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The boundary crossing theorem and the zero exclusion principle are very useful tools in the study
of the stability of family of polynomials. Although both of these theorem seem intuitively obvious,
they can be used for proving important results. In this paper, we give generalizations of these two
theorems and we apply such generalizations for finding the maximal stability interval.

1. Introduction

Consider the linear system

ẋ = Ax, (1.1)

where A is an n × n matrix with constant coefficients and x ∈ �
n . It is known that if the

characteristic polynomial, pA(t) is a Hurwitz polynomial, that is, all of its roots have negative
real part, then the origin is an asymptoticly stable equilibrium. Great amount of information
has been published about these polynomials since Maxwell proposed the problem of finding
conditions for verifying if a given polynomial has all of its roots with negative real part
[1]. At first the researchers focused in the problem proposed for Maxwell and the Routh-
Hurwitz criterion, the Hermite-Biehler theorem and other criteria were obtained. For reading
the proofs of these results the books [2–4] can be consulted. After the scientists began to study
other related problems, for instance, the problem of giving conditions for a given family
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of polynomials consist of Hurwitz polynomials alone. This problem has its motivation in
the applications because when a physical phenomenon is modeled, families of polynomials
must be considered due the presence of uncertainties. Maybe the most famous results about
families of Hurwitz polynomials are the Kharitonov’s theorem [5] and the Edge theorem [6]
which consider interval polynomials and polytopes of polynomials, respectively. However,
other families have been studied also, for example, the cones and rays of polynomails
(see [7, 8]) or the segments of polynomails ([9–11]). Besides in the study of Hurwitz
polynomials, topological approaches have been used recently (see [12, 13]). Good references
about Hurwitz polynomilas which were reported during 1987–1991 can be found in [14].
The books [2, 15, 16] are very recommendable works for consulting questions about families
of stable polynomilas. Many proofs of results about the stability of families of polynomials
are based in the boundary crossing theorem [17] and in the zero exclusion principle (see [2]
for a proof). In this way the importance of these two results has been appreciated. Now, in
this paper we give generalizations as the boundary crossing theorem as the zero exclusion
principle and we apply these generalizations for giving an alternative method to calculate
the maximal interval for robust stability, which was studied by Białas. We will explain the
differences between both methods.

2. Main Results

We have divided this section in two parts: in the first subsection we present generalizations
of the mentioned theorems and in the second subsection we apply such generalizations for
calculating the maximal stability interval for robust stability.

2.1. Generalizations of the Boundary Crossing Theorem and Zero
Exclusion Principle

First, we give the known boundary crossing theorem. Consider a family of polynomials
P(λ, t) satisfying the following assumption.

Assumption 2.1. P(λ, t) is a family of polynomials of

(1) fixed degree n,

(2) coefficients are continuous respect λ in a fixed interval I = [a, b].

Also let us to consider the complex plane � and let S ⊂ � be any given open set and
denote the boundary of S by ∂S and the complement as U = � − S. The following results are
presented in [2, page 34].

Theorem 2.2 (boundary crossing theorem). Under Assumption 2.1, if P(a, t) has all its roots in
S whereas P(b, t) has at least one root in U. Then there exists at least one ρ in (a, b] such that

(i) P(ρ, t) has all its roots in S ∪ ∂S,

(ii) P(ρ, t) has at least one root in ∂S.
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Now suppose that δ(t, p) denotes a polynomial whose coefficients depend continu-
ously on the parameter vector p ∈ �l which varies in a set Ω ⊂ �l and thus generates the
family of polynomials

Δ(t) :=
{
δ
(
t, p

) | p ∈ Ω
}
. (2.1)

Theorem 2.3 (zero exclusion principle). Assume that the polynomial family (2.1) has constant
degree, contains at least one stable polynomial, and Ω is pathwise connected. Then the entire family is
stable if and only if

0 /∈ Δ(t∗), ∀ t∗ ∈ ∂S. (2.2)

Now we present our generalizations. In them we will consider S = � − .

Theorem 2.4 (generalization 1 of Theorem 2.2). Under Assumption 2.1, suppose that P(a, t) has
n1 roots in � − and n−n1 roots in � + , and P(b, t) has at most n1 −1 roots in � − and at least n−n1 +1
roots in � + . Then there exists at least one ρ in (a, b] such that

(i) P(ρ, t) has at least n1 roots in � − ∪ i�,

(ii) P(ρ, t) has at least one root in i�.

Theorem 2.5 (generalization 2 of Theorem 2.2). Under Assumption 2.1, suppose that P(a, t) has
n1 roots in � − and n − n1 roots in � + , and P(b, t) has m1 roots in � − and n − m1 roots in � + . If
n1 /=m1, Then there exists at least one ρ in (a, b] such that

(i) P(ρ, t) has at least n1 roots in � − ∪ i�,

(ii) P(ρ, t) has at least n − n1 roots in � + ∪ i�,

(iii) P(ρ, t) has at least one root in i�.

Theorem 2.6 (generalization of Theorem 2.3). Consider the polynomial family P(λ, t) with
constant degree, where λ ∈ Ω and Ω ⊂ �l is a pathwise connected set. Suppose there exists an
element of the family with n1 roots in �

− and n − n1 roots in �
+ . Then the entire family still having

n1 roots in � − and n − n1 roots in � + if and only if

P(λ, iω)/= 0 ∀λ ∈ Ω, ∀ω ∈ �. (2.3)

2.2. Application: An Alternative Method for Calculating the Maximal
Stability Interval

We begin this subsection with three important definitions that can be seen in pages 50 to 51
of [16].
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Definition 2.7. Consider the uncertain polynomial P(t, k) = p0(t) + kp1(t) with p0(t) assumed
Hurwitz stable and the uncertainty bounding set K = [k−, k+] with k− ≤ 0 and k+ ≥ 0. We
define the subfamilies

P(k+) =
{
p(·, k) | 0 ≤ k ≤ k+},

P(
k−) =

{
p(·, k) | k− ≤ k ≤ 0

}
.

(2.4)

Definition 2.8 (maximal stability interval). Associated with the subfamily P(k+) is the right-
sided robustness margin

k+
max = sup

{
k+ : P(k+) is robustly stable

}
, (2.5)

and asociated with the subfamily P(k−) is the left-sided robustness margin

k−
min = inf

{
k− : P(

k−) is robustly stable
}
. (2.6)

Subsequently we callKmax = (k−
min, k

+
max) the maximal interval for robust stability.

Definition 2.9. Given an n × n matrixM, we define λ+
max(M) to be the maximum positive real

eigenvalue ofM. WhenM does not have any positive real eigenvalue, we take λ+
max(M) = 0+.

Similarly, we define λ−
min(M) to be the minimum negative real eigenvalue of M. When M

does no have any negative real eigenvalue, we take λ−
min(M) = 0−.

Białas [10] proved the following theorem.

Theorem 2.10 (eigenvalue criterion). Consider the uncertain polynomial P(t, k) = p0(t) + kp1(t)
with P(t, 0) = p0(t) Hurwitz stable and having positive coefficients and degp0(t) > degp1(t). Then
the maximal interval for robust stability is described by

k+
max =

1
λ+
max

(−H−1(p0
)
H
(
p1
)) ,

k−
min =

1
λ−
min

(−H−1(p0
)
H
(
p1
)) ,

(2.7)

where H(p0) and H(p1) are the corresponding matrices of Hurwitz of p0(t) and p1(t), respectively,
and for purpose of conformability of matrix multiplication, H(p1) is an n × n matrix obtained by
treating p1(t) as an n-degree polynomial.

Now we will explain our approach for calculating the maximal stability interval. Let
p0(t) be an n-degree polynomial and p1(t) a polynomial such that n > deg p1(t). Consider the
family of polynomials pc(t) = p0(t) + kp1(t). By evaluating p0(−t) and pc(t) in iω we get

p0(−iω) = P
(
ω2

)
− iωQ

(
ω2

)
,

pc(iω) = P
(
ω2

)
+ kp

(
ω2

)
+ iω

[
Q
(
ω2

)
+ kq

(
ω2

)]
,

(2.8)
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where p, q, P,Q are polynomials. Then

pc(iω)p0(−iω) = P 2
(
ω2

)
+ω2Q2

(
ω2

)

+ k
[
p
(
ω2

)
P
(
ω2

)
+ω2q

(
ω2

)
Q
(
ω2

)]

+ ikω
[
q
(
ω2

)
P
(
ω2

)
− p

(
ω2

)
Q
(
ω2

)]
.

(2.9)

Define the polynomials

F(ω) = p
(
ω2

)
P
(
ω2

)
+ω2q

(
ω2

)
Q
(
ω2

)
,

G(ω) = P 2
(
ω2

)
+ω2Q2

(
ω2

)
,

H(ω) = q
(
ω2

)
P
(
ω2

)
− p

(
ω2

)
Q
(
ω2

)
.

(2.10)

Therefore, we can rewrite pc(iω)p0(−iω) as pc(iω)p0(−iω) = G(ω) + kF(ω) + ikωH(ω).

Definition 2.11. For an arbitrary polynomial f(t) we define the set of its roots as

R
(
f
)
=
{
ζ ∈ � | f(ζ) = 0

}
. (2.11)

Let R(f)
�+ denote the set of positive real elements of R(f). It is clear that R(f)

�+ could be an
empty set.

Now let F(ω), G(ω), andH(ω) be the polynomials defined above. Define the sets

K+ = {F(ωl) | ωl ∈ R(H)
�+ ∪ {0}, F(ωl) > 0},

K− = {F(ωl) | ωl ∈ R(H)
�+ ∪ {0}, F(ωl) < 0}.

(2.12)

If there is no elements in R(H)
�+ ∪ {0} such that F(ωl) > 0 then we will define K+ = {0+}.

Similarly, if there is no elements in R(H)
�+ ∪ {0} such that F(ωl) < 0 then define K− = {0−}.

Note that only can happen either K− = {0−} or K+ = {0+} but both at the same time never
since we can always evaluate in ω = 0. That is, we always have an extreme.

Therefore we have the following alternative method for calculating the maximal
stability interval.

Theorem 2.12. Consider the polynomial family pc(t) = p0(t)+kp1(t) with p0(t)Hurwitz stable and
having positive coefficients, and let F(ω), G(ω), and H(ω) be the polynomials defined above. Then
the maximal interval of stability for pc(t) is described by

k−
min = max

{
−G(ωl)
F(ωl)

| F(ωl) ∈ K+
}
,

k+
max = min

{
−G(ωl)
F(ωl)

| F(ωl) ∈ K−
}
.

(2.13)
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Remark 2.13. A difference with the Białas method is that in our approach it is not necessary to
calculate the inverse of any matrix. Other difference is that in the Białas method the roots of
an n-degree polynomial must be found while in our approach we have that if degree of both
(n and m, resp., n > m) p0(t) and p1(t) is either even or odd then degH(ω) = n +m − 2 and
in the other cases degH(ω) = n+m− 1. Therefore, by symmetry ofH(ω)we have to find the
roots of a polynomial with degree (n +m − 2)/2 or (n + m − 1)/2 both less than or equal to
n − 1.

Example 2.14. Consider the polynomial p0(t) = t3 + 6t2 + 12t + 6 and p1(t) = t2 − 2t + 1, for
the polynomial family p(t, k) = p0(t) + kp1(t). We will verify the maximal stability interval by
Białas method. First we have

H
(
p0(t)

)
=

⎛

⎜⎜
⎝

6 6 0

1 12 0

0 6 6

⎞

⎟⎟
⎠, H

(
p1(t)

)
=

⎛

⎜⎜
⎝

1 1 0

0 −2 0

0 1 1

⎞

⎟⎟
⎠. (2.14)

Next,

−H(
p0(t)

)−1
H
(
p1(t)

)
= −

⎛

⎜
⎜⎜⎜
⎜
⎝

2
11

− 1
11

0

− 1
66

1
11

0

1
66

− 1
11

1
6

⎞

⎟
⎟⎟⎟
⎟
⎠

⎛

⎜
⎜
⎝

1 1 0

0 −2 0

0 1 1

⎞

⎟
⎟
⎠

=

⎛

⎜⎜
⎜⎜⎜
⎝

− 2
11

− 4
11

0

1
66

13
66

0

− 1
66

− 4
11

−1
6

⎞

⎟⎟
⎟⎟⎟
⎠

,

(2.15)

whose characteristic polynomial is λ3 − (2/11)λ2 − (1/36)λ + (1/198) which is a 3-degree
polynomial and has as roots λ1 = λ2 = −1/6 and λ3 = 2/11. Thus λ+

max(H(p0)−1H(p1)) =
2/11 and λ−

min(H(p0)−1H(p1)) = −1/6. Then p(t, k) = p0(t) + kp1(t) is robustly stable in
[k−

min, k
+
max] = [−6, 11/2].
Now with our proposed method. We see

p0(iω) =
(
6 − 6ω2

)
+ iω

(
12 −ω2

)

= P
(
ω2

)
+ iωQ

(
ω2

)
,

p1(iω) =
(
1 −ω2

)
+ iω(−2)

= p
(
ω2

)
+ iωq

(
ω2

)
.

(2.16)
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Thus,

F(ω) = 8ω4 − 36ω2 + 6,

G(ω) = ω6 + 12ω4 + 72ω2 + 36,

H(ω) = −ω4 + 25ω2 − 24.

(2.17)

Thus R(H)
�+ = {1,

√
24}. Now,

F(1) = −22 < 0,

F
(√

24
)
= 3750 > 0,

F(0) = 6 > 0,

G(1) = 121,

G
(√

24
)
= 22527,

G(0) = 36.

(2.18)

Therefore

k+
max = −G(1)

F(1)
=
11
2
,

k−
min = max

⎧
⎨

⎩
−
G
(√

24
)

F
(√

24
) ,−G(0)

F(0)

⎫
⎬

⎭
= −6.

(2.19)

Note that we just only need to compute a 2-degree polynomial root in our method, while in
Białas one it is a 3-degree polynomial.

Example 2.15. Consider the linear control system

ẋ =

⎛

⎜
⎜⎜⎜
⎜
⎝

0 1 0 0

0 0 1 0

0 0 0 1

−1 −7 −2 −3

⎞

⎟
⎟⎟⎟
⎟
⎠

x +

⎛

⎜
⎜⎜⎜
⎜
⎝

0

0

0

1

⎞

⎟
⎟⎟⎟
⎟
⎠

(−3k,−2k,−k, 0)x. (2.20)
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From this system we have that p0(t) = t4 + t3 + 7t2 + 2t + 3 and p1(t) = t2 + 2t + 3 and their
Hurwitz matrices are

H
(
p0(t)

)
=

⎛

⎜⎜⎜
⎜⎜
⎝

1 2 0 0

1 7 3 0

0 1 2 0

0 1 7 3

⎞

⎟⎟⎟
⎟⎟
⎠

, H
(
p1(t)

)
=

⎛

⎜⎜⎜
⎜⎜
⎝

0 2 0 0

0 1 3 0

0 0 2 0

0 0 1 3

⎞

⎟⎟⎟
⎟⎟
⎠

, (2.21)

where the inverse of H(p0) is

H
(
p0(t)

)−1 =

⎛

⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜
⎝

11
2

−4
7

6
7

0

−2
7

2
7

−3
7

0

1
7

−1
7

5
7

0

− 5
21

5
21

−32
21

1
3

⎞

⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟
⎠

. (2.22)

Hence, the 4-degree characteristic polynomial of the matrix

−H(
p0(t)

)−1
H
(
p1(t)

)
= −

⎛

⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜
⎝

11
2

−4
7

6
7

0

−2
7

2
7

−3
7

0

1
7

−1
7

5
7

0

− 5
21

5
21

−32
21

1
3

⎞

⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟
⎠

⎛

⎜⎜
⎜⎜⎜
⎝

0 2 0 0

0 1 3 0

0 0 2 0

0 0 1 3

⎞

⎟⎟
⎟⎟⎟
⎠

=

⎛

⎜⎜⎜
⎜⎜⎜⎜
⎜⎜
⎝

0 −18
7

−24
7

0

0
2
7

12
7

0

0 −1
7

−13
7

0

0
5
21

24
7

1

⎞

⎟⎟⎟
⎟⎟⎟⎟
⎟⎟
⎠

(2.23)

is t4 + (12/7)t3 + (3/7)t2 − (2/7)t and has as roots λ1 = 0, λ2 = 2/7 and λ3,4 = −1. Then
λ+
max(H(p0)

−1H(p1)) = 2/7 and λ−
min(H(p0)

−1H(p1)) = −1. Therefore, system (2.20) is robustly
stable in [−1, 7/2].



Mathematical Problems in Engineering 9

Now with our method. By evaluating p0(t) and p1(t) in iω we have

p0(iω) =
(
ω4 − 7ω2 + 3

)
+ iω

(
−ω2 + 2

)

= P
(
ω2

)
+ iωQ

(
ω2

)
,

p1(iω) =
(
−ω2 + 3

)
+ iω(2)

= p
(
ω2

)
+ iωq

(
ω2

)
.

(2.24)

Thus,

F(ω) = −ω6 + 8ω4 − 20ω2 + 9,

G(ω) = ω8 − 13ω6 + 51ω4 − 38ω2 + 9,

H(ω) = ω2
(
−9 +ω2

)
.

(2.25)

It is not hard to see that R(H)
�+ = {0, 3}. Next, F(0) = 9 > 0, F(3) = −252 < 0, and G(0) = 9,

G(3) = 882. Therefore,

k+
max = −G(3)

F(3)
=
7
2

k−
min = −G(0)

F(0)
= −1.

(2.26)

Note the easiness of roots finding for our polynomial H(ω).
As we see, in our method computations are easier operatively speaking since matrices

inverse and roots of bigger degree polynomials have been found in Białas method.

3. Proofs of the Theorems

Before start with the proofs of the theorems we present the following lemma wich can be
found in [3].

Lemma 3.1 (continuous root dependence). Consider the family of polynomials P described by
P(λ, t) =

∑n
i=0 ai(λ)ti and λ ∈ Ω under Assumption 2.1. Then the roots of P(λ, t) vary continuously

with respect to λ ∈ Ω. That is, there exist continuously mappings ti : Ω → � for i = 1, 2, . . . , n such
that t1(λ), . . . , tn(λ) are the roots of P(λ, t).

3.1. Proof of Theorem 2.4

Since P(λ, t) satisfies Assumption 2.1, by Lemma 3.1 there exist n continuous function roots
of P(λ, t), say t1(λ), . . . , tn(λ), λ ∈ [a, b]. Let us denote αj(λ) = �(tj(λ)) as the real parts of
the roots. Without loss of generality we can suppose that for j = 1, . . . , n1, αj(a) ∈ �

− and
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for j = n1 + 1, . . . , n, αj(a) ∈ �+ , while for λ = b at most n1 − 1 αj(b)’s belong to �− and
at least n − n1 + 1 belong to �+ . Then there exists at least one tj(λ) such that αj(a) < 0 and
αj(b) > 0. Let αj1(λ), . . . , αjm(λ) be such functions. Then by continuity and the intermediate
value theorem we have that for each 1 ≤ r ≤ m there exists ρr ∈ (a, b] such that αjr (ρr) = 0.
Define ρ = min{ρr | r = 1, . . . , m}. Therefore, for λ = ρ at least one αjr (ρ) = 0. Thus P(ρ, t) has
n1 roots in � − ∪ i� with at least one root in i�, as we claim.

The proof of Theorem 2.5 is similar.

3.2. Proof of Theorem 2.6

(⇒) If all of the elements of the family have n1 roots in � − and n−n1 roots in � + the it is clear
that P(λ, iω)/= 0 for all ω ∈ � and for all λ ∈ Ω.

(⇐) Suppose that P(λ, iω)/= 0 for all ω ∈ � and for all λ ∈ Ω. If there is λ0 ∈ Ω such
that the polynomial P(λ0, t) has m1 roots in � − and n −m1 roots in � + with n1 /=m1, the from
Theorem 2.5 there exsists ρ such that P(ρ, iω) = 0 for some ω ∈ �, which is a contradiction.

3.3. Proof of Theorem 2.12

By generalization of zero exclusion principle, the polynomial pc(t)p0(−t) has n roots in � −

and n roots in � + if and only if

pc(iω)p0(−iω)/= 0 (3.1)

for all ω ∈ �. Thus, if k satisfies

pc(iω)p0(−iω) = 0 (3.2)

for some ω ∈ �, then

G(ω) + kF(ω) + ikωH(ω) = 0 (3.3)

for some ω ∈ �. Consequently

ωH(ω) = 0,

G(ω) + kF(ω) = 0.
(3.4)

And this system is satisfied if k = −G(ωl)/F(ωl), where ωl = 0 or ωl ∈ R(H). Since G(ω) > 0
for allω ∈ � and we want to know the minimum k > 0 and the maximum k < 0 where it does
not happen, then

k−
min = max

{
−G(ωl)
F(ωl)

| F(ωl) > 0, ωl = 0 or ωl ∈ R(H)
}
,

k+
max = min

{
−G(ωl)
F(ωl)

| F(ωl) < 0, ωl = 0 or ωl ∈ R(H)
}
.

(3.5)
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Now by symmetry of F(ω) andH(ω) we will just consider real positive roots ofH(ω). Thus

k−
min = max

{
−G(ωl)
F(ωl)

| F(ωl) ∈ K+
}
,

k+
max = min

{
−G(ωl)
F(ωl)

| F(ωl) ∈ K−
}
.

(3.6)

This ends the proof.

Remark 3.2. In the proof it is not necessary to consider cases when F(ωl) = 0, since in other
case in the system (3.4) we would have G(ωl) = 0, but

G(ωl) =
∣∣p0(iωl)

∣∣2

= p0(iωl)p0(−iωl)

= 0,

(3.7)

which is impossible since p0(t) is Hurwitz. However, if occurs eitherK+ = {0+} orK− = {0−},
then we evaluate in ω = 0 and depending on sign of F(0)we will get either

k−
min = lim

r→ 0+
− G(0)

r
= −∞ (3.8)

or

k+
max = lim

r→ 0−
− G(0)

r
= +∞. (3.9)

The following example illustrates the second part of Remark 3.2.

Example 3.3. Consider the linear control system

ẋ =

⎛

⎜⎜
⎝

0 1 0

0 0 1

−6 −11 −6

⎞

⎟⎟
⎠x +

⎛

⎜⎜
⎝

0

0

1

⎞

⎟⎟
⎠

(
−13
2
k,−11k,−5k

)
x. (3.10)

Then we have that p0(t) = t3 + 6t2 + 11t + 6 and p1(t) = 5t2 + 11t + (13/2). First, for Białas’s
method we have that the Hurwitz matrices of p0(t) and p1(t) are

H
(
p0(t)

)
=

⎛

⎜
⎜
⎝

6 6 0

1 11 0

0 6 6

⎞

⎟
⎟
⎠, H

(
p1(t)

)
=

⎛

⎜⎜
⎜⎜
⎝

5
13
2

0

0 11 0

0 5
13
2

⎞

⎟⎟
⎟⎟
⎠

. (3.11)
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Hence,

−H(
p0(t)

)−1
H
(
p1(t)

)
=

⎛

⎜⎜⎜⎜
⎜
⎝

11
60

− 1
10

0

− 1
60

1
10

0

1
60

− 1
10

1
6

⎞

⎟⎟⎟⎟
⎟
⎠

⎛

⎜
⎜⎜⎜
⎝

5
13
2

0

0 11 0

0 5
13
2

⎞

⎟
⎟⎟⎟
⎠

=

⎛

⎜⎜
⎜⎜⎜
⎝

−11
12

− 11
120

0

1
12

−119
120

0

− 1
12

19
120

−13
12

⎞

⎟⎟
⎟⎟⎟
⎠

,

(3.12)

whose characteristic polynomial is λ3 − (359/120)λ2 + (4297/1140)λ − (143/144) which is a
3-degree polynomial and its roots are λ1,2 = −(229 ± i

√
359)/240 and λ3 = −13/12. Hence

λ+
max(−H(p0)−1H(p1)) = 0− and λ−

min(−H(p0)−1H(p1)) = −13/12. Then p(t, k) = p0(t) + kp1(t)
is robustly stable for k in [−12/13,∞).

With our proposed method we can see that

p0(iω) =
(
6 − 6ω2

)
+ iω

(
11 −ω2

)

= P
(
ω2

)
+ iωQ

(
ω2

)
,

p1(iω) =
(
13
2

− 5ω2
)
+ 11iω

= p
(
ω2

)
+ iωq

(
ω2

)
.

(3.13)

Thus,

F(ω) = 19ω4 + 112ω2 + 39,

G(ω) = ω6 − 94ω4 + 49ω2 + 36,

H(ω) = −5ω4 − 9ω2 − 11.

(3.14)

Note that F(ω) > 0 for all ω ∈ � and by a single test for second-order equations, H(ω)
have no real roots. Therefore by Remark 3.2 kmax = +∞ and kmin = −G(0)/F(0) = −12/13.
Consequently, p0(t) + kp1(t) is stable for all k ∈ [−12/13,∞).

4. Conclusions

In this paper, first we obtain generalizations of the Boundary Crossing Theorem and the Zero
Exclusion Principle, which are results that allow to obtain important results about stability
of families of polynomials. Next we use such generalizations for calculating the maximal
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interval of stability, which is a different approach to the Białas method. Since in Białasmethod
we have to find the inverse of the matrix H(p0) and the roots of the n-degree characteristic
polynomial of −H(p0)−1H(p1), we have found that in our approach easier computations have
arisen due if degree of both p0(t) and p1(t) is either even or odd then degH(ω) = n +m − 2
and in the other cases degH(ω) = n +m − 1 and by symmetry of H(ω) we must to find the
roots of a polynomial with degree (n +m − 2)/2 or (n + m − 1)/2 both less than or equal to
n − 1, respectively.
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