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New analysis and control design conditions of discrete-time fuzzy systems are proposed. Using
fuzzy Lyapunov’s functions and introducing slack variables, less conservative conditions are
obtained. The controller guarantees system stabilization and H∞ performance. Numerical tests
and a practical experiment in Chua’s circuit are presented to show the effectiveness.

1. Introduction

Model-based fuzzy control is a widespread approach to deal with complex nonlinear
dynamics [1]. Within this context, Takagi-Sugeno (TS) fuzzy model [2] is a landmark. It
consists on fuzzy rules describing global (semiglobal) dynamics as linear models (locally
valid) interpolated by membership functions.

From themodeling point of view, TS systems are known to be universal approximators
[3, 4] and to possess a reduced number of rules, when compared with other fuzzy models
[5]. Another interesting feature is the existence of a systematic procedure to obtain TS
models from the nonlinear system equations, namely, the sector nonlinearity approach [3].
An advantage for control purposes is the possibility to use the Lyapunov stability theory
and, simultaneously, to rely on tools from linear systems theory [3].

Methodologies based on Lyapunov’s functions provide a straightforward way to
describe stability and control design issues of TS systems by means of linear matrix
inequalities (LMIs) [6], of which the solutions can be computed in polynomial-time by
convex optimization techniques. There are several approaches to design fuzzy controllers
that, besides stability, also guarantee some type of performance for the closed-loop nonlinear
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system asD-stability regions [7], constraints over input/output signals [3], and performance
indexes, such as H∞ and H2 norms [8–13].

In TS-based control, Lyapunov’s function candidates are classified in three categories
[1]: the common quadratic Lyapunov function (CQLF), the piecewise Lyapunov function
(PLF), and the fuzzy Lyapunov function (FLF). Most efforts deal with sufficient conditions
for the existence of a CQLF [3], a single quadratic function that guarantee stability for all
fuzzy subsystems. However, as the number of rules increases, the CQLF turns out to be very
conservative.

To keep obtaining solutions with the CQLF, many techniques were developed.
Usually the underlaying strategy among them (see [14–16] and references therein) is the
use of quadratic form relaxations (right-hand side slack matrix variables) into the LMI
formulation. Extravariables improve the numeric behavior of LMI solvers, at the cost of
higher computational time. Recently, sufficient and necessary conditions for the existence
of CQLF were discussed in [17–19], reaching the limits of quadratic stability.

Nonetheless, a CQLF might not exist even for a stable TS system, as demonstrated
in [20]. An well-established alternative to overcome this problem is the PLF [20–22], which
consists of a finite combination of disjoint common quadratic Lyapunov’s functions, each of
them valid only into a compact domain.

The PLF is suitable whenever the TS model is not activating at each time the whole
set of its linear models. Nevertheless, this assumption does not hold for many TS models.
Another drawback is how to assess the behavior of the PLF at the boundaries of the
partitions. Solutions range from considering boundary conditions [21] to introduce extra LMI
constraints that guarantee continuity of the function across boundaries [20] and to use some
methods ensuring that the function decreases when leaving one subspace for another closer
to the equilibrium, relaxing the continuity assumption [22].

More recently, approaches based on the FLF [9, 23]were developed. The FLF is a fuzzy
blending ofmultiple quadratic functions, in the sameway the TSmodel is constructed. Unlike
the PLFs, continuity is an inherent feature of the FLF. Furthermore, the quadratic functions
used to construct an FLF do not need to be Lyapunov’s functions by themselves, just its fuzzy
combination does.

Thus, the FLF has been attracting much attention. For continuous-time fuzzy systems
(CFS), recent results are given in [24–31]. As to discrete-time fuzzy systems (DFS) see [12, 13,
32, 33].

TheH∞ index is an adequate criterion to control and filter design in nonlinear systems
with exogenous inputs with unknown spectral density and bounded energy (see [11, 34–37]
and references therein for examples of practical applications) and computes the greatest ratio
between the system output and the noisy input. Conservative conditions may not give a
good tradeoff between disturbance attenuation level and a feasible controller, so the FLF is
an interesting candidate [12, 13, 33].

This paper presents new sufficient conditions toH∞ control for DFS in the TS form. To
promote these improved conditions, three different strategies are employed. First, an FLF
is adopted, since recent works reveal that this type of function is less conservative than
the CQLF for TS systems. Then, a series of matrix transformations [38–40] are performed,
allowing to obtain LMIs in which the controller gains are not directly dependent on the
Lyapunov matrices, introducing extradegree of freedom for the optimization problem.
Finally, [15] provides a successful approach to introduce slack matrix variables into the
stabilization control, enhancing the numerical behavior of LMI solvers. This strategy was
further extended toH∞ control in [11] and is used in this paper. Numeric examples illustrate
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the improvement provided by merging these approaches. Smaller attenuation levels are
achieved, and solutions are computed even for systems in which some other methods
fail. A practical experiment using the Chuas’s chaotic oscillator [41] is given to show the
performance of the proposed methodology.

Notation 1. The notation is standard. Transpose of vectors and matrices are indicated by
the superscript (′); the symbol (•) denotes transposed terms in symmetric matrices; the sets
{1, 2, . . . , r} and {1, 2, . . . , s} are indicated by R and S, respectively; l2 is the discrete Lebesgue
space; ‖ · ‖2 is the l2 norm.

2. Preliminaries on TS Systems

Consider nonlinear discrete-time systems that can be expressed as Takagi-Sugeno (TS) fuzzy
models [2], according to the following fuzzy rules:

Ri :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

IF q1
k
IS Mi

1 AND · · ·AND qs
k
IS Mi

s,

THEN
xk+1 = Aixk + Biuk + Eiwk,

zk = Cixk +Diu + k + Fiwk,

(2.1)

where Ri, i ∈ R, denotes the ith fuzzy inference rule. In rule Ri, the fuzzy sets are given by
Mi

j , j ∈ S; qjk are the premisse variables at instant k. qk ∈ R
s is the premisse variables vector,

stacking the premisse variables; xk ∈ R
n is the state vector; uk ∈ R

m is the control signal;
wk ∈ R

p is a disturbance input, belonging l2; zk ∈ R
q is the regulated output.Ai, Bi, Ci,Di, Ei,

and Fi are the local matrices of proper dimensions.
By using a standard fuzzy inference method, that is, using a singleton fuzzifier,

product fuzzy inference, and center-average defuzzifier, the global inferred TSmodel is given
by [1, 3]

xk+1 =
r∑

i=1

hi

[
qk
]
(Aixk + Biuk + Eiwk),

zk =
r∑

i=1

hi

[
qk
]
(Cixk +Diuk + Fiwk),

(2.2)

where hi[qk] are weighting functions, denoting the normalized grade of membership of each
rule, which satisfy

hi

[
qk
] ≥ 0 i ∈ R,

r∑

i=1

hi

[
qk
]
= 1. (2.3)

To avoid clutter, assume hi[qk] � hi and hi[qk+1] � h+
i .
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2.1. Parallel Distributed Compensation

The control law adopted is given by the parallel distributed compensation (PDC) [3], where
the control signal consists in a fuzzy combination of linear-state feedbacks, likewise the TS
model

Ri :

⎧
⎨

⎩

IF q1
k
IS Mi

1 AND · · ·AND qs
k
IS Mi

s,

THEN uk = Kixk,
(2.4)

where Ki are the local gains.
Thus, the inferred nonlinear controller is given by

uk =
r∑

i=1

hi

[
qk
]
Kixk, (2.5)

where hi[qk] are the same membership functions of (2.2).
Taking (2.5) into account, the closed-loop description for (2.2) is given by

xk+1 =
r∑

i=1

r∑

j=1

hihj

(
Gijxk + Eiwk

)
,

zk =
r∑

i=1

r∑

j=1

hihj

(
Jijxk + Fiwk

)
,

(2.6)

where Gij � Ai + BiKj and Jij � Ci +DiKj .

2.2. Fuzzy Lyapunov’s Function

In order to obtain less conservative conditions, the following fuzzy Lyapunov function (FLF)
[9] is adopted:

Vk = x′
k

(
r∑

i=1

hiPi

)

xk, (2.7)

sharing the samemembership functions of (2.6). It is interesting to note (see the discussion on
Section II.B in [23]) that the locally valid functions Vk = x′

k
Pixk do not need to be Lyapunov’s

functions by themselves. Only its combination does, namely (2.7), representing an advantage
when compared to the CQLF and the PLF.

3. Less Conservative Conditions

In this section, new sufficient conditions for the stabilization and analysis of (2.6) are
developed.
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3.1. H∞ Performance

In addition to stabilization, the designed controller must attenuate exogenous entries into the
regulated output. There are several ways to quantify the effect of wk on zk. In this paper, the
H∞-norm is adopted

sup
wk

‖z‖2
‖w‖2

≤ γ, ∀zk /= 0. (3.1)

The H∞-norm computes the l2-gain between the noisy input and the system output.
In other words, the greatest ratio between the output energy and the exogenous input energy,
being suitable when no information about the spectral density of the disturbances is known
a priori [42].

There are two usual ways to apply theH∞ performance: one goal is to find a controller
that guarantees γmin, the minimum value of the H∞-norm; on the other hand, it is possible
to obtain a controller that stabilizes the system with a prescribed value γ or theH∞-norm. In
the following sections, both cases are addressed.

3.2. Control Design

The main result of this paper can be stated in the following theorem that provides a sufficient
condition to obtain the gains of the fuzzy controller (2.5) that stabilizes the TS system (2.6)
with the minimum guaranteed cost γmin.

Theorem 3.1. The fuzzy controller (2.5) stabilizes the TS system in (2.6), with a H∞ guaranteed
cost given by γmin =

√
δ, if there exist symmetric matrices Xi, Rij , Tijt, and any matrices L, Mi, and

Sijt satisfying the following optimization problem:

min
Xi,Rij ,Tijt,
L,Mi,Sijt,δ

δ

s.t. Ξt ≺ 0, Xi � 0, (i, t ∈ R),
Tijt � 0,

(
i > j, i, j, t ∈ R),

(3.2)

where

Ξt �

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Q11t − Z1t • . . . •
Q21t +W21t Q22t − Z2t . . . •

...
...

. . .
...

Qr1t +Wr1t Qr2t +Wr2t . . . Qrrt − Zrt

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (3.3)
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Qijt �

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
2
(
Γi + Γj

) • • •
0 −δI • •

1
2
(
Ψij + Ψji

) 1
2
(
Ei + Ej

) −Xt •
1
2
(
Φij + Φji

) 1
2
(
Fi + Fj

)
0 −I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (3.4)

Γi � Xi − L − L′, Wijt � Vijt + Tijt + Sijt − S′
ijt, (3.5)

Ψij � AiL + BiMj, Φij � CiL +DiMj, (3.6)

Vijt =

⎧
⎨

⎩

1
2
Rij , if i = t or j = t,

0, otherwise,
Zit =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Rit, if i < t,

Rti, if i > t,

0, if i = t.

(3.7)

Furthermore, the local gains are given by Ki � MiL
−1.

Proof. The proof of Theorem 3.1 is given in the appendix.

It is also desirable to design a stabilizing controller that provides a specific H∞
guaranteed cost. In this case, the scalar γ should be provided beforehand and the next
theorem should be applied.

Theorem 3.2. Let δ > 0 be a scalar given. The fuzzy controller (2.5) stabilizes the TS system in (2.6),
with a prescribedH∞ guaranteed cost given by γ =

√
δ, if there exist symmetric matricesXi, Rij , Tijt,

and any matrices L, Mi, and Sijt satisfying the following LMIs:

Ξt ≺ 0, Xi � 0, Tijt � 0,
(
i > j, i, j, t ∈ R), (3.8)

where Ξt is given as in (3.3). Furthermore, the local gains are given by Ki � MiL
−1.

Proof. See the appendix.

3.3. Analysis

Another problem is the analysis of fuzzy system when the control gains are already given. To
search for γmin provided by a given controller, the next theorem should be used.

Theorem 3.3. Let the gains Ki be given. The fuzzy controller (2.5) stabilizes the TS system in (2.6),
with aH∞ guaranteed cost given by γmin =

√
δ if there exist symmetric matricesXi, Rij , Tijt, and any

matrices L, and Sijt satisfying the following optimization problem:

min
Xi,Rij ,Tijt,
L,Sijt,δ

δ

s.t. Ξt ≺ 0, Xi � 0, (i, t ∈ R),
Tijt � 0,

(
i > j, i, j, t ∈ R),

(3.9)

where Ξt is given as in (3.3) and Ψij � (Ai + BiKj)L and Φij � (Ci +DiKj)L.
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Proof. See the appendix.

Finally, it is possible to check by the next theorem if a given controller guarantees a
prescribed H∞ performance γ .

Theorem 3.4. Let the scalar δ > 0 and the gainsKi be given. The fuzzy controller (2.5) stabilizes the
TS system in (2.6), with a prescribed H∞ guaranteed cost given by γ =

√
δ if there exist symmetric

matrices Xi, Rij , Tijt, and any matrices L, and Sijt satisfying the following LMIs:

Ξt ≺ 0, Xi � 0, Tijt � 0,
(
i > j, i, j, t ∈ R), (3.10)

where Ξt is given as in (3.3) and Ψij � (Ai + BiKj)L and Φij � (Ci +DiKj)L.

Proof. See the appendix.

4. Numeric Results

In this section, numerical examples illustrate the performance of the proposed approach in
comparison to some methods presented in the literature. The tests were performed using
SeDuMi [43] together with Yalmip [44] in Matlab 7.4.0.

Example 4.1. The following example is borrowed from [10]. Consider DFS as in (2.2) which
the premisse variable is x1

k
. The local matrices are

A1 =

[
1 + a −0.5
1 0

]

, A2 =

[−1 −0.5
1 0

]

,

B1 =

[
1

1 − b

]

, B2 =

[−2
1

]

, E1 =

[
0.2

0.3

]

, E2 =

[
0.5

−0.1

]

,

C1 =

[
1

0.5

]′

, C2 =

[
0.5

1

]′

,
D1 = 1, D2 = 0.5,

F1 = 0.4, F2 = 0.2.

(4.1)

The membership functions for this system are

h1

[
x1
k

]
=

(
1 − sin

(
x1
k

))

2
, h2

[
x1
k

]
=

(
1 + sin

(
x1
k

))

2
. (4.2)

Let a PDC controller (2.5) be given with the following gains:

K1 =
[−0.65 0.30

]
, K2 =

[−0.87 0.11
]
. (4.3)

In this example, the objective is to determine the minimumH∞ guaranteed cost γmin achieved
when the PDC controller (4.3) is employed. Table 1 shows the results obtained considering
b = 0 and different fixed values for the parameter a. Note that the lower values of γmin are
found using Theorem 3.3.
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Table 1: Comparison of γmin by different strategies.

a 0.0 0.2 0.4 0.6
γ-[8, Theorem 2] 1.8141 2.0403 2.6983 9.6492
γ-[11, Theorem 1] 1.8107 2.0361 2.5716 5.9496
γ-[10, Theorem 1] 1.3244 1.5277 2.0395 5.5236
γ-Theorem 3.3 1.3231 1.4667 1.8400 5.2001

Table 2: γmin computed for several values of β.

β [13, Theorem 3] [13, Theorem 4] [11, Theorem 1] Theorem 3.1
0.01000 0.0167 0.0167 0.0167 0.0167
0.10000 0.0168 0.0169 0.0168 0.0168
0.50000 0.0175 0.0192 0.0178 0.0174
1.00000 0.0200 0.3322 0.0269 0.0200
1.01459 0.0202 99.949 0.0277 0.0202
1.43200 8.7340 — — 0.0308
1.45000 — — — 0.0318
1.50000 — — — 0.0352
1.75000 — — — 0.1108
1.80000 — — — 0.2319
1.84320 — — — 10.153
1.85000 — — — —

Example 4.2. Consider another DFS with x1
k as premisse variable. The membership functions

and local matrices are

h1

[
x1
k

]
=

x1
k + β

2β
, h2

[
x1
k

]
= 1 − h1

[
x1
k

]
,

A1 =

[
1 −β
−1 −0.5

]

, A2 =

[
1 β

−1 −0.5

]

,

B1 =

[
5 + β

2β

]

, B2 =

[
5 − β

−2β

]

,

E1 = E2 =

[−0.03 0.01

0 0.01

]

, C1 = C2 =

[ −0.1
−0.05

]′

,

D1 = D2 = 0.5, F1 = F2 =
[
0.01 0.01

]
.

(4.4)

In this example, the controllers are designed to provide the minimum value of the
H∞ guaranteed cost, γmin. Table 2 summarizes γmin using different approaches for several
fixed values of the parameter β compared with Theorem 3.1. Note that for all strategies,
γmin increases as β increases. For |β| < 0.5 all approaches find very similar values for γ .
When β is close to 1, the performance of [13, Theorem 4] deteriorates, whereas the remaining
approaches calculate low values for γ . When β gets closer to 1.45, only the proposed approach
and [13, Theorem 3] are feasible. For β ≥ 1.45, only the proposed approach remains feasible.
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Table 3: Gains obtained by Theorem 3.1 considering γ = 0.5.

Gain Value
K1 [−1.0062 − 0.3178]
K2 [−0.9730 − 0.2076]

50 100 150 200 250
−0.8
−0.6
−0.4
−0.2

0
0.2
0.4
0.6

Sample

x
1 k

Figure 1: Closed-loop system, x1
k
trajectory.

Clearly the proposed approach always provides the best signal attenuation since smaller
values of γ are found, as shown in boldface in Table 2.

Example 4.3. Consider the same DFS described in Example 4.1. Theorem 3.2 is applied in
order to design a controller that guarantees an attenuation level γ = 0.5 when b = 0 and
a = 0.5. The gains obtained are given in Table 3.

Simulationswere performed to show the response of the TS system under the designed
PDC controller. A total of 250 iterations were considered and the disturbance signal applied
is as follows:

wk =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−0.25 40 ≤ k ≤ 60,

0.25 100 ≤ k ≤ 110,

−0.30 110 < k ≤ 120,

e1k 150 ≤ k ≤ 175,

e2k 190 ≤ k ≤ 220,

(4.5)

where e1
k
, e2

k
are gaussian noises, with zero mean and standard deviations 0.05 and 0.10,

respectively.
Assuming as initial conditions x0 = [0.7 − 0.2]′ the trajectory described by the

controlled systems is depicted in Figures 1 and 2. Note that the designed controller is able to
stabilize the TS system after the initial conditions and also after the presence of an exogenous
entry (both states converge asymptotically to zero).

Figure 3 reveals that the controller indeed reduces the effect of the noisy input into the
regulated output. The computation revelas that ‖zk‖2 = 0.6406 and that ‖wk‖2 = 1.7919,
resulting in an attenuation factor γ = 0.3575. Notice that even for a rather complicated
disturbance signal as the one in (4.5), the attenuation provided by the controller was smaller
than the upper bound prescribed. The control signal is shown in Figure 4.
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−0.2
−0.1

0
0.1
0.2
0.3

50 100 150 200 250

Sample
x
2 k

Figure 2: Closed-loop system, x2
k
trajectory.

−0.4

−0.2
0

0.2

0.4

50 100 150 200 250

Sample

z
k
,w

k

Figure 3: Disturbance signal (dashed) and system regulated output (continuous).

5. Experimental Results

This section presents practical control experiments using the proposed methodology into the
Chua’s chaotic oscillator [41, 45]. This system is implemented on a laboratory setup called
PCCHUA, with a complete set of tools to perform discrete-time control and data acquisition.
Constructive aspects and details can be found in [46].

5.1. TS Model of Chua’s System

The Chua’s chaotic oscillator is continuous-time system with three unstable fixed points, and
its trajectory in the space state is confined to a double-scroll attractor [45]. The following
equations describe the system dynamics:

ẋ1(t) =
1
C1

{
x2(t)
R

− x1(t)
R

− g(x1(t))
}

,

ẋ2(t) =
1
C2

{
x1(t)
R

− x2(t)
R

+ x3(t)
}

,

ẋ3(t) = −x2(t)
L

− R0

L
x3(t),

(5.1)

where g(x1(t)) is a nonlinear function given by

g2x1(t) +

(
g1 − g2

)
(|x1(t) + E| − |x1(t) − E|)

2
, (5.2)

with g1 and g2 being conductance values.
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50 100 150 200 250

−0.6
−0.4
−0.2

0
0.2
0.4
0.6

Sample
u
k

Figure 4: Control signal.

First, to use a discrete-time control strategy available in the PCCHUA framework, a
discretized version of (5.1) is obtained by employing the methodology from [47]. Then, the
sector nonlinearity approach [3] is applied to obtain a DFS. These modelling details can be
found in [11].

A single-premisse variable is chosen: x1
k ∈ [−d, d]. The following fuzzy rules are able

to exactly represent the dynamics of the discretized Chua’s oscillator:

R1 :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

IF x1
k
IS M1

1 (near 0),

THEN
xk+1 = A1xk + B1uk + E1wk,

yk = C1xk + F1wk,

R2 :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

IF x1
k IS M2

1 (near ± d),

THEN
xk+1 = A2xk + B2uk + E2wk,

yk = C2xk + F2wk.

(5.3)

The local matrices are given by

Ai =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 − T

RC1
− Tgi

C1

T

RC1
0

T

RC2
1 − T

RC2

T

C2

0 −T
L

1 − TR0

L

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

Bi =

⎡

⎢
⎢
⎣

−1
0

0

⎤

⎥
⎥
⎦, Ei =

⎡

⎢
⎢
⎣

1 × 10−3

0

0

⎤

⎥
⎥
⎦,

Ci =

⎡

⎢
⎢
⎣

1

0

0

⎤

⎥
⎥
⎦

′

, Di = 0, Fi = 1 × 10−4,

(5.4)



12 Mathematical Problems in Engineering

Table 4: DFS parameters.

Parameter Value
C1 30.14μF
C2 185.6μF
L 52.28H
R 1673Ω
R0 0Ω
g1 −0.801mS
U −0.365mS
E 1. 74V
d 6V
T 10ms

Table 5: Gains obtained by Theorem 3.1.

Gain Value
K1 [1.1667 0.2132 0.3935]
K2 [1.0640 0.2132 0.3935]

where g2 � U + (g1 −U)E/d.
The membership functions are

h1

[
x1
k

]
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−αx1
k
+ E

(1 − α)x1
k

, x1
k ≥ E,

−αx1
k − E

(1 − α)x1
k

, x1
k
≤ E,

1, otherwise,

h2

[
x1
k

]
= 1 − h1

[
x1
k

]
,

(5.5)

where α � E/d.
The parameters of the fuzzy model are given in Table 4.

5.2. Fuzzy Control of Chua’s System

After obtaining a fuzzy model, it is possible to use Theorem 3.1 to design a PDC controller
that guarantees asymptotically stability whenwk = 0 and that minimizes theH∞ guaranteed
cost between wk and zk. Since the PCCHUA contains a real Chua’s circuit, the plant
is subjected to noisy signals, quantization error, and random interferences, acting as
disturbances inputs. Due to this reason, the proposed control scheme is suitable.

The gains shown in Table 5 are obtained after solving Theorem 3.1. These gains must
be transformed to include the effect of the zero-order holder and to be compatible with the
system actuators [36]. Therefore, the real gains are Ki = C1Ki/T .

The elapsed time during this control experiment is 60 s. Only between 25 s and 35 s,
the control action is performed. In the remaining time, the circuit runs freely. The system
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Figure 5: x1(t) trajectory.
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Figure 6: x2(t) trajectory.

trajectory is shown in Figures 5, 6, and 7. Notice that the fuzzy controller is able to stabilize the
system at the origin. The convergence of x1(t) is faster than the convergence of the remaining
states. Possible reasons are the fact that the control action is applied only on x1(t) and that
the system output is given only by x1(t). Nonetheless, the design controller accomplishes its
goals. Notice in Figure 5 that the presence of disturbances in the output is negligible.

The control signal is depicted in Figures 8 and 9. Figure 9 is a close view pointing out
the zero-order hold characteristic of the control signal.

6. Conclusion

Different strategies to reduce numeric conservatismwere combinedwith the fuzzy Lyapunov
function to promote less conservative LMI conditions for H∞ fuzzy control design and
analysis. Some numerical results showed that the proposed approach outperforms recent
strategies. Also a practical experiment in the Chua’s oscillator was performed to show the
effectiveness of the proposed approach.

Appendix

The following Lemmas are required in the development of the proof of Theorem 3.1.

Lemma A.1. If S � 0, then

A′
iSAj +A′

jSAi 
 A′
iSAi +A′

jSAj. (A.1)

Proof. Notice that

S � 0 =⇒ (
Ai −Aj

)′
S
(
Ai −Aj

) � 0, (A.2)
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Figure 7: x3(t) trajectory.
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Figure 8: Control signal.

leading to

A′
iSAi −A′

iSAj −A′
jSAi +A′

jSAj � 0, (A.3)

which completes the proof.

Lemma A.2. Assume that hi (i ∈ R) satisfy (2.3) and let Rij (i < j, i, j ∈ R) be symmetric matrices
of appropriate dimension. Define

H �

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

H11 α12R12 . . . α1rR1r

α12R12 H22 . . . α2rR2r

...
...

. . .
...

α1rR1r α2rR2r . . . Hrr

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (A.4)

where

Hii � −
r∑

j=1
j>i

hjRij −
r∑

j=1
j<i

hjRji,

αkl � 1
2
(hk + hl).

(A.5)
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Figure 9: Control signal, close view.

Then,

[h1h2 · · ·hr]H[h1h2 · · ·hr]
′ = 0. (A.6)

The proof of Lemma A.2 can be found in [15, Appendix A].

Lemma A.3. IfW � 0, then

−SW−1S′ 
 −(S′ + S −W
)
. (A.7)

Proof. Since W � 0, there exists W−1. Thus,

(W − S)W−1(W − S)′ � 0,

WW−1W −WW−1S′ − SW−1W + SW−1S′ � 0,

W − S′ − S + SW−1S′ � 0,

(A.8)

concluding the proof.

Proof of Theorem 3.1. Consider the induced l2-gain between the disturbance signalwk and the
system output zk in (3.1) and the closed-loop TS system in (2.6). The stability and the H∞
performance can be achieved if the following inequality holds [11, 36, 42]:

V = ΔVk + z′kzk − γ2w′
kwk < 0, (A.9)

where

ΔVk � x′
k+1

r∑

t=1

h+
t Ptxk+1 − x′

k

r∑

i=1

hiPixk, (A.10)

is the increment of the fuzzy Lyapunov function candidate Vk, shown in (2.7).
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According to (2.6), it follows that

V = ξ
′∑r

t=1 h
+
t

∑r
i=1

r∑

j=1

r∑

l=1

r∑

v=1

hihjhlhv

(
Λ′

ijP tΛlv − P̃i

)
ξ, (A.11)

where ξ � [x′
k
w′

k
] and

Λab �
[
Gab Ea

Jab Fa

]

, Pa �
[
Pa 0

0 I

]

, P̃a �
[
Pa 0

0 γ2I

]

. (A.12)

Equation (A.11) is equivalent to

V = ξ′
r∑

t=1

h+
t

r∑

i=1

r∑

j=1

r∑

l=1

r∑

v=1

hihjhlhv
1
8

×
[(
Λij + Λji

)′
Pt(Λlv + Λvl) + (Λlv + Λvl)′Pt

(
Λij + Λji

) − 8P̃i

]
ξ.

(A.13)

By applying Lemma A.1, one obtains

V ≤ ξ′
r∑

t=1

h+
t

r∑

i=1

r∑

j=1

r∑

l=1

r∑

v=1

hihjhlhv
1
8

[(
Λij + Λji

)′
Pt

(
Λij + Λji

)
+ (Λlv + Λvl)′Pt(Λlv + Λvl) − 8P̃i

]
ξ

= ξ′
r∑

t=1

h+
t

r∑

i=1

r∑

j=1

hihj
1
4

[(
Λij + Λji

)′
Pt

(
Λij + Λji

) − 4P̃i

]
ξ

= ξ′
r∑

t=1

h+
t

⎧
⎨

⎩

r∑

i=1

h2
i

[
Λ′

iiP tΛii − P̃i

]
+

r∑

i<j

hihj

[(
Λij + Λji

)′
Pt

(
Λij + Λji

) − P̃i

]
⎫
⎬

⎭
ξ.

(A.14)

Now define

Λabc �
[
λ11
abc

•
λ21
abc

λ22
abc

]

, (A.15)

where

λ11abc � G′
abPcGab − Pa + J ′abJab,

λ21abc � E′
aPcGab + F ′

aJab,

λ22abc � −γ2I + E′
aPcEa + F ′

aFa,

(A.16)
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and rewrite (A.14) as

V ≤ N = ξ′
r∑

t=1

h+
t

⎡

⎢
⎣

r∑

i=1

h2
iΛiit + 2

r∑

i<j

hihj

(
Λijt + Λjit

)

2

⎤

⎥
⎦ξ. (A.17)

For stability of (2.6) with a H∞ guaranteed cost given by γ , it is sufficient that Λiit ≺ 0
and Λijt ≺ 0 (i < j, i, j, t ∈ R), since it follows that in (A.17), N < 0, which implies that (A.9)
holds.

At this point, the relaxation techniques from [11, 15, 38–40] are combined to promote
the less conservative LMIs proposed in Theorem 3.1.

First, some matrix transformations are employed to allow the decoupling of the
Lyapunov matrices from the system matrices. Apply Schur’s complement to Λabc, obtaining

Λ̃abc �

⎡

⎢
⎢
⎢
⎢
⎢
⎣

−Pa • • •
0 −γ2I • •

PcGab PcEa −Pc •
Jab Fa 0 −I

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (A.18)

Define a slack matrix variable L ∈ R
n×n (see [38–40] for details). Take (A.17), replace

Λabc with Λ̃abc, and then apply the following transformations:

V ≤ S2
[
S1(N)S′

1

]
S′
2, (A.19)

where

S1 � diag
{
P−1
a , I, P−1

c , I
}
, S2 � diag

{
L′Pa, I, I, I

}
,

V � S2S1VS′
1S

′
2

(A.20)

to obtain

V < N = ξ′
r∑

t=1

h+
t

⎡

⎢
⎣

r∑

i=1

h2
i Λ̂iit + 2

r∑

i<j

hihj

(
Λ̂ijt + Λ̂jit

)

2

⎤

⎥
⎦ξ, (A.21)

such that

Λ̂abc �

⎡

⎢
⎢
⎢
⎢
⎢
⎣

−L′X−1
a L • • •

0 −γ2I • •
GabL Ea −Xc •
JabL Fa 0 −I

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, Xa � P−1
a . (A.22)
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Applying Lemma A.3 results in

N < M = ξ′
r∑

t=1

h+
t

⎡

⎣
r∑

i=1

h2
i Λ̆iit + 2

r∑

i<j

hihj

(
Λ̆ijt + Λ̆jit

)

2

⎤

⎦ξ, (A.23)

where

Λ̆abc �

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Xa − L′ − L • • •
0 −δI • •

AaL + BaMb Ea −Xc •
CaL +DaMb Fa 0 −I

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, (A.24)

and Ma � KaL, δ � γ2 are linearizing change of variables.
Finally, the second relaxation technique is applied to add more slack matrix variables.

Considering that Tijt = T ′
ijt � 0 (i, j, t ∈ R) and using Lemma A.2, ones gets (A.25) as in the

top of the next page

M = ξ′
r∑

t=1

h+
t

⎡

⎣
r∑

i=1

h2
i Λ̆iit + 2

r∑

i<j

hihj

(
Λ̆ijt + Λ̆jit

2

)⎤

⎦ξ

≤ ξ′
r∑

t=1

h+
t

⎡

⎣
r∑

i=1

h2
i Λ̆iit + 2

r∑

i<j

hihj

(
Λ̆ijt + Λ̆jit

2
+ Tijt + Sijt

)⎤

⎦ξ

= ξ′
r∑

t=1

h+
t

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

h1

h2

...

hr

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

′
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Λ̆11t • . . . •
Vt Λ̆22t . . . •
...

...
. . .

...

Vr1t Vr2t · · · Λ̆rrt

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

h1

h2

...

hr

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

ξ

= ξ′
r∑

t=1

h+
t [h1h2 · · ·hr]Ξt[h1h2 · · ·hr]

′ξ
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= ξ′
r∑

t=1

h+
t [h1h2 · · ·hr]

(
Ξt +H

)
[h1h2 · · ·hr]

′ξ

= ξ′
r∑

t=1

h+
t [h1h2 · · ·hr]Ξt[h1h2 · · ·hr]ξ.

(A.25)

where in (A.25), Vt = (1/2)(Λ̆12t + Λ̆21t) + T21t + S21t, Vr1t = (1/2)(Λ̆r1t + Λ̆1rt) + Tr1t + Sr1t, and
Vr2t = (1/2)(Λ̆r2t + Λ̆2rt) + Tr2t + Sr2t.

Matrices Ξt, t ∈ R are given as in (3.3). Sijt are skew matrices which can be defined as
the difference Sijt − S′

ijt, with Sijt being any matrices.
If the LMIs constraints given in (3.2) are satisfied, then M < 0. Because of (A.23),

(A.17), and (A.9), it also implies that the TS system (2.6) is asymptotically stable with
H∞ guaranteed cost δ. Furthermore, since the optimization problem in (3.2) is convex, the
minimization of δ produces the minimum H∞ disturbance attenuation level γmin, which
concludes the proof.

The proof of Theorem 3.2 follows the same steps as in Theorem 3.1. Because in
Theorem 3.2 the value of the guaranteed cost is given beforehand, there is no need to impose
the minimization constraint, since δ is not a variable anymore. Therefore, Theorem 3.2 is just
a feasibility problem.

The proofs of Theorems 3.3 and 3.4 follow the same steps of the proof of Theorem 3.1
as well. However, since the gains are given, the linearizing variables Mi must be dropped
out.
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