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A defect-correction mixed finite element method (MFEM) for solving the stationary conduction-
convection problems in two-dimension is given. In this method, we solve the nonlinear equations
with an added artificial viscosity term on a grid and correct this solution on the same grid using
a linearized defect-correction technique. The stability is given and the error analysis in L? and
H'-norm of u, T and the L?>-norm of p are derived. The theory analysis shows that our method
is stable and has a good precision. Some numerical results are also given, which show that the
defect-correction MFEM is highly efficient for the stationary conduction-convection problems.

1. Introduction

In this paper, we consider the stationary conduction-convection problems in two dimension
whose coupled equations governing viscous incompressible flow and heat transfer for
the incompressible fluid are Boussinesq approximations to the stationary Navier-Stokes
equations.

() Find (u,p,T) € X x M x W such that

—VvAu+ (u-V)u+Vp=\ANT, x€Q,
divu=0, xeQ,

AT+ -VT =0, x€Q,
u=0, T=T, x€0L,

(1.1)

where Q is a bounded domain in R? assumed to have a Lipschitz continuous boundary Q.
u = (u1(x), u2(x))" represents the velocity vector, p(x) the pressure, T(x) the temperature,
A > 0 the Grashoff number, j = (0, 1)T the two-dimensional vector, and v > 0 the viscosity.
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As we know the conduction-convection problem contains the velocity vector field, the
pressure field and the temperature field, so finding the numerical solution of conduction-
convection problems is very difficult. The conduction-convection problems is an important
system of equations in atmospheric dynamics and dissipative nonlinear system of equations,
so lots of works are devoted to this problem [1-6]. There are also some works devoted to the
nonstationary conduction-convection problems [7-10]. In [8], Luo et al. gave an optimizing
reduced PLSMFE for the nonstationary conduction-convection problems. They combined
PLSMEF method with POD to deal with the problems. In [11], an analysis of conduction
natural convection conjugate heat transfer in the gap between concentric cylinders under
solar irradiation was studied. In [12], a Newton iterative mixed finite element method for
the stationary conduction-convection problems was shown by Si et al. In [13], Si and He
gave a coupled Newton iterative mixed finite element method for the stationary conduction-
convection problems.

The defect-correction method is an iterative improvement technique for increasing
the accuracy of a numerical solution without applying a grid refinement. Due to its
good efficiency, there are many works devoted to this method, for example, [14-28]. In
[18], a method making it possible to apply the idea of iterated defect correction to finite
element methods was given. A method for solving the time-dependent Navier-Stokes
equations, aiming at higher Reynolds’ number, was presented in [23]. In [27], an accurate
approximations for self-adjoint elliptic eigenvalues was presented. In [28], Stetter exposed
the common structural principle of all these techniques and exhibit the principal modes of its
implementation in a discretization context.

In this paper we present a defect-correction MFEM for the stationary conduction
convection problems. In this method, we solve the nonlinear equations with an added
artificial viscosity term on a finite element grid and correct this solution on the same
grid using a linearized defect-correction technique. Actually, the defect-correction MFEM
incorporates the artificial viscosity term as a stabilizing factor, making both the nonlinear
system easier to resolve and the linearized system easier to precondition. The stability and
error analysis of the coupled the defect-correction MFEM show that this method is stable and
has a good precision. Some numerical experiments show that our analysis is proper and our
method is effective. And it can be used for solving the convection-conduction problems with
much small viscosity.

This paper is organized as follows. In Section 2, the functional settings and some
assumptions are given. Section 3 is devoted to the defect-correction MFEM. Section 4 gives
the stability analysis. Section 5 presents the error analysis. In Section 6, some numerical
results and the numerical analysis to validate the effectiveness of the method are laid out.

2. Functional Setting for the Conduction Convection Problems

In this section, we aim to describe some of the notations and results which will be frequently
used in this paper. The Sobolev spaces used in this context are standard [29]. For the
mathematical setting of the conduction-convection problems and MFEM of conduction-
convection problems (1.1), we introduce the Hilbert spaces

X =H)Q)?, ~W=H\(Q),
L . (2.1)
M = L5(Q) = {(p eL (Q);J.Q(pdx = 0}.
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Jy, is the uniformly regular family of triangulation of Q, indexed by a parameter h =

maxges, {hk; hxk = diam(K)}. We introduce the finite element subspace X;, ¢ X, M ¢ M,
W, C W as follows

Xh:{vheXﬁC0< ) s onlk € Po(K)? VKeJh}

{”’h €eMnC ( ) gnlx € Px(K), VK € jh}, (2.2)

{4),, e WmC°< ) dulx € Pi(K),VK € Jh}

where P, (K) is the space of piecewise polynomials of degree ¢ on K,and ¢ > 1,k > 1,1 > 1
are three integers. Wo, = W, N Hé (Q), and (X}, M},) satisfies the discrete LBB condition

d(¢pn, vn)
sup —= >
P ”VUh”O ﬁ”()oh 0

vpeXy

Voi € Mp, (2.3)

where d(p,v) = (p,divo).

With the above notations, the Galerkin mixed variation and the mixed FEM problem
for the conduction-convection problems (/) are defined, respectively, as follows.

(0') Find (u,p,T) € X x M x W such that

va(u,v) —d(p,v) +d(p,u) + b(u,u,v) = A(jT,v), YveX, peM,

; (2.4)
a(T,¢) +Ab(u, T, ) =0, Vg eW,.
(P") Find (up, pn, Tn) € Xn x My, x Wy, such that
va(up, vp) — d(pr, on) + d(@n, un) +b(up, up, on) = A(jTh,on), Von € X, @n € My,
a(Th, 1) +Ab(un, T, ) =0, Vs, € Wop,
(2.5)
where a(u,v) = (Vu, Vo), d(p,v) = (p,divo), a(T, ¢) = (VT, V), and
b(u,v,w) = [f Ikzlul wkdx - Zul %, vkdx] Yu,v,w € X,
(2.6)

0
b(uT(,u)——[J. Zul (,udx Zu,—(pde] VueX, T, € W.

The following assumptions and results are recalled (see [7, 29-31]).
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(A1) There exists a constant Cy which only depends on €, such that

@) llullo < Coll Vaullo, llullos < CollVuullo, for all u € H} (R)* (or HY(RQ)),
(i) |Julloa < Collully, for all u € H(Q)?,
(ifi) lulloa < V21IVully?[lullg®, for all u € Hj(R)* (or Hy(Q))-

(Az) Assuming 0Q € Ck* (k > 0, a > 0), then, for Ty € Ck*(dQ), there exists an
extension in C’g’“ (R?) (denote Ty also), such that

ITollkg<e k=0, 1<q< oo, (2.7)

where ¢ is an arbitrary positive constant.
(As3) b(-,-,-) and b(-, -, -) have the following properties.
(i) Forallue X, v,we X (or T,¢p € H&(Q)), there holds that
b(u,v,v) =0, b(u,v, w) = -b(u, w, v), (2.8)

bw,T,T)=0, b(uT¢)=-bluyT). (2.9)

(ii) For all u € X, v € HY(Q)? (or T € H'(Q)), forallw € X (or ¢ € H(Q)),

there holds that
[b(u, v, w)| < N|[Vully[[Volll[Vwlly, (2.10)
6w, T, 4)| < NIVulo VTl | Ve, (2.11)
where
sup,, ,,,[b(u, v, w)|
~ (IVullp Vol Vewlly)”
_ (2.12)
J— supu,T,tp|b(u’ T’ (P>|
N = .
(IVullpI VTl |V‘P”0)

We recall the following existence, uniqueness and regularity result of (/') (see [7,
Chapter 4]).

Theorem 2.1 (see [7]). Under the assumption of (A1)~(A3), letting A = 2v1A(3Cy + 1)||To|l1,
B =2||VTyllo +2(C2A) ™ A, there exist 0 < 61, 6, < 1 such that

vINA<1-6;, 6'vICA’BN <1-6,. (2.13)
Then, there exists a unique solution (u,p,T) € X x M x W for ('), and

[IVully < A, IVT||, < B. (2.14)
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Some estimates of the trilinear form b are given in the following lemma and the proof
can be found in [30, 32-34].

Lemma 2.2. The trilinear form b satisfies the following estimate:

|b(utp, O, w)| + b(0p, 1, w)| + [b(w, un, v1)| < Co|log h|" | Voullo| Vanllolwlly,  (2-15)

for all up, v, € Vi, w € L2(Q)%
Lemma 2.3. Suppose that (A1)~(A3) are valid and ¢ is a positive constant, such that

32C2)\2Ne

€ Coe
1 VT, - Tolls < (2.16)
<1, IVTlh<  IToll <

4
then (") has a unique solution (up, pn, Tn) € Xn x My x Wy, such that T|aq = Ty and

5C2\e
[ Vanly < 301; . VTl <. (2.17)

Proof. The proof of the existence and the uniqueness of the solution has been given by Luo
[7]. Let Ty, = wp + Ty, ¢ = wp, in (2.5), we can get

a(wn, wn) = =\b(un, To, wn) = &(To, wy,). (2.18)
Using (2.11) and (2.16), we deduce
IVewnlly < IV Tollg + ANel| V ity - (2.19)
Letting vy, = uy,, ¢ = py in the first equation of (2.5), we get
VIIValls = |AGTi un) | < ACollTalloll Vit - (220)
By (2.16), we can obtian

IVaunllo < v ACo||Thllg
< v ACo([lwnlly + 1 Tolle)
(2.21)
< v 'ACH (I Vel + v " ACo|| Toll

< v IAC||Tolly + v IAC3|| VTolly + v T A2C3Ne|| V|-
Using (2.16) again, we get

5C2\e
| Vuly < 301; ) (2.22)
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By (2.19), we deduce

IVTully < IVenlly + |V Tollo
< 2||VTollg + ANe||Vunlly

5C§ 12N 2 (2.23)

<2 VTl + —5-

<—+=-==¢

NI ™
NI ™
O

We introduce the Laplace operator
Au=-Au, VYueD(HA) =H*(Q)?>nX. (2.24)
Lemma 2.4 (see [35, 36]). Forallu,w € X, v € D(A) there holds that

[b(u, v, w)| + |b(v, u, w)| + |b(w, u, v)| < Cl|A0|o[[wllo]|Vaullp- (2.25)

3. The Defect-Correction Method

The aim of this section is to give a method for solving the nonlinear system (2.5) on a
coarser mesh than one uses when employing the standard FEM; the coarse-mesh solution
is corrected using the same grid in our method. The defect-correction method in which we
consider incorporates an artificial viscosity parameter oh as a stabilizing factor in the solution
algorithm. For a fixed grid parameter h the method requires the solution of one nonlinear
system and a few linear correction steps. It is described in the following paragraphs. We
consider the following problems which is identical to (2.5) except for an artificial viscosity
term.
(p*) Find (u%,pg, T,?) € X5, x My, x Wy, such that

(v+ 0h)a<ug,vh> - d<p2,0h> + d((ph, u%) + b<u2, u(,)l, vh> = .)L<jT£, vh>,
Yo, € Xy, Yn € My, (3.1)

(1 +oh)a(Ty, ) + \b(u), T3, ) =0, Vg € Wy,

We define the residual or named defect R(u), p), T})), Q(u}), p}, T}) for the momentum systems
as follows:

<R<u2,p2, T£>,Uh> = )L(jTO, Uh> - va(ui, Uh> + d(pg, Uh>
- d((ph, u%) - b<ug, u(,)l, vh>, (3.2)

(e 8) ) =1 ) -5 T ).
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Define the correction (&), ¢}, 77)) satisfying the following linear problem:

v+ oh)a(ei,vh> - d<Q2’0h> + d(‘Ph/ 52) + b(sg, u), vh> + b(ug,sg, vh>
= (R(u), P}, T9), on), Vo € X, gn € My,

(3.3)
(1+ 0h)ﬁ<7‘£, ([Ih> + AE(uz, T, ([Jh) + AE(«‘:‘QZ,TS, <Ifh>

= (Q(uh,ph, ) (,Uh> Y € Won.

Define u; = u) + €°, p} = p) + o0, T} = T} + 7, which are hoped to be better solutions of the

problems. In order to obtain the equations for (u}l, p}l, T;), we use the residual equation (3.2)
to rewrite the linear problems (3.3); we obtain

(v +oh)a(u;,vn) — d(p;, on) + d(pn,uy) +b(u), uy, o) +b(uy, u), vn)
</JT> = A(jT}, o) + cha(u),vn) + b(uy), u),vp), Vou € Xn, @n € My, (3.4)
< _ B
(1+oh)ya(T}, gn) + Ab(ub, T), gn) + Ab(ul, T, ¢on)

= cha(T), ¢n) + )Lb(uh, T, ¢n), You € Won.

In general, this method can be described as follows.

Step 1. Solve the nonlinear systems (3.1) for (u),p), T})).

Step 2. Fori=1,2,...,m,solve the linear equations

(v +oh)a(u),vn) — d(p), vn) + d(pn,ul) +b(ul ', ul,0p) +b(u, ul !, op)

<p¢> < = (T! ,v'h) +oha£u ,Up) + b(uh ,uh Lon), VYo, € X, on € My, (35)
(1 +oh)a(T}, ¢n) +Ab(ul, T gop) + Ab(ui !, TE, g)

= GhE(TI L) + )Lb(u’ 1 TI Lon), Yon € Wop.

For each i the residual is given by
<R<uh,ph, > Uh> )L(jTi,Uh> - va(u;l, Uh> + d(pz, Uh>
- d((ph, u1h> - b<u§1, u;l, vh>, (3.6)

<Q<”h/Phr > ‘Ph> = (T;iz/‘lfh> —AE(uZ,T}Z,%),
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The correction (¢}, ¢}, 7}) is given by
(v+ ohya(el, on) - d(o}, on) +d(pn ) +b(el, 1l o) + b(ul, &, 01)
- <R(u;, p;;,T;;>,vh), Yo € Xn, on € My, .
(1+ ohya(zh, gm) + b (uh, 7, g ) + Ab (e}, Th, g1 )
= (Q(uy Pl T3) 91), Voo € W,

Remark 3.1. From the numerical experiments, we see that one or two correction steps is
adequate. And this is as same as [24].

4. Stability Analysis

In this section, we give the stability analysis. It is given by the following theorems.

Theorem 4.1. Under the assumptions of Lemma 2.3, then (u2, T°) defined by (D) satisfies

wih
5C2\e
0 — 0 0 4.1
”Vuh”oS 3(v +oh)’ ”VTh”oSS' 1
Moreover, if
25C2N e
P (4.2)
3(v+oh)
(P*) admits a unique solution.
Proof. We define the set
~ - 5C%)L5
BM =40 € Xh, ||V'Uh||0 < m . (43)
Let 715, be in Bps. Then
(1 +omya(Ty, ) + \b(iin, Ty, gu) =0, Vg € W, (4.4)

has a unique solution TS € Wiy, such that Ty|sq = To. For a given Tg , we consider the following
problem:

v+ 0h)a<u2*, Uh> - d<p2*,vh> + d((ph, u%*) + b(ug*, uz*,vh> = )L(jTS,Uh),

Vvh € Xy, Yn € My,.

(4.5)
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By the theory of the Navier-Stokes equations, we get (4.5) has a unique solution (u}*, p)*) €
Xn x My, (see [31]). It means that (4.4) and (4.5) give a unique ug* € X, for a given i, € Xp,

we denote
u%* = {yilp.
Setting T} = w) + T, ¢ = w) in (4.4) and using (2.9), we can obtain
1+ ah)a(wg,wg) - —AE(ﬁh, To, wg) 1+ oh)a<To,wg>.
Using (2.7), (2.11), and (2.16), we can get
(1+oh)||Veop ||, < ANVl VTl + (1 + oMV Toll,
Vet < "Tﬁgnvahno + IV Toll.

Using the triangle inequality, we have

72l < 09 7ol = |7t

ANe,
< — IVinlly + 2|V Tollg
5CINAe? ¢

——+=—¥<e&¢.
ST@w+on) 2°°

Letting vy, = 1", ¢j, = p)) in (4.5) and using (2.8), we get
(v + O'h)a(ug*, u0*> = A(jTO,ug*>.
Letting Tg = wg + Ty and using (2.9), we have

(v+o0h) ”Vug*

= cg)L”v{ug”O + CoMIToll,
< CAPN||Vitnloll VTollg + Cod(1 + Co) [V Tl

< Cihe.

Namely,

5C§)LE

”Vug* o < 3w+ oh)

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)
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Hence, we proved that ¢, maps By to Bas. It follows from Brouwer’s fixed-point theorem
that there exits a solution to system (0%).

To prove the uniqueness, assume that (uh , ph ; Tm) (uh , ph ; TOZ) € X x My xWj, and
T aq = T;?|oq = To are two solutions of (7). Then, we obtain that

v+ ot —uif,on) = d(pi! = pifon) + (gl = ?) + b(uf)! = 7, )

+ b(uh ,uh - ugz,vh> .)L(j(Tgl - T,?z),vh), Vop € Xn, pn € My,

1+ oh)ﬁ(Tgl - ng, (,uh> + Ab(uh ,T01 ng, (,uh> + AE(u uh ,TOl,qfh> =0, VYygn € Wy

(4.13)
Let vy = ud! — u?, ¢, = p' — p¥2 in the first equation of (4.13), we can get
o+ om [0 (s =) |, < N v (it ) ], - o (-1 e
Setting g, = T)' — T{? in the second equation of (4.13), we obtain
@ram|v (17 -12)], <aN]w (! ) | o] (15)
By (4.14) and (4.15), we deduce
v +om [V (-]
<N[wa] v -]+ Ry Joed -, e
< S g -]+ T o -],
Using (4.2), we obtain
v (it =), < 29 - )], 17)
Namely,
o (- )], - 1)

By (4.15), we see that ||V (T} =T}?)|o = 0. Therefore, it follows that (0*) has a umque solutlon
Then, we give the prove of (4.1) without using (4.2). Letting v;, = uh, on = ph in the
first equation of (3.1) and using (2.8), we get

(v+ 0h)a<u(,)l, u%) = )L<jT0, u?l). (4.19)
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Letting Tg = wg + Ty, we have

(v + oh) ||ng||0 < CgA”ng”0 + CoMTollo-

11

(4.20)

Letting Tg = wg +To, gn = wg in the second equation of (3.1) and using (2.9), we can obtain

1+ oh)ﬁ(wg,w()) = —AE(ui, To, wi) -1+ O'h)E<To,w2>.

Using (2.7), (2.11), and (2.16), we can get

1+ oh)”wg”O < AN”Vug”OHVTOHO +(1+0h)||VToll,,

ANe
4

0 0
[vetl, < == 7wl #1970l

By (4.20) and (4.22), we can deduce

||wg||0 < (v+oh) A2 ||v(ug||0 + (v + oh) " CoA||Toll,

5 ) C2A2Ne 0
< (v +oh) ™ ( AColTolly + CAIVTolly + —— ”Vuh”O :

Using (2.16), we get

5C2\A
||Vu,(1||0 < ?)(Toagh)'

Using (2.7), (2.11), (2.16), and (4.20), we can get

[ret], < v v« o

ANe
<
- 4

V48|, + 19 7ol
B~
<=

77l < [vesill, + 19 ot

<e.

Therefore, we finish the proof.

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)
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Theorem 4.2. Under the assumptions of Lemma 2.3, and

25C2N e
<
3(v +ch)?

(4.26)

(u;, T}) defined by (3.4) satisfies
”Vu}Z”O <6, ||VT;||0 < % + A\N6¢ + ohe, (4.27)

where 6 = (103C3Ae /48 + och(5C5Ae/3v))/(7/10) (v + oh).

Proof. Letting vy = u;, ¢y = p; in the first equation of (3.4) and using (2.8), we get
(v+ Gh)a(ulli, u}l> + b<u,11, u(,)l, u}l> = b(ug,ug, ui) + 0ha<u(,)l, u,ll> + J\(jTg, ui) (4.28)
Letting T)) = w) + Ty and using (2.10), we have

v, < Nl ], - oo, - vl

(4.29)
+ ch”w}l”() + CoMTollo-
Let T; = w,11 +To, ¢ = w,11 in the second equation of (3.4), we can obtain
(1+ 0h)ﬁ<w}1,w}l> = —AE(ug,To,w}i) - AE(ui,TS,wi) + )LE<u(,)l, T,?,wi)
(4.30)
+oha(T9,w}) - (1+ oh)a(T,w},).
Using (2.11) and (2.16), we can get
e, < e v e 77,
(4.31)
+ )N” Vu,‘1||0|| VT ||0 + oh||VT;j||0 + (1 +0h)|VToll,
[reil, < ¥l i+ ] s,
(4.32)

+ AN||Vu,‘1||O||VT,9||O + ah||VT;j||0 + IV Toll,.
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Using (4.29), we get
W+ oh) || Vi |
<Nfvi] vl = on vl « Ne,
+ COA(AN|| Ve | 19 Tollo + AN|vasy | [| 778, + AN vas | || V22|
+ [|vT||, + 19 Tollo) + ColiTollo- (4.33)
(v+on=N|vig], - SN |vr| ) v,
< N”Vu?l”; +oh|| v |+ CBN|vuh | 19 Tollo + N[ [ VT2

0

+ ch”wg”o + C2A|[VTolly + CoMToll,-

Using (2.16), (4.26), and Theorem 4.2, we can obtain

7 ollvall < 25N CiA2e2 5C2le  10NCiA3e?  3C202%€?
— v+ + + +
10(V o )” u””o = 9(v + oh)? o 3(v+coh) 3(v+och) 2
(4.34)
103CjAe 5C3\e
< +0 .
48 3(v+oh)
Namely,
103C3\e/48 + oh(5C2Ae /3
[y < "B TG - (435)
0 (7/10)(v + ch)
Using (2.16), (4.31), and (4.35), we can get
. 10NC22¢2 \Ns he s €
” wh”o_ 3(v +oh) " eronety
< £ f \N6e+ohe (4.36)
3 4
7€ —
=T + ANO6¢e + ohe.
Using the triangle inequality, we can get
||v:r1|| < ||Va;1 || FVTlly < 2% + NS¢ + ohe (4.37)
Iilo = "o =6 '

Therefore, we finish the proof. O
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5. Error Analysis

In this section, we establish‘the H'! and L?-bounds of the error u — u;l, T - T;;, i=0,1and
L%-bound of the error p — p}, i = 0,1. In order to obtain the error estimates, we define the
Galerkin projection (R, Qn) = (Rn(u, p), Qn(u, p)) : (X, M) — (X, Mp,), such that

a(Ry —u,vp) —d(Qn —p,on) +d(qn,Rn—u) =0, VY(u,p) e (X, M), (vn qn) € (Xn, Mp).
(5.1)

Lemma 5.1 (see [37, 38]). The Galerkin projection (R, Qn) satisfies
IRy = ully + h(IV (Rw =)o + |Qn = pllo) < CH™ (wlluelly + [IPIl,), 7=1,2. (52)
Lemma 5.2 (see [7]). There exits 1y, : W — W), for all ¢ € W holds that
(V(g~7uyp), Vo) =0, Vg, € Wy, (5.3)
[ @-rpaz=0 Vil < |Vl 6:4)
When ¢ € W*4(Q) (1 < q < o), there holds

”(,U _ ?h(lf”,s,q < Chk+s|qf|k,q/ -1<s<m, 0<k<r+1. (5.5)

There exits T, : Wo — Wy, for all ¢ € Wy holds that
(V(g=Tngp), Vgn) =0, ¥gn € Won,  [[V7ngy < [V |l,- (5.6)
When ¢ € W™(Q) (1 < g < o), there holds

”(P_Fh(/f” <Chk+s|qf|r,q’ “l<s<r O<k<r+l (57)

-s,q =

Lemma 5.3 (see [7]). If (A1)~(A3) hold and (u,p,T) € H™(Q) x H"(Q) x H™1(Q) and
(un, Py, Ty) are the solution of problem (') and ("), respectively, then there holds that

IV (= un)llo + |lp = pullo + IV(T = Twllg < CH" ([l + |lpl, + 1T ll11)- (5.8)
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Lemma 5.4. Under the assumptions of Lemma 2.3, (un, pn, Tn) is the solution of (3.1), (ug,pg, Tg)
defined by (3.4), then there hold

500C5/\h 10C§)LG£;1

o -], <

21y 7v
V(@ - 19)|, < 20he + %‘f, (5.9)

0 <950hC§A5 190hC3\e 1C2A ohC3\
ﬂ||’9h_ph||o— 2y 7 ottt g

Proof. Subtracting (3.1) from (2.5) we get the error equations, namely (uy —ul), pp—p5, T —T})
satisfy

va(uy, —u®,v,) — cha(u?,v,) +d (ph,uh—uo -d ph—po,vh +b(°, uy — 40, vy,
(s =16 01) = oha (1, 1)+ d( 1) = (P =i on) + b (1, s~ 00)
+b<uh —u%,uh,vh> = )L<j<Th —TS),U;,), Vo € Xy, ¢pn € My,

E(Th - TS, (I’h> - O'hﬁ(T}?, qfh> + )LE(LLh - ug, Ty, (I’h> +E<u2, Tn - T}?, qfh> =0, quh € Wop.
(5.10)

Letting vp, = up — u%, Pn = pr— P,? in the first equation of (5.10) and using (2.11), (2.8), and
(A1), we can get

o||V (un =14} ||, < oh[vas]| + N[V (=) || 1Vaalo + CRA|V (T -T2 [ - G1D)
Hence, we deduce
(v - N[ Vunlly) || v (un - uf) ||0 < Gh”Vu%”O + ch”v (Ti-13) ||0 (5.12)
Letting ¢ = Ty, — T in the second equation of (5.10) and using (2.9), we obtain
a(Ty - 19, T - 1)) + oha(T9, T~ T0) + Ab(un — ), Ty, Tr = T) =0.  (5.13)
Using (2.11), we can get
[V =T, <on||vT8|, + AN ||V Gon = )| 19Tl (5.14)

By (5.12), we deduce

(v = N|[Vaunllo) ||v (- 1)) ||0 < ah”Vu%”O + Cé)uah” VT,9||0 + c@ﬁﬁ”wuh ~ 1)) ||0||VTh||0.
(5.15)
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Using (4.1), we can obtain

(s~ N1wty- 2| e8], <]t +ciron o]

50hCj\e

<— U 42 )
< 3wroh +Cylohe
By using (2.16) and (2.17), there holds
v _7v
—_ > .
v NllvuhHO 32 = 10

Therefore, we can deduce

< 500hCile  10CiAche
~ 2lv(v + oh) " 7v

et -],

By (5.14) and (5.18), we can have

T | < ohe + AN 500hCile  10C3\ohe
” (Th - h)”o_G erANe 21v(v + ch) " 7v

Letting ¢y, =0, v = up — ug in the first equation of (5.10) and using (2.3), we have

(5.16)

(5.17)

(5.18)

(5.19)

] R L ot LAY RN LTt P ReC L

500hC5/\5 1OGhC§)LE 50hC%)L£ 100hc5./\5 20';1C§)LE
+ +

<
S2mroh) 7 T 3w 21v 7
¢ ohC2e + ohc2) 1 TG
(0} 0 E+ O 0 14y
< 950hCile  190hCile — ohCjA
Sd@w+ron) 7 ot

Hence, we finish the proof.

(5.20)
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Theorem 5.5. Under the assumptions of Lemmas 2.3 and 5.3, the following inequality
V=), +[lp-rh]l, + |7 T =T, < " Qallcr + lIpll, +1T101) + Ch,

holds, where C is a positive constant numbers.
Proof. By Lemmas 5.3, 5.4, and the triangle inequality this theorem is obviously true.

Lemma 5.6. Forallu € H*(Q) N X, w € Wy, ¢ € H*(Q) N W), there hold that

|b(u =~ Ri,0,45)| < Cllu = Rallg |4l | Vo

0/
[6(u, T - 7T, )| < CllAullolIT = Tl | Vi,
Proof. Letting @ = (w,0)", we have
E(u - Rp,w,¢) =b(u - Ry, w, ).

Using (2.25), we can deduce (5.22). Because T — 7,T € W, (5.23) holds.

Theorem 5.7. Under the assumptions of Lemmas 2.3 and 5.3, the following inequality:
o=+ [|7 = TR, < €A (el + Pl + 1T ,) + €

holds, where C is a positive constant.

Proof. Subtracting (3.1) from (2.4) we get the error equations, namely,

va (u - u(,)l, Uh> - 0ha<u(,)l, Uh> + b(u - ug,ug,vh> + b<u, u- ug,vh> - d(p - pg,vh>

+ d<(ph,u —u2> = /\(j(T —T2>,Uh>, Yoy € Xy, pn € My,

17

(5.21)

(5.22)

(5.23)

(5.24)

(5.25)

a(T -0, gn) - oha(Ty, gn) + \b(u -, T,g0,) + b (), T~ T, 40,) =0, Van, € Wop.

Letting eg =Ry, - ug, 112 =Qy - p%, .gg =T - TS and using (5.1) and (5.3), we can get

(5.26)

va(eg,vh> —ocha <u2,vh> + b<u - ug, ”2/ vh> + b(u,u - ug, vh> - d<712, vh> + d((ph, ei)

= )L(](T —T£>,0h>, \7’7);, € Xy, (VJS My,

a(én, (ph) - ahE<T£, ([Ih> + )LE<M - u(,)l, T, qrh> + J\E(ug,T - T,?, q;h> =0, VY, e Wop.

(5.27)
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Taking v), = €, ¢y = 1) in the first equation of (5.27), we obtain

0 0 0 0 0.0 0 0 0 0
va(eh, eh> - 0ha<uh, eh> + b(eh,uh, eh> + b(u - Ry, uy, eh> + b<u, u— Ry, eh>

(5.28)
=1(i(T-10),€}), Vou€ Xy, gune My
Using (2.10) and (A1), we deduce
T L P Rt Y A
+ |)L<j<T —T2>,32>| + |oha<u2,eg>|
(5.29)
< N(IVull + || vas | )1V = Rl | e
e -l [[val, - or|via] [veil,
Using Theorem 2.1, (2.16), (4.1), and (5.2), we can obtain
| Vehll, < Ch (ullya + lIpll, + 1T1]0) + Ch. (5.30)
Taking ¢, = §2 in the second equation of (5.27) and using (2.9) we have
a(e, &) - oha(Ty, &) + Ab(uh, T T, &) + 1b(u- Ry, T,¢) + Ab(e), T,&)) = 0.
(5.31)
By (2.9), we have
b(uh, T-7T,8)) +b(u- Ry, T,8) +b(ef, T,8))
= b(e), T-7T,&) ~b(u- Ry, T-HT,8) +b(u,T-HT,e) (5.32)

bR T,80) +b(el, T~ AT, &) + b(eh, &b, &0) + b(el, T0,2).
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Letting T = w + Ty, w € Wy and using Lemma 5.6, we can get
[6(, T~ 7T, &) + b(u= R T,82) +5(en T, 80|
<N|[ve|| 1V -7l | vea||, + NIV - Rl V(T = 7)1 || &2 |,
«N|ves]| iv e =7l |[ve], « N vei] o7 | va], (539
+ CllsaullgT = 7T lo | Vép| + Clle = Rullolioteollo| 73|

+C||V(u- Rh)”o“VTOHO“Vgg“o'

By assumption (A;), letting ¢ < h and using Lemma 5.1 and (2.16), (4.26), and (5.33), we can
deduce

Ve, < CH lllas + NPl + 1Tl4) + Ch. (5.34)

Hence, we have
-7l <o =7t + 5]
<|IT=#T]|, + Co || vgg”o (5.35)
<CH* (lullpsr + Il + 1T N00) + Ch

By (2.10) and (2.25), we can deduce

|b<u—Rh,u,€2>| + |b<u2,u—Rh,eg>|
< |b<u—Rh,u,€2>| + |b<u,u—Rh,eg>|
N |b<u—Rh,u—Rh/€g>| + |b(eh,u—Rh,€2>|
(5.36)
< Cllosulylu - Ryl | v

+ NIV @Rl + | veh || )1V~ Rulio|| veh,

<clva],
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Using (5.29), we can obtain

(v= |7 [V < cr Gl o + llpll, +1T100)

VeOH
ain

s [r=mi] veill, + onl veil [,
By using (2.16) and (4.1), there holds
N

Hence, we can deduce from (5.37)

Vel < cr* Qialler + lpll, + ITlL0) + Ch.

Therefore, we can deduce
e = 1l < e = Rully + |||
< llu = Rully + Col| Ve
1
< Ch™ (lully + [Pl + ITll00) + Ch.

Theorem 5.8. Under the assumptions of Lemmas 2.3 and 5.3, then there holds
[V =]y + |V -], <l + ol +1T10) + 2,
o=, +[|7 =Tk, + 1o - ph |, < CH Ul + Pl + 1T0) + CR2,

where C is a positive constant.

Proof. Subtracting (3.4) from (2.4) we get the error equations, namely,

va <u - ui,vh> —ocha <u}l, vh> +b(u,u,vy) - b<u}l, ui, vh>

- b(ug,u}l, Uh) - d<P ~Pis Uh) + d<(P”’ " ui)

= )L<j<T - T;>,0h> - b(ug,ug, Uh> - 0ha<u2,vh>, You € Xn, ¢n € My,

E(T -T,, (ph> - 0hE<T;, (,uh> +Ab(u, T, gp) - AE(ui,TS, (,uh> - .)LE(M%, T}, (ph>

= ~oha (T}, gn) = \b(u), T9, ), Vg € Wo.

(5.37)

(5.38)

(5.39)

(5.40)

(5.41)

(5.42)
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Letting e} = Ry —u,, 1, = Qn — p}, & = 7T — T;, using (5.1) and (5.3) and adding and
subtracting appropriate terms in the above expression yields

(v+ O'h)a<e}l, vh> + b(ug,u - ui, vh> + b<u - u}l, ui, vh> - d(qi,vh> + d((ph, e,l1>
= )L(j<T - TS),U;,) + 0ha<Rh - u(,)l, Uh> - b(u - ug,u - u(,)l, Uh>, Yo, € Xn, pn € My,
1+ O'h)ﬁ<§;1l, (,uh> + .)LE(M%, T - T;, (,uh> - AE(u - ui,Tg, qm)

= 0hE(FhT -T9, (ph> - )LE<u - u(,)l, T - T,?, (ph>, Y, € Wop.

(5.43)
Letting v), = e;, ¢, = 17, in the first equation of (5.43), we can deduce
(v+ oh)a<e}l, ei) + b(ug,u - Ry, e,l1> + b<u - Rh,ug, e,l1> + b(ei,ug, ei)
(5.44)
= /\(j<T - T£>,e,11> + O'ha<Rh -u, e}l> - b<u —u),u—u, e}l>
By (2.10) and (2.25), we can deduce
(v on=N]wii ) veill, =l = Rat o[ R~
s (5.45)
+N|| V- )|+ 1| T -7
Using (2.16), (4.1), (4.26), (5.21), and (5.2), we can obtain
”Ve}Z”O < CH* (|l + |lpll, + IT,41) + CH. (5.46)
Using (5.2) and triangle inequality, we can have
|V @=1]|, <1V @Rl + 1 Veully
<CH (Jlully iy + [Ipll, +ITl,0) + CH2,
= 3| < e = Rull + el (5.47)

< [l = Rnllo + CollVello

< CH™ (llullysa + Il + ITll4) + CH2.
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Letting ¢, = gll in the second equation of (5.43) and using (2.8), we can deduce

(1 +ohya(g, &) + \b(ul, T - 7T, &} ) - Ab(u - ul, T9, &)

(5.48)
= oha(T - 19,&) - b(u - ), T~ T§,}).
Letting T)) = w}) + Ty and using (2.11), (5.22), and (5.23), we have
(1+om)|[vey]|, < Cafjorud | IT = 7Tl + Ol | [l st
+ Nx”wu —ul) ||0||VTo||0 + oh”V(T ~TY) ||0 (5.49)
FAN| V- [va-1].-
Using (5.5), (5.21), (5.47), we can obtain
|vei]l, < Qe + el + 1T0) + CH. (5.50)
Using (5.2) and triangle inequality, we can have
[y -1, <ive -7+ || va|,
< CH (l[ullyr + Il + 1Tll,10) + CH?,
(5.51)

[r-n, <1 i+ o, < - o

< CH* (s + Il + 1T 10) + CH.
Taking ¢y =0, v = Ry, - u}ll in the first equation of (5.43) and using (2.3), we have

il = 0 om el sorfecems] v e,
2 (5.52)
s ml el

By (4.1), (5.21), and (5.47), we can deduce

i, < C# Qlallex + llpl, + 1T, 0) + CH2. (5.53)
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U =up, =0
0T/on=0 d
P
«]
« |
u=u,=0|T=0 T=4y(-y) U =u, =0
PA—
a—
pa
dT/dn=0 <
ur=u, =0

Figure 1: Physics model of the cavity flows.
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Figure 2: The numerical Isotherms (a) and the numerical Isobar (b) for v = 1/2000 by the defect-correction
MFEM with h = v/2/40, 0 = 0.4.

(=)

Using (5.2) and triangle inequality, we can have

P =il < I = Qully + |||, < " s + llpl, + 1T0a) +CH2 (5.59)
(I

6. Numerical Experiments

In this section, we present some numerical examples with a physical model of square cavity
stationary flow. We choose different v for comparison. The side length of the square cavity
and the boundary conditions are given by Figure 1. From Figure 1, we can see that the T = 0
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Figure 4: The numerical Isotherms (a) and the numerical Isobar (b) for v = 1/5000 by the defect-correction
MFEM with h = v/2/100, o = 0.4.

on left and lower boundaries, 0T/0n = 0 on upper boundary, and T = 4y(1 - y) on right
boundary of the cavity. We use P, — P; — P, finite element here.

Firstly, we choose v = 1/2000, o = 0.4 and divide the cavity into MxN = 40x40, that is,
h = v/2/40. Figure 2 gives the numerical isotherms (a) and the numerical isobar (b). Figure 3
gives the numerical streamline. From the numerical results, we can see that our method is
stable and has a good precision.

Secondly, we choose v = 1/5000, o = 0.4 to show our our method suiting for solving
the conduction convection problems with small viscosity. It is well known that it is more and
more difficult to solve the problem by numerical method as v changing smaller and smaller.
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Figure 5: The numerical streamline for v = 1/5000 by the defect-correction MFEM with h = +/2/100,
c=04.
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Figure 6: The numerical Isotherms (a) and the numerical Isobar (b) for v = 1/6000 by the defect-correction
MFEM with h = v/2/100, o = 0.4.

Hence, we divide the cavity into M x N = 100 x 100, namely h = +/2/100. Figure 4 gives
the numerical isotherms (a) and the numerical isobar (b), and Figure 5 shows the numerical
streamline. At last, we choose v = 1/6000, o = 0.4. Figure 6 gives the numerical isotherms (a)
and the numerical isobar (b), and Figure 7 shows the numerical streamline.

Just as Remark 3.1, we only use one correction step in our numerical experiments.
From the numerical, we can see that when v = 0.5 x 107 the numerical streamline is very
regular. The pressure is small near the wall. But the numerical streamline changes more and
more immethodical with v changing smaller and smaller. And the pressure changes bigger
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0 0.2 0.4 0.6 0.8 1

Figure 7: The numerical streamline for v = 1/6000 by the defect-correction MFEM with h = +/2/100,
c=04.

near the wall. In conclusion, the defect-correction MFEM is highly efficient for the stationary
conduction-convection problems and it can be used for solving the convection-conduction
problems with much small viscosity.
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