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We focus on nonlinearity for images and propose a new method which can preserve curve edges
in image smoothing using nonlinear anisotropic diffusion (NAD). Unlike existing methods which
diffuse only among the spatial variants, the new method suggests that the diffusion should be
performed both among the time variants and spatial variants, named time and space nonlinear
anisotropic diffusion (TSNAD). That is, not only the differences of the spatial variants should
be estimated by the nearby spatial points but also the differences of the time variants should be
approximated by the weighted time differences of nearby points, according to the differences of
gray levels between them and the consideration point. Since the time differences of nearby points
using NAD can find more points with similar gray levels which form a curve belt for the center
pixel on a curve edge, TSNAD can provide satisfied smoothing results while preserving curve
edges. The experiments for digital images also show us the ability of TSNAD to preserve curve
edges.

1. Introduction

Nonlinear systems are systems that cannot be mathematically described as the sum of their
components, and their mathematical modeling is often very difficult or impossible. As a
result, nonlinear systems are often studied through use of simulations [1]. Nonlinearity
for many real applications has been widely discussed [2-11], and some methods based on
NAD have been proposed in the early 90s [12-15]. Recently, some efforts for improving the
performance of NAS have been proposed related to numerical method for partial different
function (PDF) theory, adaptive smoothing, and multiresolution analysis [16-22].

Although NAD provides prefect mathematical theory for preserving edges, how to
preserve curve edges in image smoothing using NAD is still an unsolved problem [23, 24].
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In a digital image, a curve edge is composed by discrete points instead of a continuous
curve line. Moreover, the discrete points on a curve edge are composed by two types of points:
one is edge and the other is corner. Note that most of curve edge points are corners instead of
edge points since the curve or declining parts of a curve edge are composed by corners. Note
that unlike the definition of corners in mathematics, a corner point defined in a digital image
is a point with both large modules of gradients and tangents [12-14] or two large eigenvalues
for the tensor matrix [15].

In order to preserve curve edges, some schemes are proposed for different types
of points. For edge points, two famous diffusion schemes, which are diffusion only along
tangent lines or diffusion along backward directions of the gradients, are proposed in [14, 15].
For corners, Alvarez et al. suggest to stop diffusion at [13].

However, these schemes lead to noise amplification, oscillation effects, and blurred
curve edges [23, 24]. Analyzing behavior of these schemes, we can find that the diffusion for
most of discrete points of a curve edge, corners, is stopped or only is carried on a very small
scale. Therefore, the noise is amplified near edges, and corners are blurred even with a very
small-scale diffusion.

Motivated by diffusion along tangents, we propose that the diffusion should be
performed along curve edges to preserve curve edges. However, until now, we can not find
a method to perform the diffusion along the curve edges. It is the result of one-step diffusion
along tangent! Note that diffusion along the tangent means that the diffusion is performed on
a straight line passing through the consideration point and with the direction of the tangent.
Therefore, even with an elaborately selected scale, a straight line can not approximate a curve
edge.

Fortunately, it is well known that a curve edge can be approximated well by
multistraight lines. Although one-step method only gets one straight line, we have to design
a multistep scheme to obtain multistraight lines. This multistep scheme can be realized when
we try to approximate the differences of the time variant of the consideration point using the
time differences of nearby points! Since each time difference relates to one straight diffusion
line, the time differences of nearby points can find multistraight diffusion lines along the
curve edge. Thus, it forms a curve belt along the curve edge!

Based on this theory, a new scheme, named time and space NAD (TSNAD), is
proposed that approximating the difference of time variant uses the time difference of nearby
points with NAD manner. That is, the time differences of nearby points are weighted by the
absolute value of the gray differences between the nearby points and the consideration point.
Then, all time differences are computed by the space differences according to the diffusion
equation.

Since more time differences allow us to find more straight lines, TSNAD can find
enough points with similar gray levels along the curve edges. Therefore, it can preserve curve
edges well.

The rest of this paper is as follows. Section 2 is the method of TSNAD. In Section 3, the
experimental results are given and discussed. We also give conclusions, future works, and
finally acknowledgments.

2. The Method

Just as the above discussion, TSNAD provides a more NAD for time variant to preserve curve
edges. In this section, we will introduce the theory of TSNAD in detail.
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2.1. Motivation

The main objective for image smoothing is reducing image details or slightly noises without
removing significant parts of the image content. Nonlinear anisotropic diffusion (NAD) is
a well-known method in this task [12].

Formally, NAD is defined as

W =div(g(x, v, t) Vu(x, y,t)) (2.1)

where u(x,y,0) is the initial gray-scale image, u(x,y,t) is the smooth gray-scale image at
time ¢, V denotes the gradient, div(-) is the divergence operator, and g(x, y, t) is the diffusion
coefficient. g(x,y,t) controls the rate of diffusion and is usually chosen as a monotonically
decreasing function of the module of the image gradient. Two functions proposed in [12] are

g(IVu(x,y, 1)) = e~ (IVutxyhl/0)? (2.2)
1
g(Vu(xy.0)]) = 7, (2.3)
1+ (|Vu(x v, 1)||/0)
where || - || is the module of the vector, and the constant o controls the sensitivity to edges.

Perona and Malik also propose a simple method to approach the modules of gradients
which is called PM method as follows from the paper [12]. Its discretization for Laplacian
operator is

u(ijt+1) = uli,j, )

+ i[cN -VAu(i, jt) +cs - Vau(i, j,t) + ce - Viu(i, j,t) + cw - Vayu(i, j, t)],
(2.4)

where
vau(i jt) =u(i-1,jt) —u(ijt),
Vauli,jt) = u(i+1,t) - u(i,j,b),
Viu(i,jt) =u(i,j+1,t) —u(ijt),

Vigu(i,j t) = u(i,j = 1,t) —u(i, j,t).

(2.5)

According to (2.2) and (2.3), the diffusion coefficient is defined as a function of module of the
gradient. However, computing a gradient accurately in discrete data is very complex, and
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the module of the gradient is simplified as the absolute values of four directions, and diffu-
sion coefficients are

ex(irjit) = g(|Vnui D)),
es(irj,t) = g(|Vsu(i 1)),
e (irj 1) = g(|Veu(i j, D)),
ew(ijt) = g(ITwulij,)]),

(2.6)

where | - | is the absolute value of the number and g(-) is defined in (2.2) or (2.3).

Although this scheme is not the exact discretization of (2.1) from the view of mathe-
matics, it is the best way for preserving singularities in existing NAD methods since it can
find neighbors with similar gray levels correctly without computing the gradients. Thus, it
reduces the discretization errors greatly.

In addition, unlike other methods which have to distinguish corners form the edges,
PM method allows to handle corners and edges using a unified scheme diffusion only among
neighbors with similar gray levels. This advantage also decreases the influence of incorrect
classification for corners and edges.

However, even for this best scheme in existing methods, how to preserve curve edges
in image smoothing is an unsolved problem. The main difficulty for PM method and other
existing methods is that approximation of a curve edge using a straight line segment (a
line passing through the consideration point and along the tangent with a certain scale) is
impossible.

Thus, we need a new scheme to find multistraight lines to approximate a curve edge.
Intuitively, these multistraight lines should be related to some tangent lines passing through
some of neighbors of the consideration points. Thus, these multistraight lines can be sought
out using a quasimultisteps. That is, differences of the time variant are computed by the time
differences of nearby pixels. It is obvious that each time difference relates to one tangent line.
Thus, multitime differences relate to multitangent lines, which form a curve belt along the
curve edge.

By this way, the new scheme, TSNAD, can provide satisfied smoothing results for pre-
serving curve edges and deleting details.

2.2, The Space Difference

Existing methods approximate the time difference for the left hand of (2.1) by

ou(x,y,t) _uijt+1)—u(ijt) (2.7)
ot At

where u(i, j) is the consideration point, and ¢ is the time variant.
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The space difference for a two-dimension digital image u(i, j) is defined as half-point
differences between the center point u(i, j) and the half points of its eight nearest neighbors

vu(i,j) = [Vou(i,j), Viu(i, j), Vau(i, ), Vsu(i, ), Vau(i, j), Vsu(i, ), Veu(i, j), Vou(i )17,
(2.8)

where T represents the transpose of the vector, and Vu (i, j), k =0, ...,7 are defined as

Vou(i,j) = u(i,j +0.5) —u(i,j),  Viu(i,j) = u(i-05,j+05) - u(i,j),
Vou(i,j) = u(i-05,7) —u(i,j),  Vsu(i,j) = u(i-05,j-05) - uij),
Vau(i,j) =u(i,j-05) —u(i,j),  Vsu(i,j) =u(i+0.5,j-05)-u(i,j),
Veu(i,j) =u(i+05,j) —u(i,j),  Vmu(i,j) =u(i+0.5,j+05)-u(ij).

(2.9)

Thus, the first-scale second-order difference of u(i, j) is

T
V2u(i,j) = |Viu(i, ), Viu(i ), V3u(i ), V3uGi,j), ViuGi,j), V3u(ij), Veu(i,j), ViuG.j)]
(2.10)
where T represents the transpose of the vector. From (2.7), we have
Vouli j) =u(i j+1) —u(if),  Viu(i,j) =u(i-1j+1) - u(ij),
V(i) =i 1) <), V) a1 G,

Viu(i,j) =u(i,j-1) -u(i,j),  Vau(ij)=u(i+1,j-1)-u(ij),
Veu(i,j) =u(i+1,j) —u(i,j), Viu(i,j) =u(i+1,j+1) —u(i,j).

Let
8(i.9) = [80(i, 1), 81(i,7), 82 7), 830, 1), 84 i, 1), 85(i 1), 86 (i, 1), 87 (i, )], (2.12)

where T represents the transpose of the vector, and gk (i, j), k = 0,...,7 are defined as

g (i) = g(|Veu(i,H)|), k=01,...,7, (2.13)
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where Viu(i,j), k = 0,...,7 defined in (2.8) are the components of vector Vu(i,j), and g is
the decreasing function of absolute value of Viu(i, j), k = 0,...,7. Following (2.2) and (2.3),
g(|Vui(x,y,t)]) can be defined as

g(|Vu (i j t)|) = e VGOV’ =0,..,7, (2.14)
or
£(1 V(i 0)) 1 k=0,....7 @.15)
k 7 )7 = 7 = 77 7 .
1+ (|Vur(i,j,£)|/0)?
where | - | is the absolute value of the number, and the constant o controls the sensitivity

to edges. However, half-point difference for Vu(i,j) defined in (2.8) cannot be computed
directly. Thus, the second-order integral-point difference can be used to approximate the first-
order half-point difference. The (2.14) and (2.15) become

g(|Vuk(i, j,£)|) = e (Vu@inl/o) < e (Vuidl/o’ e _o 7 (2.16)
1 B 1
L+ ([Vu(i )] /0)® 1+ (|V2ui(irji 1) ] /0)*

g(|Vur (i, j,t)]) = k=0,....,7. (217)

The NAD is converted to

/8000, Vou(i,j, )\
§1,7)Vau(i, 1)
(i, j)Vau(i, o)

(i, jt) _ | 4io 83(i,7) Vau(i, j, t)

ot 9 (i, ) Vau(i, 1)

g5(i, ) Vsu(i, o)

96(i, ) Vou(i, )

\g (i, /) V7u(iij,t)/

, (2.18)

where 1 is a constant to ensure the convergence of the iteration, the Viu(i, j,t), k =0,...,7
are the components of vector Vu(i, j, t) in (2.10), and gk (i, j), k =0, ...,7 defined in (2.13) are
the components of g(i, j) in (2.12). Moreover, gk (i, j) in (2.13) can be represented by (2.16) or
(2.17).

The above equation also is

au(i’j’t) 4 .. 2 ..
— = )Lkgogk(z,j)vku(l,], t), (2.19)

where A is a constant to ensure the convergence of the iteration. V3u(i, j, ) is the second-order
difference of the kth components of u(i, j) which can be computed according to (2.10).
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Thus, we have

ou(i,j,t 7
u(lat] ). =u(i,jt+1)-u(ijt) = J\ng (i,7)Viu(i, j,t), (2.20)
k=0

where u(i, j, t + 1) is the gray level of (i, j) at time t + 1, and g« (i, j), Viu(i, j,t),k=0,...,7 are
defined in the same way as in (2.19).

2.3. The New Time Difference

In this paper, we propose that not only the space differences but also the time differences
should be estimated using NAD. That is, the time difference of u(i, j, t) should be estimated
using the time differences of nearby points. In this section, we will discuss the simplest form
for new time differences approximated by the weighted time differences of its eight nearest
neighbors.

Representing this approximation using the terms of high-dimensional vector analysis,
a vector is defined as

ou(i,j,t) | 0uo(ij,t) oui(i,j,t) Oua(i,jt) Ous(i,j,t) Oua(i,jt)
o oo ~ ot ~ ot ot o
(2.21)

dus(i, j,t) dus(i,j,t) dur(i,jt)]"
o0~ ot ot ’

where T represents the transpose of the vector, and oux(i, j,t)/0t, k = 0,...,7 are defined as

ouo(i, j, t) B ou(i,j+1,t) oui (i, j, t) B ou(i-1,j+1,t)

ot B ot ’ ot ot
ou(i,j,t)  ou(i-1,jt) ous(i,j,t) ou(i-1,j-1,t)

ot ot ! ot ot ! (2.22)
Ous (i, j,t)  ou(i,j-1,t) ous(i,j,t) ou(i+1,j—1,t)

ot ot ! ot ot ’
Oue (i, j, 1) ~ ou(i+1,j,t) ouy (i, j,t) ~ ou(i+1,j+1,t)

ot ot ! ot ot '

The diffusion coefficients for oux(i, j,t)/0t, k = 0,...,7 are represented by a vector
g(i, j) defined in (2.12), and its components are defined in (2.16). Thus, the time difference of
u(i,j) is

ou(i, j,t) ou(i,jt) ../ .. rou(ijt)
i _)Ll[ 5 +d1v<g(1,]) T) , (2.23)
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where T represents the transpose of the vector, 1; is a constant to ensure the convergence of
the iteration, and ou(i, j, t) /Ot is defined in (2.21). Thus, (2.23) is

= (2.24)

ou(i, j,t) Y [au(z i) Zg( )auk(l ],t)],

where Oui (i, j,t)/0t, k = 0,...,7 are the components of vector du(i, j, t) /0t defined in (2.21),
and gk (i,j), k =0, ...,7 are the components of vector g(i, j) defined in (2.12).

According to (2.24), the time difference of u(i, j, t) is estimated by the weighed time
difference of its neighbors according to the difference of the gray levels between them and
u(i, j,t). That is, the neighbors whose gray levels are more similar to u(i, j, t) have larger
weights.

2.4. Time and Space NAD (TSNAD)

Substituting (2.19) and (2.21) into (2.24), we have the equation of TSNAD,

6u(;,tj,t) L [6u(1 L7 b) Zg ) 8uk(z j 1) ]

7 7
= I:)Lng(i,j)Viu(i, jot) + Ago(i, 1) D gk (i, j+1,£) Viu(i,j +1,t)
k=0 k=0
7
+A&1(i, ) D&k (i—1,j+1,t)Viu(i—-1,j+1,t)
k=0
7
+A&2(1,7) Doge(i=1,7,H) Viu(i=1,jt)
k=0
7
+1g3(1,7) D gk (i—1,j - L) Viu(i-1,j - 1,t) (2.25)
k=0
7
g (i,7) Ygi(i,j — 1,8) Viu(i,j-1,t)
k=0
7
+Ags(i, ) D gk (i+1,j -1, t)Viu(i+1,j-1,t)
k=0

7
+ g6 (i, 1) D> &k (i+1,j,t)Viu(i+1,j,t)
k=0

7
+1g7(i,7) D gk (i+1,j+1,t)Viu(i+1,j+ 1,t)].
k=0
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Let A1 x A = A be a constant to ensure the convergence of the iteration, (2.25) becomes

ou(i,j,t) U 4
21D 3| S0 ) V200111) + 07) St + 1OV 1,1
k=0 k=0

7
+1(i, ) Dg(i-1,j+1Lt)Viu(i-1,j+1,t)
k=0
7
+82(i,7) Y8k (i =1, j, ) Viu(i =1, jit)
k=0
7
+ 830, ) D ge(i=1,j-1,6)Viu(i-1,j - 1,t)
k=0
7
+ 80, ) Yge(inj —1,6) V3ui,j - 1,1)
k=0
7
+85(i, ) Dgk(i+1,j-Lt)Viu(i+1,j-1,t)
k=0
7
+86(i,7) D&k (i+1,j, ) Viu(i+1,j,t)
k=0

7
+87(i, ) Dge(i+1,j+1,t)Viu(i+1,j+ 1,t)],
k=0
(2.26)

where gx(i,j), k = 0,...,7 defined in (2.13) are the components of vector g(i,j) defined in
(2.12), and Viu(i,j), k=0,...,7 are the components of V*u(i, j) defined in (2.10).

3. The Experiments and Discussion

In order to analyse the performance of TSNAD and compare it with existing methods, two
images are selected in our experiments: one is a gray level image of an autotire, most of whose
edges are curve edges (see Figure 1(d)); the other is a binary image with some test patterns
including circles with different width, filled circles and some shapes with curve edges, and
so forth (see Figure 2(d)). Both images are selected from the standard test images of MatLab.

Essentially, there are only three schemes for NAD until now: PM method [12, 13],
backward filter [14], and coherence filter [15].

PM provides a simple discretization scheme for (2.1) by diffusion among points in
four directions with similar gray levels to the consideration point. Although PM method is
not the exact discretization of (2.1) from the view of mathematics, it has the best performance
in existing methods because of the direct computing of diffusion coefficients using the
differences of gray levels without computing the gradients [12].

Backward filter suggests that the diffusion near edges should be performed along the
backward directions of the gradients [14], while coherence filter suggests that the diffusion
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(c) Recoded difference

(d) Original image (e)  Backward filter (f) Recoded difference
results i

(g) Noisy image (h)  Coherence filter (i) Recoded difference
results image

G) (k) Proposed method (I) Recoded difference
results image

Figure 1: Smoothing results for the noisy image (g) and the recoded difference images between the relative
smoothing images at their left and the original image (d) using different schemes.

should be performed along the tangents [15]. These two methods have to approximate the
gradients and tangents using few discrete directions which leads to discretization errors.
Moreover, since these two methods assume that the curve edges are composed by both
corners and edges which should be handled separately, the diffusion has to stop at the corners
or perform in a very small scale. The former will amplify noises at the corners while the latter
will blur the corners. Therefore, both schemes can not provide satisfied smoothing results for
curve edges.

TSNAD has all advantages for the above schemes. Firstly, its diffusion coefficients
are computed according to PM method which can reduce the discretization errors greatly.
Secondly, it adopts the scheme of diffusion along the curve edges to reduce the influence of
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(c) Difference image

(d) The image (e)  Backward filter (f) Difference image
results

(g) (h)  Coherence filter (i) Difference image
results

G) (k) Proposed method () Difference image
results

Figure 2: Smoothing results for the image (d) and the difference images between the relative smoothing
images at their left and the original image (d) using different schemes.

the noises. Thirdly, it provides a more NAD for time variant to track the curve edges. Thus
TSNAD has good performance both in image smoothing and curve edge preserving.

In the first image (see Figure 1(d)) is added a Gaussian white noise (GWN) with
standard deviation 5 (see Figure 1(g)) to test the smoothing performance at slight noises. The
NAD is performed on the noisy image, while the difference image is absolute difference value
images between the relative smoothing images and the original image (see Figures 1(c), 1(f),
1(i), and 1(1)). Note that the difference images are recoded to show the relation in difference
images more clearly. Thus, although Figure 1(1), which is the difference image between the
smoothing image using TSNAD and the original image, has the much more white points, it
does not mean that TSNAD has the biggest absolute difference to the original image because
of “recorded” image. However, the difference images at least can provide what parts of the
original image represented by white points are corrupted more seriously. For example, the
white points in Figures 1(f) and 1(i) are all on the curve edges means that backward filter and
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coherence filter will blur the curve edges, while the white points in Figure 1(1) are distributed
very randomly means that the curve edges will be kept well.

The second image is a binary image with many test patterns (see Figure 2(d)).
Observing the difference images in Figures 2(c), 2(f), 2(i), and 2(1), we can find that the
difference image of the TSNAD has no white points means that it is very similar to the
original image (see Figure 2(1)). Moreover, the difference image for the PM method has big
differences at thinning edges (see Figure 2(c)), while the backward filter only lost curve edges
(see Figure 2(f)). The difference image for the coherence filter shows that all edges for test
patterns are lost (see Figure 2(i)).

From the above experiments and discussion, we can conclude that TANAD can
preserve curve edge well in image smoothing.

4. Conclusions

In this paper, we propose TSNAD to preserve curve edges in image smoothing. Unlike
existing methods which only perform NAD for the space variant, TSNAD also allows us to
approximate the differences of time variant using NAD. The more time differences for NAD
form curve belts along the curve edges, which can provide better fitness for curve edges.
Thus, TSNAD can get satisfied results both in curve edge preserving and image smoothing.

5. Future Works

Recently, fractional-order transforms become a hot topic in many fields both in theory and
in application [5-7, 25-31] for their attractive natures in image and signal processing. Thus,
our future works will be devoted to the combination of NAD and the fractal; it includes the
following.

(1) It is a work trying the kernel of fractional order in (2.2) instead of power of 2 [32].

(2) The future work will consider the fractional Gaussian noise (fGn) following [25-27,
32, 33]. In addition to fGn, other classes of Gaussian noise, such as the generalized
Cauchy (GC) process [29-31], are also worth experiments. Further, multiscaled fGn
or the GC noise [28-31] are worth noting in experiments.
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