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Digital repetitive control is a technique which allows tracking periodic references and/or rejecting
periodic disturbances. Repetitive controllers are usually designed assuming a fixed fundamental
frequency for the signals to be tracked/rejected and its main drawback being a dramatic
performance decay when this frequency varies. A usual approach to overcome the problem
consists of an adaptive change of the sampling period according to the reference/disturbance
period variation. This paper presents a stability analysis of a digital repetitive controller working
under time-varying sampling period by means of an LMI gridding approach. Theoretical
developments are illustrated with experimental results, which are preceded by a detailed
description of fundamental issues related to the implementation procedure.

1. Introduction

Repetitive control [1, 2] is an internal model principle-based control technique [3] that allows
both the tracking and rejection of periodic signals. Essentially, this is achieved including a
generator of the reference/disturbance in the control loop. Its use has reported successful
results in different control areas, such as CD and disk arm actuators [4], robotics [5], electro-
hydraulics [6], electronic rectifiers [7], pulse-width modulated inverters [8, 9], and shunt
active power filters [10].

It is usual to design repetitive controllers assuming a fixed period Tp for the signals to
be tracked/rejected. Then, a fixed sampling period Ts is selected and, eventually, the value of
the ratio Tp/Ts is structurally embedded in the control algorithm. However, it is well known
that even slight changes in the frequency of the tracked/rejected signals result in a dramatic
decay of the controller performance [11].
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A first set of proposals dealing with this problem maintain the initially selected
sampling period, and robustness is achieved by means of large memory elements [11, 12]
or introducing a fictitious sampler operating at a variable sampling rate and later using a
fixed frequency internal model [13]. Both ideas work well for small frequency variations at
the cost of increasing the computational burden.

The second approach proposes to adapt the controller sampling rate according to the
reference/disturbance period [14–16]. This allows preserving the steady-state performance
while maintaining a low computational cost, but, on the other hand, the original linear time
invariant (LTI) system becomes linear time varying (LTV). This structural change requires
a new stability study, but no formal proofs regarding this issue are reported in the quoted
references.

This paper analyzes the stability of a system containing a digital repetitive controller
working under time-varying sampling period. The proposed methodology uses a linear
matrix inequality (LMI) gridding approach [17, 18] that allows assessing the bounded
input-bounded output (BIBO) stability of the closed-loop system in a known, bounded
interval where the reference/disturbance period is assumed to vary. The theoretical results
are experimentally validated through a mechatronic plant [19]. A detailed description
and discussion about fundamental issues related to the implementation procedure is also
provided.

The structure of the paper is as follows. Section 2 contains a brief introduction to
digital repetitive control and a study of stability issues in case of constant sampling period.
Section 3 analyzes the stability of the system under a time-varying sampling period using
LMI techniques. Experimental results are collected in Section 4, while conclusions and further
research lines are presented in Section 5.

2. Digital Repetitive Control under Constant Sampling Period

Recall that the trigonometric Fourier series expansion of a Tp-periodic signal r(t) reads as

r(t) = a0 +
∞∑

k=1

ak cos
2kπ
Tp

t + bk sin
2kπ
Tp

t. (2.1)

By the Internal Model Principle [3], the inclusion of the generator of signal (2.1) in the control
loop results in the tracking/rejection of any Tp-periodic reference/disturbance signal. Hence,
following [1], the transfer function of a generator of (2.1) may be written as

Ĝr(s) =
1
s

∞∏

k=1

(
2kπ/Tp

)2

s2 +
(
2kπ/Tp

)2 =
Tpe

−Tps/2

1 − e−Tps
. (2.2)

However, Tpe−Tps/2 being a delay term with a gain Tp, it is sufficient to include

Gr(s) =
1

1 − e−Tps
(2.3)

inside the control loop, which can be implemented as e−Tps with a positive feedback, as
depicted in Figure 1. Notice that the transfer function (2.2) has poles at s = ±jk/Tp, k ∈ N.
Therefore, from a frequency point of view,Gr(s) exhibits infinite gain at frequencies k/Tp, for
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Figure 1: Basic structure for a continuous-time repetitive controller.

all k ∈ N. This assures zero-tracking error at these frequencies in closed loop if the closed-loop
system is stable.

It is also worth mentioning that some studies relate repetitive control to control
learning techniques (see, e.g., [1]). This is due to the fact that the basic repetitive structure
learns a signal of length Tp and repeats it as a periodic signal of period Tp if the input to the
system is set to zero (see Figure 1).

The implementation of a time delay in continuous time is a complicated point.
Fortunately, in discrete time it is an easier task; if the reference/disturbance signal period
Tp is a multiple of the sampling period Ts, the digital implementation is reduced to a circular
queue. Therefore, the discrete transfer function that should be included in the loop is

Gr(z) =
z−N

1 − z−N
=

1
zN − 1

, (2.4)

where N = Tp/Ts ∈ N.
In addition to the constraint that represents the demand of a constant ratio between Tp

and Ts, it is important to point out that Ts should be selected taking into account that discrete-
time implementations can only deal with those harmonics which are below the Nyquist
frequency ωs/2 = π/Ts.

Repetitive controllers are composed of two main elements: the internal model, Gr(z),
and the stabilizing controller, Gx(z). The internal model is the one in charge of guaranteeing
null or small error in steady state, while the stabilizing controller assures closed-loop stability.
Several types of internal models are used depending on the concrete periodic signal to deal
with [19–22]. In this work the generic internal model is used, that is, Gr(z) is indeed taken as

Gr(z) =
H(z)

zN −H(z)
. (2.5)

H(z) plays the role of a low-pass filter in charge of introducing robustness in the high
frequency range [23]. Although the internal model and the stabilizing controller can be
arranged in different ways, most repetitive controllers are usually implemented in a “plug-
in” fashion [20], as depicted in Figure 2: the repetitive compensator is used to augment an
existing nominal controller, Gc(z). This nominal compensator is designed to stabilize the
plant, Gp(s), and provides disturbance attenuation across a broad frequency spectrum. The
signals R(z), D(z) denote, respectively, the z-transforms of the input signal r(t) to be tracked
and of the output disturbance d(t) to be rejected.
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Figure 2: Discrete-time block-diagram of the proposed repetitive transfer function.

Assume that both Tp and Ts are constant, which makes N also constant, and let Gp(z)
stand for the corresponding z-transform of Gp(s). Sufficient stability criteria are given in the
next Proposition.

Proposition 2.1. The closed-loop system of Figure 2 is stable if the following conditions are fulfilled
[19, 20].

(1) The closed-loop system without the repetitive controller, Go(z), is stable, where

Go(z) =
Gc(z)Gp(z)

1 +Gc(z)Gp(z)
. (2.6)

(2) ‖H(z)‖∞ < 1.

(3) ‖1 −Go(z)Gx(z)‖∞ < 1, where Gx(z) is a design filter to be chosen.

Remark 2.2. These conditions hold for a proper design of Gc(z), H(z), and Gx(z). Namely
[19, 20],

(i) it is advisable to design the controllerGc(z)with a high enough robustness margin;

(ii) H(z) is designed to have gain close to 1 in the desired bandwidth and attenuate the
gain out of it;

(iii) a trivial structure which is often used forGx(z) in case thatGo(z) is minimumphase
is [24]:

Gx(z) = kr[Go(z)]
−1. (2.7)

Otherwise, alternative techniques should be applied in order to avoid closed-
RHS plane zero-pole cancellations [24]. Moreover, there is no problem with the
improperness ofGx(z) because the internal model provides the repetitive controller
with a high positive relative degree. Finally, as argued in [25], kr must be designed
looking for a trade-off between robustness and transient response.

3. Digital Repetitive Control under Variable Sampling Period

The repetitive controller introduced in the previous section contains the ratio N = Tp/Ts,
which is embedded in the controller implementation. This is not a problem if the reference
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or disturbance periodic signal has a known constant period. However, the controller
performance decays dramatically when a variation of Tp appears [11]. This paper propounds
to adapt the controller sampling period Ts following the reference/disturbance period Tp(t),
with the aim of maintaining a constant value for N. Hence, on the one hand, Gr(z), Gx(z),
and Gc(z) are designed and implemented to provide closed-loop stability for a nominal
sampling period Ts = TN

s , in accordance with Proposition 2.1 and Remark 2.2. Their structure
remains always invariant; that is, it undergoes no further structural changes. On the other
hand, the period of the sampler device that precedes the plant Gp(s) is accommodated to the
variation of Tp(t); therefore, its discrete-time representation is that of a LTV system.

Remark 3.1. The above described operation may yield major changes in the dynamic response
of the system. As an example, consider that the plant Gp(s) in Figure 2 is

Gp(s) =
−4.625 · 10−10s3 − 5.891 · 10−5s2 + 1.071s + 36.67

1.067 · 10−9s4 + 2.394 · 10−6s3 + 7.672 · 10−4s2 + 0.2185s + 1.983
. (3.1)

Let the repetitive controller be constructed assuming N = 25 and a reference/disturbance
nominal period Tp = 0.125 s, this yielding a nominal sampling period of TN

s = Tp/N = 0.005 s.
Let also Gc(z), H(z), and Gx(z) be selected as indicated in Section 4.2. Then, the sufficient
stability conditions established in Proposition 2.1 for the nominal sampling period TN

s are
fulfilled. Figure 3 depicts themaximummodulus eigenvalue of the closed-loop systemmatrix
as a function of Ts in a neighborhood of TN

s . This information allows stating that instability is
ensured for Ts /∈ [4.461, 5.543]ms.

The above discussion indicates that, although the proposed technique allows adapting
the system to the specific signal frequency to be tracked/rejected without changing the digital
controller, the sampling rate change may affect closed-loop stability. In what follows, an
LMI-based approach to study closed-loop stability under varying sampling rate condition
is developed.
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Regarding the time-varying nature of the sampling period of the plant, the stability
analysis is carried out in the state-space formalism. Let (Ã, B̃, C̃, D̃) represent the continuous-
time plant state-space representation, that is,

Gp(s) = C̃
(
sI − Ã

)−1
B̃ + D̃. (3.2)

Assume that Gp(s) is sampled at {t0, t1, . . . , tk, . . .}, with t0 = 0 and tk+1 > tk, the sampling
periods being Tk = tk+1 − tk. Let also xk � x(tk), uk � u(tk), yk � y(tk), Ak = A(Tk), Bk =
B(Tk), C = C̃ and D = D̃, where

A(T) � eÃT , B(T) �
∫T

0
eÃτ B̃ dτ. (3.3)

Therefore, the plant evolution at the sampling instants is given by the discrete-time LTV
system:

xk+1 = Akxk + Bkuk,

yk = Cxk +Duk.

(3.4)

In case that Tk remains constant, i.e., Ti = Tj , for all i /= j, system (3.4) corresponds to a discrete-

time LTI systemwith z-transform transfer functionGp(z) = C(zI −A)
−1
B+D. In an aperiodic

sampling framework Ak and Bk vary with k, and the z-transform representation is no longer
valid.

Similarly, under varying sampling period, the closed-loop system depicted in Figure 2
can be described in state space by a quadruple (Ak, Bk, C,D), which may be constructed
combining (Ak, Bk, C,D) and the state-space representations of Gr(z), Gx(z), and Gc(z).
Thus, C and D are constant matrices, while Ak and Bk depend continuously on Tk. A
methodology for studying the closed-loop system under time-varying sampling conditions
will be introduced in the rest of this section.

Let the sampling period, Tk, take values in a known compact subset T = [T0, TF] ⊂ R
+.

Proposition 3.2. The uniform exponential stability of the zero state ε = 0 of εk+1 = Akεk implies the
uniform BIBO stability of the system (Ak, Bk, C,D).

Proof. According to [26], the result follows if Bk, C, and D are uniformly bounded matrices,
for all k, and this is indeed true: Bk depends continuously on Tk, which belongs to a compact
set T, while C,D are constant matrices.

The preceding result allows reducing the stability analysis of (Ak, Bk, C,D) to that of
the zero state of εk+1 = Akεk.

Let us define

LTk(P) = A�
kPAk − P. (3.5)
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Proposition 3.3 (see [26]). If there exists a matrix P such that

LTk(P) ≤ −αI, ∀Tk ∈ T, s.t. P > 0, P = P�, (3.6)

where α ∈ R
+, then the zero state of εk+1 = Akεk is uniformly exponentially stable.

At this point, it is immediate to realize that relation (3.6) in Proposition 3.3 yields an
infinite set of LMIs. The gridding approach introduced in [17, 18] allows a simplified stability
analysis that may be performed in two stages, if necessary.

In a first stage, advantage is taken from the fact that (AN,BN,C,D), corresponding
to (Ak, Bk, C,D) evaluated in Tk = TN

s , is stable by construction, because recall that
Gr(z), Gx(z), and Gc(z) are designed with such purpose.

Proposition 3.4. Assume that the stability conditions of Proposition 2.1 are satisfied for a nominal
sampling period TN

s ∈ T. Then,

(1) the zero state of the LTI system εk+1 = ANεk is uniformly exponentially stable,

(2) the LMI problem

LTN
s
(P) ≤ −αI, s.t. P > 0, P = P�, (3.7)

with α ∈ R
+, is feasible,

(3) let P = PN be a solution of the LMI problem (3.7) for a fixed α ∈ R
+. Then, there exists an

open neighborhood of TN
s , say IN, such that (Ak, Bk, C,D) is BIBO stable in IN.

Proof. It follows from the stability hypothesis that all the eigenvalues of AN have modulus
less than 1, which yields immediately item 1 [26]. Item 2 stems from the fact that the sufficient
condition for uniform exponential stability established in Proposition 3.3 is also necessary for
a discrete-time LTI system. Finally, item 3 follows immediately from Propositions 3.2 and 3.3
once the continuity of the matrix elements of Ak with respect to Tk is taken into account.

Assume that we are interested in analyzing the stability of (Ak, Bk, C,D) for all
sampling periods Tk ∈ T. Let then P = PN be a feasible solution of the LMI problem (3.7)
for a fixed α ∈ R

+; its existence is guaranteed by Proposition 3.4. Let also {τ0, . . . , τq}, with
τi+1 > τi, be a sufficiently fine grid of T. If Lτi(PN) < 0, for all i = 0, . . . , q, stability for all
Tk ∈ T may be probably inferred.

Otherwise, in case that there exists at least a single τi such that Lτi(PN) > −αI, the
gridding procedure proposed in [18] may be carried out as follows. Let {τ0, . . . , τr} be a
sorted set of candidate sampling periods suitably distributed in T. Then, one may solve the
following finite set of LMIs:

Lτi(P) ≤ −αI, i = 0, . . . , r, s.t. P > 0, P = P�, (3.8)

for a fixed α ∈ R
+. In case that the problem is feasible and a solution, P = PG, is encountered,

the negative semidefinite character of LTk(PG) is to be checked for intermediate values of Tk
in each open subinterval (τi, τi+1). If this fails to be accomplished, (3.8) has to be solved again
for a finer grid of T.
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Remark 3.5. The application of the procedures to the plant introduced in Remark 3.1 yields the
following results. The evolution of the maximum modulus eigenvalue of LTk(PN), PN being
the solution of (3.7) for α = 100, is depicted in Figure 4. Hence, BIBO stability is ensured in
IN = [4.996, 5.004]ms. Alternatively, the approach that stems from (3.8) guarantees stability
in T = [4.60, 5.45]ms; this interval is computed by successive extensions of an initial T0

containing TN
s until (3.8), with α = 100, becomes definitely unfeasible.

Remark 3.6. Notice that

(i) comparatively, in the first approach a shorter stability radius may be reasonably
expected;

(ii) the main drawback of both analysis paths is associated with the fact that stability
is rigorously guaranteed just in open neighborhoods of each sampling period τi
where either Lτi(PN) < 0 or Lτi(PG) < 0 are satisfied;

(iii) the applicability of the above developed method to large scale or very high order
systems is subject to the limitations of the numerical algorithms used to solve the
LMI problems (3.7) or (3.8);

(iv) a faulty estimation of Tp and/or an error in the implementation of Ts may yield
important performance degradation [11]. However, closed-loop BIBO stability is
not threatened unless the plant is actually sampled with Ts values lying outside the
region T where stability is guaranteed.

4. Experimental Setup and Results

4.1. Plant Description

Systems with rotary elements are usually affected by periodic disturbances due to the
movement of these parts (e.g., electrical machines, CD players. . .). This kind of system is
supposed to be moving, in some cases, at a fixed angular speed. Under these working
conditions any friction, unbalance, or asymmetry appearing on the system generates a
periodic disturbance that affects its dynamical behavior. Reference [19] contains a description
of a mechatronic plant designed to reproduce this working conditions. This device is
composed of a bar holding a permanent magnet in each end, each magnet being magnetically
oriented in the opposite way, and attached to a DC motor and two fixed permanent magnets
(see a sketch in Figure 5). The rotation of the DC motor causes a pulsating load torque (Γp)
that depends on the mechanical angle θ of the motor axis. When the motor axis angular speed
ω is constant (θ̈ = ω̇ = 0), the pulsating torque is a periodic signal with a fundamental period
directly related to the axis speed: Tp = ω−1, with ω expressed in rev/s. The control goal for
this plant is maintaining the motor axis angular speed constant at a desired value. However,
this type of disturbances may not be completely rejected by a regular controller, so a repetitive
controller is designed in next subsection.

Figure 6 also shows the open-loop time response of the plant containing the fixed
magnets. It is important to note that the speed describes an almost periodic signal. This
type of disturbances may not be completely rejected by a regular controller, so a repetitive
controller is designed in next subsection.

Finally, it is worth mentioning that in this experimental setup the disturbance could
be written as a nonlinear part of the system, and therefore nonlinear control techniques
should be used instead of repetitive control. An interesting application of this procedure to
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Figure 5: Mechanical load: fixed and moving permanent magnets sketch (ω and Γp stand for the angular
speed and the disturbance torque, resp.).

speed control of mechatronic systems is reported in [27]. However, for the present case this
would require the use of complexmodels and, consequently, of complex nonlinear controllers
which in general might not provide the same performance. Hence, we proceed assuming
unmodeled or uncertainty components as disturbances, which is quite common in control
theory and, at the same time, allows the use of repetitive control in this problem.
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4.2. Control Design

A first-order model for the plant is experimentally derived from its open-loop time response
without the fixed magnets, namely,

Gp(s) =
8.762

0.10667s + 1
rev/s
V

. (4.1)

The controller is constructed from (4.1), for a speed of ω = 8 rev/s and obtaining 25 samples
per period, that is, N = 25. These conditions imply a nominal sampling period of TN

s =
Tp/N = 1(ωN) = 5ms. Under these assumptions the nominal discrete time plant is

Gp(z) =
0.4012

z − 0.9542
. (4.2)

According to Remark 2.2, the following design issues have been taken into account:

(i) Gc(z) = 0.25 provides a very robust inner loop,

(ii) the first order null-phase FIR filter H(z) = 0.02 z + 0.96 + 0.02 z−1 provides good
performance in this case,

(iii) the fact that Gp(z) is minimum phase allows Gx(z) = krG
−1
o (z), with kr = 0.3.

These settings yield the control law

uk = 0.25ek + 0.015ek−23 + 0.70ek−24 − 0.84ek−25

− 0.018ek−26 + 0.02uk−24 + 0.96uk−25 + 0.02uk−26,
(4.3)

with ek = rk − yk, where yk is the system output (speed) and rk is the reference.

4.3. Stability Analysis

Although the controller is designed to regulate the speed at 8 rev/s, in practice it will be
necessary to move from this design point. Let us assume that we are interested in varying
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the speed reference in the interval [6, 11] rev/s; this entails a sampling period variation in the
interval T = [0.00363, 0.00666] s.

The stability analysis that stems from Proposition 3.4 includes the solution of the LMI
(3.7), which is known to be feasible, and the checking of the negative definite character of
LTk(PN). Figure 7 shows the evolution of the maximummodulus eigenvalue of LTk(PN)when
solving for α = 100 and also for 50000 uniformly distributed values of Tk. Therefore, it can be
presumed that the closed-loop system may operate in a speed range of [7.32, 8.77] rev/s with
dynamically preserved stability. This speed interval is obviously very narrow and operation
conditions are limited to a sampling period interval IN such that T/⊆IN . However, it is
important to recall that this test comes not from a necessary condition but from a sufficient
condition, so moving out of this interval does not necessarily imply instability (although this
step can be avoidable inmost cases, its results are very useful to tune the LMI solver regarding
next step).

In order to guarantee a broader stability interval, the second method described
in Section 3 may be applied. Therefore, 50 uniformly distributed points are selected in
T = [0.00363, 0.00666] s. These points are used to construct the set of LMIs (3.8), and a
feasible solution P = PG with α = 100 is obtained. Figure 7 depicts the maximum modulus
eigenvalue of LTk(PG), designating with a star the 50 points leading to the LMI formulation.
The maximum modulus eigenvalue of LTk(PG) corresponding to a finer grid consisting of
50000 uniformly distributed point are also drawn in Figure 7. These points are used to
check the sign of LTk(PG) in the intervals between the points defining the LMI set. It can
be seen that LTk(PG) < 0 for every point in this finer grid of the interval T; hence, stability
is dynamically preserved therein. This method extends the previously obtained stability
interval [7.32, 8.77] rev/s, thus providing less conservative results. Further extensions of the
new interval could also be feasible.
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4.4. Implementation Issues

The first issue to deal with in the implementation of the control action is the measurement
of the uncertain or time-varying period Tp of the signal to be tracked/rejected. In the general
case an adaptive scheme similar to those in [13, 15, 16] is used for this task; the complete
controller architecture is depicted in Figure 8. The frequency values, T−1

p (t), are obtained by
means of a frequency observer using information from different sources, namely, reference
profile, output signal, and control action. Then, the sampling rate is calculated as Ts(t) =
Tp(t)/N.

Nevertheless, as it has been previously stated, in mechanical turning systems the
frequency to be tracked/rejected is directly related to the turning speed. Hence, for the
analyzed mechatronic plant the disturbance frequency is straightforwardly computed from
the turning speed reference. This allows us to study the effect of the adaptive approach on
the closed-loop system decoupled from the frequency observer dynamics.

For the general case, the study of the effect of the frequency observer dynamics on the
global system stability is out of the scope of this paper. However, it is also worth recalling
that any fault in the estimation and/or implementation of Ts causes a difference between
the experimental ratio Tp/Ts and the implemented value for N which, in turn, may yield
a performance degradation. As an example, Figure 9 shows the first harmonic gain factor
evolution of the internal model against a relative deviation of the real sampling period T real

s

with respect to the nominal TN
s = 5ms, namely,

∣∣Gr

(
exp

[
j
(
2π/N(1 + ΔTs)TN

s

)
TN
s

])∣∣
∣∣Gr

(
exp

[
j
(
2π/NTN

s

)
TN
s

])∣∣ =

∣∣Gr

(
e2πj/N(1+ΔTs)

)∣∣
∣∣Gr

(
e2πj/N

)∣∣ , (4.4)

where Gr(·) is defined in (2.5) and

ΔTs =
T real
s − TN

s

TN
s

. (4.5)

Notice that even small deviations of T real
s entail important gain reductions. However, as stated

in Remark 3.6(iv), closed-loop stability is not threatened unless T real
s /∈ T.

Finally, and also in accordance with Remark 3.6(iv), the frequency observer output has
to be saturated so as to guarantee that Ts ∈ T.

The controllers have been implemented using RTLinuxFree-3.1, a real-time operating
system (RTOS). This RTOS allows programing using standard POSIX system calls [28]
with the user interface of a GNU/Linux Operating System (kernel 2.6.9). The controllers
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Figure 9: First harmonic gain factor evolution at harmonic frequencies.

are encoded in C language, while periodic task handling has been implemented using
RTLinuxFree capabilities.

The actuator is composed of a Johnson Electric HC615L (20W, 5A) DC motor, a full-
bridge inverter (LMD18200, 3A full-bridge) and pulse width modulation (PWM) hardware,
included in a NuDQ PCI8133 board. The speed sensor is composed of a 500 pulse-per-
revolution optical encoder Hewlett-Packard H9730A, a quadrature decoder and a counter,
all of them are included in a NuDQ PCI8133 board. The interface between the controller real-
time task and the NuDQ PCI8133 board has been implemented using low level commands.

4.5. Experimental Results

The reference profile used in the experimentation is the following. During the time interval
[0, 10] s, the reference is maintained constant at the nominal value ofω = 8 rev/s. At t = 10 s a
ramp reference change, from ω = 8 rev/s to ω = 6.25 rev/s, is introduced in the system; then,
the speed is kept constant for 10 s and finally at t = 25 s the speed is gradually augmented at
a constant acceleration until it reaches the value ω = 10.81 rev/s at t = 32 s.

The experiment has been carried out for three different settings of the sampling time.
In Figure 10(a) the sampling period is kept constant at the nominal value TN

s = 5ms, for
all t; it is important to realize that, in comparison to the uncompensated speed profile
depicted in Figure 6, now disturbances are almost rejected in [0, 10], that is, when both
reference and sampling are at the nominal values. However, for t > 10 s disturbances cannot
be properly compensated, and performance is strongly degraded. Figure 10(b) depicts the
output behavior when the sampling period is varied adaptively assuming that the estimation
of Tp uses a 2nd order frequency observer; the profile of the actually used Ts is in Figure 11.
Notice that the performance gets worse in the regions where there is estimation error. Finally,
Figure 10(c) portrays the response under adaptive variation of Ts from an exact estimation of
Tp. According to Sections 4.3 and 4.4, stability is preserved in the three situations because
Ts always belongs to T. Performance in the steady-state depends on the accuracy of the
estimation of Tp, while performance during transients, although not guaranteed by repetitive



14 Mathematical Problems in Engineering

10 15 20 25 30 35

14
12
10

8
6
4O

u
tp

u
t

(r
ev

/s
)

Time (s)

(a)

10 15 20 25 30 35

14
12
10

8
6
4O

u
tp

u
t

(r
ev

/s
)

Time (s)

(b)

10 15 20 25 30 35

14
12
10

8
6
4O

u
tp

u
t

(r
ev

/s
)

Time (s)

(c)

Figure 10: Closed-loop system behavior using a repetitive controller and with sampling period Ts. (a)
Fixed at the nominal value (TN

s = 5ms); (b) obtained from a 2nd order frequency observer for Tp; (c)
obtained from an exact estimation of Tp.
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control theory, follows here the same pattern as that observed for the steady state; that is, it
improves with better estimations of Tp.

5. Conclusions

This paper analyzed the BIBO stability of a closed-loop system containing a digital repetitive
controller working under time-varying sampling period. The analysis was carried out using
an LMI gridding approach that allows a stability assessment in a known, bounded interval
where the reference/disturbance period is assumed to vary. The theoretically predicted
results have been experimentally validated through a mechatronic plant in which rejection of
periodic disturbances with time-varying period is successfully achieved. A detailed descrip-
tion of fundamental issues related to the implementation procedure has been provided.

Current research is being devoted to develop redesign methodologies to address the
situations in which the sampling period Ts falls out of the stability interval T.
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