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We consider the inverse problem with respect to domain. We suggested a new approach for
reducing the inverse problem for a domain to an equivalent problem in a variational setting
and gave an effective solution algorithm for solving such problems. In order to solve boundary
problem, the artificial neural network is used in each step of the iteration.

1. Introduction

Awide class of practical problems are reduced to the inverse problemwith respect to domain.
As an example, we can show problems of elasticity theory, diffusion problems, the problems
arising in hydrodynamics [1–6], and so forth. The papers concerning inverse problems
usually deal with inverse problems for an unknown function (coefficients and functions
occurring in the boundary and initial conditions). But in our case, a domain is sought and
the investigation of the considered problems is related with some strong difficulties. In order
to avoid these difficulties and to investigate such problems, firstly, the considered inverse
problem is reduced to the variational statement. As the obtained variational problem is a
domain-dependent variational problem, the investigation of such problems is also related to
some difficulties. Here, we give an effective algorithm for solving such problems.

2. Statement of the Problem and Main Result

Let D be an r-dimensional domain, that is, D ⊂ Rr and x = (x1, x2, . . . , xr) ∈ D.
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Denote by SD the boundary of the domain D,SD = ∂D. Assume that the boundary SD

is in the space C2. Let us consider the following inverse problem:

−Δu + a(x)u = f(x), x ∈ D, (2.1)

u(x) = 0, x ∈ SD, (2.2)

∂u(x)
∂n

= 0, x ∈ SD, (2.3)

where the functions a are f and continuously differentiable functions in Rr and a(x) > 0.
Denote by K the set of convex domains set with a boundary from C2.

Our goal is to find a pair (D,u) ∈ K × C2(D) such that the function u = u(x) satisfies
(2.1) and boundary conditions (2.2), (2.3) in the domain D. As it is seen, condition (2.2) is a
Dirichlet condition, and condition (2.3) is a Neumann condition. For solving inverse problem
(2.1)–(2.3), at first, we consider the following unknown domain variational problem:

J(D,u) =
∫
D

F(x, u(x), ux(x))dx −→ min, D ∈ K, u ∈ C2(D), (2.4)

u(x) = 0, x ∈ SD. (2.5)

Wewill assume that the function F(x, u, p) is a continuously differentiable function of its own
variables in D × R × Rr .

If boundary condition is satisfied for D ∈ K, u ∈ C2(D), the pair (D,u) is said to be a
possible pair. Denote by M all possible pairs set. The pair (D∗, u∗) ∈ M is called an optimal
pair if it gives a minimum to functional (2.4) in the set M.

Give the following theorem obtained in [7].

Theorem 2.1. Let the pair (D∗, u∗) ∈ M be an optimal pair for variational problem (2.4), (2.5). Then
the function u∗ = u∗(x) is a solution of the following Euler equation in the domain D∗:

Fu(x, u(x), ux(x)) −
n∑
i=1

d

dxi
Fuxi(x, u(x), ux(x)) = 0, x ∈ D∗, (2.6)

and moreover, in the boundary SD∗ , the condition

F(x, u∗(x), u∗
x(x)) −

n∑
i=1

u∗
xi
(x)Fuxi

(x, u∗(x), u∗
x(x)) = 0, x ∈ SD∗ , (2.7)

is satisfied.
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As it is seen, this theorem is proved for convex domains. But one can obtain the similar
result for doubly connected domain D with internal and external boundaries S1 and S2. For
that, we must use the expansion

∫
D

F dx =
∫
D2

F dx −
∫
D1

F dx, (2.8)

where D1 and D2 are convex domains bounded by the boundaries S1 and S2.
Now, take the function F(x, u, p) in the following form

F(x, u, ux) = |ux|2 + a(x)u2 − 2f(x)u, (2.9)

where

|ux|2 = |ux1 |2 + |ux2 |2 + · · · + |uxr |2. (2.10)

As the functions a and f are continuously differentiable functions in Rr , the function
F(x, u, p) is a continuously differentiable function of its own variablies in D × R × Rr . Apply
the theorem mentioned above to this function. It is clear that

Fu = 2a(x)u − 2f(x)u, Fuxi
= 2uxi . (2.11)

Hence,

d

dxi
Fuxi

= 2Δu. (2.12)

So, from condition (2.6), we get that the function u∗ = u∗(x) satisfies (2.1) in the domain D∗.
From condition (2.7), we get the following boundary condition

|u∗
x|2 + au∗2 − 2f(x)u∗ − 2|u∗

x|2 = 0, x ∈ SD. (2.13)

If we take into account the condition u∗(x) = 0, x ∈ SD∗ , we get

|u∗
x| = 0, x ∈ SD∗ , (2.14)

or

u∗
x(x) = 0, x ∈ SD∗ . (2.15)

From the equation of the derivative with respect to the normal ∂u(x)/∂n, we get that function
(2.3) satisfies the boundary condition (2.3) as well. Thus, we proved the following theorem.
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Theorem 2.2. Let the pair (D∗, u∗) ∈ M be an optimal pair for problem (2.4), (2.5). Then it is a
solution of problem (2.1)–(2.3) as well. This theorem shows that if instead of the inverse problem (2.1)–
(2.3) we take the function F(x, u, p) in the form (2.9), we can investigate the variational problem
(2.4), (2.5). Notice that the inverse of this fact is not true in general. Though the functional J(D,u)
is convex with respect to the functional u, this functional is not convex with respect to D in general.
Using the obtained results to solving problem (2.4), (2.5), we give the following method.

Let the system of the functions {ϕk(x)}, k = 1, 2, . . . form a basis in the space C2(D).
Then function u = u(x)may be expanded by this basis

u =
∞∑
i=1

αkϕk(x). (2.16)

We take this into account in problem (2.4), (2.5) and get

I(D,α) =
∫
D

Φ(x, α)dx −→ min, D ∈ K, α = (α1, α2, α3, . . .), (2.17)

∞∑
i=1

αkϕk(x) = 0, x ∈ SD, (2.18)

where

Φ(x, α) = F

(
x,

∞∑
i=1

αkϕk(x),
∞∑
i=1

αk

∂ϕk(x)
∂x

)
. (2.19)

In our case, as F(x, u, p) is in the form (2.9),

Φ(x, α) =

∣∣∣∣∣
∞∑
k=1

αk

∂ϕk

∂x

∣∣∣∣∣
2

+ a(x)

∣∣∣∣∣
∞∑
i=1

αkϕk(x)

∣∣∣∣∣
2

− 2f(x)
∞∑
i=1

αkϕk(x). (2.20)

For solving problem (2.17), (2.18), calculate the first variation of functional (2.17). It is clear
that

∂I

∂α
=
∫
D

∂Φ(x, α)
∂α

δαdx. (2.21)

Calculate the first variation of the functional I(D,α) with respect to the domain D. In [5, 7],
the functional of the form

G(D) =
∫
D

g(x)dx (2.22)

is considered, and, for its first variation, the formula

δG(D) =
∫
SD

g(x)δPD(n(x))ds (2.23)
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is obtained. Here, the function g(x) is a continuously differentiable function in Rr, n(x) is an
external normal to the surface SD at the point x and PD(x) is a support function of the domain
D and is determined as follows:

PD(x) = sup
l∈D

(l, x), x ∈ Rr. (2.24)

We take into account this formula and get

δI(D,α) =
∫
SD

Φ(x, α)δPD(n(x))ds +
∫
D

∂Φ(x, α)
∂α

δαdx. (2.25)

It is seen from this formula that the numbers α1, α2, α3, . . . are found from the system
of equations

∫
D

∂Φ(x, α)
∂α

dx = 0. (2.26)

In our case, as Φ(x, α) is in the form (2.20), the system of (2.26) will be a system of linear
equations.

The set K may satisfy some additional restrictions as well. For example, the volume
K may be the mentioned domains set, and domains set with the given area of surface. In
another case, the domains set K may be given as D0 ⊂ D ⊂ D1 as well, where D0, D1, and
Rr are the given domains. In practical problems, the set K may be given in the form of the
integral restrictions

∫
D

g(x)dx = c (2.27)

or

∫
D

g(x)dx ≤ c. (2.28)

In general, assume that there is a domain G ⊂ Rr such that for arbitrary D ∈ K contained in
the set K,D ⊂ G. We can state this condition in a simpler form as follows.

We know that the optimal domain is contained in a certain domain G. The obtained
relations (2.25), (2.26) enable to solve problem (2.17), (2.18) approximately. For that we give
the following algorithm.

3. Algorithm for Numerical Solution

Based on the provided procedure, for numerical solution of the problem (2.4)-(2.5), the fol-
lowing methods are proposed.
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Step 1. Take arbitrary domain D(0) ∈ K and the basis functions

{
ϕ
(0)
k (x)

}
, k = 1, 2, . . . . (3.1)

Step 2. Solving the system of equations

∫
D(0)

∂Φ(x, α)
∂α

dx = 0, (3.2)

we find the convergence α(0) = (α0
1, α

0
2, α

0
3, . . .).

Step 3. Minimizing the linear functional

∫
S
D(0)

Φ
(
x, α(0)

)
PD(x)ds −→ min, D ∈ K, (3.3)

we find the convex function P(x).

Step 4. The intermediate domain D
(0)

is found as a subdifferential of the function P(x) at the
point x = 0 [8]. In other words,

D
(0)

= ∂P(0) = {l ∈ Rn; P(x) ≥ (l, x), ∀x ∈ Rn}. (3.4)

Step 5. A new domain D(1) is found as follows:

D(1) =
(
1 − μ

)
D

(0)
+ μD(0), 0 < μ < 1. (3.5)

Here, the domain μmay be chosen in different ways [7, 9, 10].

If a new found domainD(1) satisfies definite exactness conditions, the iteration process
is completed. On the contrary, for a new domain D(1), the iteration begins from the first step.
The exactness condition may be given in different ways for example,

∣∣∣I(D(k+1), α(k+1)
)
− I

(
D(k), α(k)

)∣∣∣ < ε. (3.6)

Here, ε > 0 is said to be accuracy order of the method. Now, give some rules for choosing the
quantity μk.

(1) In general, the numbers μk may be chosen from the following condition:

fk
(
μ
)
= I

((
1 − μk

)
D(k) + μkD

(k)
, αk

)
−→ min, μ ∈ [0, 1]. (3.7)
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(2) The quantity μk may be given as a sequence satisfying the following conditions:

0 ≤ μk ≤ 1, lim
k→∞

μk = 0,
∞∑
k=0

μk = ∞, (3.8)

for example,

μk =
1

k + 1
, k = 1, 2, 3, . . .. (3.9)

(3) The another method is to take μk = 1 and verity that the value of the functional
decreases. If the value of the functional does not decrease, then the value of μk

decreases twice. In order to solve boundary problem (2.1), (2.2), we will use the
artificial neural network in each step of the iteration.

4. Application of Neural Networks to Solving the Boundary Problem

Before passing to solution of differential equations by means of neural networks, notice
the cause of this necessity. It is known that there are many methods and approaches for
solving differential equations and related boundary value problems. But there exist such
boundary value problems that application of the known methods to them does not enable
to find the solution with high accuracy because of many reasons. This may be connected with
complexity of geometric structure of the domain where these differential equations are given
andwith strong nonlinearity of the problem. One of the reasons is that there are a great plenty
of partition points, and this may strongly influence on error. At the same time, the solution of
differential equation may require numerous iterations.

In addition, application of a neural network to the solution of differential equations is
stipulated also by two reasons. The first reason is that logical sequence scheme corresponds
to the logical scheme in the solution of differential equations [11–14]. In other words, the
solution scheme of differential equations enables to create the appropriate structure of neural
networks. The second reason is that neural networks can accurately approximate the function
[15, 16].

Let D ⊂ R2 and S = ∂D. Consider the following two-dimensional Poisson equation:

Δu = f(x), x ∈ D,

u(x) = g(x), x ∈ S.
(4.1)

Find the solution of this problem as follows:

u(x) =
n∑
i=1

wiϕi(x), (4.2)
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where the functions ϕi(x) are usually chosen as radial-basis functions. Writing expansion
(4.2) in (4.1), we get

n∑
i=1

wiΔϕi(x) = f(x), x ∈ D,

n∑
i=1

wiϕi(x) = g(x), x ∈ S.

(4.3)

The weight coefficients wi, i = 1, n are found from the minimality condition of the following
function:

J(w) =
∫
D

∣∣∣∣∣
n∑
i=1

wiΔϕi(x) − f(x)

∣∣∣∣∣
2

dx +
∫
S

∣∣∣∣∣
n∑
i=1

wiϕi(x) − g(x)

∣∣∣∣∣
2

ds −→ min . (4.4)

But, in great majority of cases, the functions

J(w) =
M1∑
k=1

∣∣∣∣∣
n∑
i=1

wiΔϕi(xk) − f(xk)

∣∣∣∣∣
2

+
M2∑
k=1

∣∣∣∣∣
n∑
i=1

wiϕi(sk) − g(sk)

∣∣∣∣∣
2

−→ min (4.5)
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Figure 4: Validation performance.

are considered using the uniformity of the equation in the values at discrete points. In order
to find the minimum of this function, we can use the gradient method. The iteration may be
constructed to find the weight coefficients wi, i = 1, n.

Now, in this way, we will try to solve a boundary value problem stated for partial
equations by means of a neural network. We will consider problem (4.1). If we write the
solution of this problem by means of the Green function, we will see that the solution is
linearly and continuously dependent on the right hand side of the boundary function. As it
was noted, the neural networks allow to approximate the function with any accuracy [15, 16].
Replace the domain D ⊂ R2 by a regular discrete network by means of a small step h.
Let the value of the function f(x) at the internal nodal points be fij . Let I1 be an indices
set and denote the data at the boundary point by gpq, the indices set by I2. Our goal is to
construct a neural network by changing the functions f(x), g(x). To get input and output
data, take some u1(x), u2(x), . . . , uM(x) functions. For these functions to be the solutions
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of (2.3), the function f(x) should be chosen as the functions f (1)(x), f (2)(x), . . . , f (M)(x),
respectively. For satisfying the boundary condition, the function f(x) must be defined as
g(1)(x), g(2)(x), . . . , g(M)(x) in the boundary. In other words, if, in problem (2.3), (2.4), we
take f(x) = fk(x) and g(x) = gk(x), we get the appropriate solution u(x) = uk(x). So we
must construct such a neural network that it could associate the M number of inputs

Hk =
{
f
(k)
ij ,

(
i, j

) ∈ I1, g
(k)
pq ,

(
p, q

) ∈ I2
}

(4.6)
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to theM number of outputs

Uk =
{
u
(k)
ij ,

(
i, j

) ∈ I1
}
. (4.7)

Here, u(k)
ij is the value of the chosen solution uk(x) at the nodal points (i, j) ∈ I1. The con-

structed neural network enables to find an approximate solution of problem (2.3), (2.4) for
arbitrarily given f(x), g(x). For attaining it, we must insert the set of

H =
{
fij ,

(
i, j

) ∈ I1, gpq,
(
p, q

) ∈ I2
}

(4.8)



12 Mathematical Problems in Engineering

Training: R = 1

Target
5 100

2

4

6

8

10

Data
Fit
Y = T

O
ut
pu

t∼
=
1∗
Ta

rg
et

+
3e

−0
08

(a)

Data
Fit
Y = T

Validation: R = 0.99998
10

9

8

7

6

5

4

3

2

1

0 2 4 6 8 10
Target

O
ut
pu

t∼
=
1∗
Ta

rg
et

+
0.
00
9

(b)

Data
Fit
Y = T

Test: R = 1
10

9

8

7

6

5

4

3

2

1

0 2 4 6 8 10
Target

P = 50

O
ut
pu

t∼
=
1∗
Ta

rg
et

+
0.
00
01
5

(c)

Data
Fit
Y = T

All: R = 1

2

4

6

8

10

Target
5 100

P = 50

O
ut
pu

t∼
=
1∗
Ta

rg
et

+
0.
00
08
3

(d)

Figure 8: Regression performance.

as an input variable and, in this case, the set of

U =
{
uij ,

(
i, j

) ∈ I1
}

(4.9)

as an output variable to the neural network. Then, the neural network will be an approximate
solution of problem (4.1).
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5. Model Example

Now let us consider the following example.
Consider the following problem:

Δu = −2, x ∈ D,

u(x) = 0, x ∈ S,
(5.1)

where

D =
{
x = (x1, x2) ∈ R2 : x2

1 + x2
2 ≤ 1

}
. (5.2)

The used neural network is nonliner “cascade feed forward—distributed time delay—backpropa-
gation” with levenberg-marqwardt algorithm (train LM) that needs 3 layers (Figure 1).

Backpropagation is the generalization of the Widrow-Hoff learning rule to multiple-
layer networks and nonlinear differentiable transfer functions. Input vectors and the cor-
responding target vectors are used to train a network until it can approximate a function,
associate input vectors with specific output vectors, or classify input vectors in an appropriate
way as defined.

The relationship between I/O, weight, and biases is shown as (Figure 2), include a
weight connection from the input to each layer, and from each layer to the successive layers.

The additional connections might improve the speed at which the network learns the
desired relationship. Each layer has a weight matrixW, a bias vector b, and an output vector
a. Networks with wight, biases, a sigmoid layer, and a linear output layer are capable of
approximating any function with a finite number of discontinuities.

Now we can start creating network through command structure:

NET=newcf (minmax(P),[12, 18, 3], {“tansig”, “tansig”, “purelin”},“trainlm”);

NET=init (NET);

NET.trainparam.show=50;

NET.trainparam.lr=0.05;
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NET.trainparam.lr inc=1.05;

NET.trainparam.mc=0.9;

NET.trainparam.epochs=300;

NET.trainparam.goal=1e − 5;

[NET,tr]=train (NET,P,T);

Network =

Neural Network object:

architecture:

numInputs: 1

numLayers: 3

biasConnect: [1; 1; 1]

inputConnect: [1; 1; 1]

layerConnect: [0 0 0; 1 0 0; 1 1 0]

outputConnect: [0 0 1]

numOutputs: 1 (read-only)

numInputDelays: 0 (read-only)

numLayerDelays: 0 (read-only)

subobject structures:

inputs: {1 × 1 cell} of inputs
layers: {3 × 1 cell} of layers
outputs: {1 × 3 cell} containing 1 output

biases: {3 × 1 cell} containing 3 biases

inputWeights: {3 × 1 cell} containing 3 input weights

layerWeights: {3 × 3 cell} containing 3 layer weights

functions:

adaptFcn: “trains”

divideFcn: “dividerand”

gradientFcn: “gdefaults”

initFcn: “initlay”

performFcn: “mse”

plotFcns: {“plotperform”,“plottrainstate”,“plotregression”}
trainFcn: “trainlm”
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parameters:

adaptParam: .passes

divideParam: .trainRatio, .valRatio, .testRatio

gradientParam: (none)

initParam: (none)

performParam: (none)

trainParam: .show, .showWindow, .showCommandLine, .epochs,

.time, .goal, .max fail, .mem reduc,

.min grad, .mu, .mu dec, .mu inc,

weight and bias values:

IW: {3 × 1 cell} containing 3 input weight matrices

LW: {3 × 3 cell} containing 3 layer weight matrices

b: {3 × 1 cell} containing 3 bias vectors.

After initializing and adjusting the train and weight parameter, the final created form
of the artificial neural network is shown in Figure 3.

After the training network with P = 25 input and output data, Figure 4 shows the
result. The result here isn’t reasonable, because the test set error and the validation set error
do not have similar characteristics, and it does appear that any significant overfitting has
occurred.

Figure 5 shows the net results to perform some analysis of the network response. In
this case, there are four outputs, so there are four regressions.

Solution of the considered model example is u(x) = (1/2)(1 − x2
1 + x2

2).
We found an approximate solution of this problem for P = 25 by using a neural

network. These results are shown in Figure 6.
For reaching the high accuracy, we should train the network with more data. We

retrain the net with P = 50 data again. The results are shown in Figures 7 and 8.
The artificial neural network’s error is reasonable, because the test set error and the

validation set error have similar characteristics, and it does not appear that any significant
overfitting has occurred.

We found an approximate solution for P = 50 again. These results are shown in
Figure 9.

For improving the high accuracy of approximate solution, the network is capable to
train with more data.

References

[1] J. Sea, “Numerical method in mathematical physics and optimal control,” Publishing House Nauka,
vol. 240, pp. 64–74, 1978.

[2] J. Sokolowski and J.-P. Zolesio, Introduction to Shape Optimization. Shape Sensitivity Analysis, Springer,
Heidelberg, Germany, 1992.

[3] J. Haslinger and R. A. E. Makinen, Introduction to Shape Optimization: Theory, Approximation and
Computation, SIAM, Philadelphia, Pa, USA, 2003.



16 Mathematical Problems in Engineering

[4] Y. S. Gasimov, A. Nachaoui, and A. A. Niftiyev, “Non-linear eigenvalue problems for p-Laplacian
with variable domain,” Optimization Letters, vol. 4, no. 1, pp. 67–84, 2009.

[5] F. A. Aliev, M. M. Mutallimov, I. M. Askerov, and I.S. Ragumov, “Asymptotic method of solution for a
problem of construction of optimal gas-lift process modes,”Mathematical Problems in Engineering, vol.
2010, Article ID 191153, 11 pages, 2010.

[6] A. A. Niftiyev and E. R. Akhmadov, “Variational statement of an inverse problem for a domain,”
Journal Differential Equation, vol. 43, no. 10, pp. 1410–1416, 2007.

[7] S. Belov and N. Fujii, “Summery and sufficient conditions of optimality in a domain optimization
problem,” Control and Cybernetics, vol. 26, no. 1, pp. 45–56, 1997.

[8] F. A. Aliev, A. A. Niftiyev, and J. I. Zeynalov, “Optimal synthesis problem for the fuzzy systems in
semi-infinite interval,” Applied and Computational Mathematics, vol. 10, no. 1, pp. 97–105, 2011.

[9] V. F. Demyanov and A. M. Rubinov, Bases of Non-Smooth Analysis and Quasidifferential Calculus, Nauka,
Moscow, Russia, 1990.

[10] F. P. Vasilyev, Optimization Methods, Factorial Press, Moscow, Russia, 2002.
[11] D. A. Tarkhov, Neural Networks: Models and Algorithms, Radio-Technical, Moscow, Russia, 2005.
[12] I. E. Lagaris, A. Likas, and D. I. Fotiadis, “Artificial neural networks for solving ordinary and partial

differential equations,” IEEE Transactions on Neural Networks, vol. 9, no. 5, pp. 987–1000, 1998.
[13] R. M. Alguliev, R. M. Aliguliev, and R. K. Alekperov, “New approach to optimal appointment for

distributed system, informatics and computer science,” Problems, no. 5, pp. 23–31, 2004.
[14] A. U. Levin and K. S. Narendra, “Control of nonlinear dynamical systems using neural networks:

controllability and stabilization,” IEEE Transactions on Neural Networks, vol. 4, no. 2, pp. 192–206, 1993.
[15] H. Lee and I. S. Kang, “Neural algorithm for solving differential equations,” Journal of Computational

Physics, vol. 91, no. 1, pp. 110–131, 1990.
[16] A. N. Gorban, “A generalized approximation theorem and computing possibilities of neural

networks,” Siberian Journal of Calculate Mathematics, vol. 1, no. 1, pp. 12–24, 1998.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


