

(6.8)

For the value of γ = 0.5–γ = 1.0,

X3∗ =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

x11 = 5.0133, x12 = 2.2338, x13 = 7.7530, x14 = 9

x21 = 1.2338, x22 = 6.7662, x23 = 0, x24 = 0

x31 = 4.7530, x32 = 0, x33 = 13.2470, x34 = 0

⎫

⎪

⎪

⎬

⎪

⎪

⎭

,

f11
(

X3∗
)

= 333.7013, f12
(

X3∗
)

= 503.0398,

f13
(

X3∗
)

= 593.3119, f14
(

X3∗
)

= 780.2987,

f21
(

X3∗
)

= 308.0334, f22
(

X3∗
)

= 421.9218,

f23
(

X3∗
)

= 481.1689, f24
(

X3∗
)

= 598.8318.

(6.9)
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These solutions imply following fuzzy objective values for our MOLTP:

˜f1
(

X1∗
)

= (488, 592, 158, 192),

˜f1
(

X2∗
)

= (506.5426, 598.1809, 176.5426, 185.8191),

˜f1
(

X3∗
)

= (503.0398, 593.3119, 169.3385, 186.9868),

˜f2
(

X1∗
)

= (422, 475, 99, 99),

˜f2
(

X2∗
)

= (415.8191, 475, 105.1808, 111.3617),

˜f2
(

X3∗
)

= (421.9218, 481.1689, 113.8834, 117.6629).

(6.10)

All of these solutions pointed out that for all possible values of c̃kij (i = 1, 2, 3; j =
1, 2, 3, 4; k = 1, 2), the certainly transported amounts are

⎧

⎨

⎩

x14 = 9, x23 = 0,
x24 = 0, x32 = 0,

x34 = 0

⎫

⎬

⎭

. (6.11)

And also, the least transported amounts are

⎧

⎨

⎩

x12 ≥ 1, x13 ≥ 7.7530,
x22 ≥ 6.7662,

x31 ≥ 4.7530, x33 ≥ 7

⎫

⎬

⎭

. (6.12)

For γ = 1, μand equals to min (noncompensatory) operator that is μand = minkpμfkp =
0.8620 and gives the solution X3∗. This solution remains the same for γ = [0.5, 1].

For γ = 0, μand equals to average operator (full compensatory) operator, that is, μand =
min (1/4K)

∑

μfkp = 0.9235 and gives the solution X1∗.
These solutions and the values of all membership functions are offered to decision

maker (DM). If DM is not satisfied with the proposed solution then he/she could assign
the weights wk, (wk > 0,

∑K
k=1 wk = 1) on his/her objectives fk, k = 1, 2. In this case, the

weights wk are inserted to the compensatory model as the following manner:

μkp

(

fkp
)

wk
≥ λ + λkp, ∀k = 1, 2; p = 1, 2, 3, 4,

wk

(

λ + λkp
) ≤ 1, ∀k = 1, 2; p = 1, 2, 3, 4,

(6.13)

instead of the constraints

μkp

(

fkp(x)
)

≥ λ + λkp, ∀k = 1, 2; p = 1, 2, 3, 4. (6.14)
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7. Conclusions

MOLTP which is a well-known problem in the literature has wide practical applications in
manpower planning, personnel allocation, inventory control, production planning, and so
forth. In this paper, we deal with MOLTP whose costs coefficients are given as trapezoidal
fuzzy numbers. We assume that the supply and demand quantities are precisely known.
The fuzziness in the objectives is handled with a fuzzy programming technique in the
sense of multiobjective approach. And a compensatory approach is given by using Werner’s
μand operator. Our approach generates compromise solutions which are both compensatory
and Pareto optimal for MOLTP. It is known that Zimmerman’s “min” operator is not
compensatory and also does not guarantee to generate the Pareto optimal solutions. Werner’s
μand operator is useful about computational efficiency and always generates Pareto optimal
solutions. The proposed approach also makes it possible to overcome the nonlinear nature
owing to the fuzziness in the costs.

This paper discussed MOLTP with fuzzy cost coefficient. For further work, MOLTP
with fuzzy supply&demand quantities and also multi-index form of this problem could be
considered.
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