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Hyperelliptic curves have been widely studied for cryptographic applications, and some special
hyperelliptic curves are often considered to be used in practical cryptosystems. Computing
Jacobian group orders is an important operation in constructing hyperelliptic curve cryptosystems,
and the most common method used for the computation of Jacobian group orders is by computing
the zeta functions or the characteristic polynomials of the related hyperelliptic curves. For the
hyperelliptic curve C,: v? = w” + au + b over the field F, with g being a power of an odd prime
p, Duursma and Sakurai obtained its characteristic polynomial for g = p, a = -1, and b € F,. In
this paper, we determine the characteristic polynomials of C; over the finite field F,» forn = 1,
2 and a, b € Fpn. We also give some computational data which show that many of those curves
have large prime factors in their Jacobian group orders, which are both practical and vital for the
constructions of efficient and secure hyperelliptic curve cryptosystems.

1. Introduction and Main Results
1.1. Hyperelliptic Curves and Cryptosystems

A hyperelliptic curve C of genus g over F, is defined by an equation of the form
v* + h(u)v = f(u), (1.1)

where h(u), f(u) € F;[u] with deg, (h) < g and deg,(f) = 2¢ + 1, and the equation system
02+ h(u)v = f(u),2v + h(u) =0,and k' (u)v - f'(u) = 0 has no solutions in Fq X Fq.



2 Mathematical Problems in Engineering

For an extension K of [, the set
CK) = {(xy) €Kx K|y +h(x) y = f(x) } U oo} (1.2)

is called the set of K-rational points on C. The symbol oo is called the point at infinity, and the
other points are called finite points.

A divisor D is defined as a finite formal sum of finite points or the infinity oo, while
the Jacobian group (or simply called Jacobian) of the curve C over K is an Abelian group
composed of some special divisors (i.e., reduced divisors) on C. This Jacobian group is
generally denoted as Jc(K). A hyperelliptic curve cryptosystem (HECC) is a cryptosystem
constructed on the Jacobian group of the hyperelliptic curve over a finite field. For example,
the hyperelliptic curve digital signature algorithm (HECDSA) is a hyperelliptic curve version
of an elliptic curve digital signature algorithm (ECDSA). The security of an HECC is based
on the discrete logarithm problems in the corresponding Jacobian group.

Since HECC was invented by Koblitz [1] in 1989, it has been extensively researched,
and now it has been considered for practical cryptographic applications. For a certain number
of classes of hyperelliptic curves with some specific parameters, the corresponding HECC can
even possess lower complexities than an elliptic curve cryptosystem but with the same level
of security [2].

In order to construct a secure HECC, one first has to choose a hyperelliptic curve
over a finite field and then compute the order of the hyperelliptic curve Jacobian group. If
the order does not have a large prime factor, then the discrete logarithm problems in this
Jacobian group may not be hard enough to guarantee the security of the HECC, and so
the hyperelliptic curve is not suitable for cryptographic uses and should be chosen again
to ensure that the Jacobian group order has some large prime factor. But, in most cases, this
computation is a very time-consuming task. Hence, the computation of Jacobian group order
is a very important step for the efficient implementation of HECC.

1.2. Zeta Functions and Jacobian Group Orders

The most common method used for the computation of Jacobian group orders is by
computing the numerator of the zeta functions of the related hyperelliptic curves, or by
computing the characteristic polynomial of the hyperelliptic curve. The following results are
due to the Weil’s theorem [3, 4] and Kedlaya’s algorithm [5].

Let C be a hyperelliptic curve of (1.1) over F,. For any positive integer r, let N, denote
the number of [, -rational points on C. The zeta function of C is defined as

Z(t) = Z(C;t) = exp (iNr§> (1.3)
r=1
Then

(a) Z(t) is a rational function over Z and can be written as Q(t) /(1 —t)(1 — gt), where

Q) € Z[t],
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(b) there exist complex numbers 7; (i = 1,...,2g) with |7;| = \ /g such that

2g 2g
Qw =]Ja-nt), Ny=q +1->1, (14)
i=1 i=1

(c) the integer coefficient polynomial
1\ =
— 128 Z) = T 1.5
P =£50(7) [1¢-m (15)

is called the characteristic polynomial of the Frobenius endomorphism on Jc(IF; ) (it
is also called the characteristic polynomial of C over [;), and it is can be expressed
as

Pt)=t8+ait?8 1+ + agts + qag,ltg’1 +-+ g8 lagt + g8, (1.6)
where for1<i<g,

ia; = <N1 - qi - 1> + (Nifl - 6]1;1 - 1>£11 + 04 (N1 -q- 1)611;1, (17)

(d) for any positive integer n, the order of Jc(Fy) is given as

28
#Ic(Fpr) = ]:[(1 -7"). (1.8)

Hence, for any positive integer n, the order of Jc(F;») can be computed if P(t) is
determined or if N, (1 < r < g) are computed.
For a positive integer j, the quadratic character y; of I, is defined as

1 if a is a quadratic residue in Fy;,
Xjrar—4q0 ifa=0, (1.9)

-1 if a is a non-quadratic residue in I .
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Obviously, yj(ap) = xj(a)x;() holds for any a, p € F,;. By using y;, we can compute
Nj as
=1+ {(e) 5 137 = 10|

=1 ; 1
* 2 @) o)

=g +1+ > xj(f(x)).

x€eF j
F

While for any positive integer j and every field element a € F,;, the value of the extended
quadratic character ; at a can be computed as yj(a) = a@ /2 in F,.

1.3. Our Main Results

Let C, be the curve with the equation
Cy cv*=uP +au+b over I, (1.11)

where a#0 and g is a power of an odd prime p. Then C, is a hyperelliptic curve of genus
(p—1)/2.In [6], Duursma and Sakurai presented Q(t) of C, for g = p and a = 1. That is, the
numerator of the corresponding zeta function is given as

Q) = pl( ()gk\ft> orij<1+<§)gk\/§t>, (1.12)

k=1

respectively, where p = (-1/p)p, \/’p? =—(-1/p) ZZ; (k/p)gk, ¢ is a p-th unity root, and (k/p)
denotes the Legendre symbol.

In this paper, we compute the characteristic polynomials of C, with a,b € F; (g = p",
n =1,2) and get the following Table 1.

From the characteristic polynomials of the hyperelliptic curve C, over Fp., the orders
of Jacobian groups Jc,(F») can be easily computed as

p-1
#Ic,(Fpn) = ]:[(1 -7"). (1.13)

For example, if a is a primitive element modulo p, then the characteristic polynomial of C,, is

P(t) — tP_l +p(P_1)/2 = H (t — g.k\/ﬁ)/ (114)

¢ri=1
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Table 1: The characteristic polynomials of the curve v* = u? + au + b over F,n.

n a b P(t) over Fyn Notes
-1 b=0 (tz _ ﬁ)(ﬁ—l)/Z
1 beF, (2 +p)P 12
a primitive root modulo p beF, =1 4 pp=/2
ordy;(a) =m beF, (" + (—1/P)(—P)m/2)<p_1)/m m is even
2<m<p-1 (2 4 pmyp1/2m m is odd
-1 b=0 (t- FN’)IH
b(#£0) € F (#=p*)/(t-P)
1 beF, t+py!
b¢ Iy (P +pP)/(t+p)
2 aprimitive root of p beF, (tPD/2 4 pp-1)/2)2
Ol‘dn«";(a) =m beF, (/2 + (—1/P)(—P)m/2)2(p_l)/m m is even
2<m<p-1 (t”’+p"’)(”’1)/m m is odd
a¢F,, m=ord y- (a) beF, (t + (_1)e(p+1)/m+e—1pg)(pfl)/e e(>1) is the smallest
P st.m|e(p+1).
adF,, a =1 b=0,0ora=>b"? (t + a®P*D/2p)p7!
b#0,a#b'P (P +pP)/(t+p)

where 1 satisfies \P~! + 1 = 0. Hence, the order of the Jacobian group of C, over F,» is

#lc,(F) = [T (1= @Av/P)"). (1.15)

or1=1

If n is an integer coprime to p —1, let 7 = {"; then 7 will also run through all these roots
when ¢ runs through the all roots of xP1 =1 = 0. Hence, we have

[TA-@eD=TIa-" e = TTA-10p)") =1- (e

st st (i (1.16)

=1- <)Lp—1>n((\/ﬁ)n)lﬂ—1 -1- (_1);1(\/;;)11(]0—1) -1+ \/En(p—l)'

If n is an integer not coprime to p—1, let d be the factor of n such that ged(n/d, p-1) = 1,

then we have

ITa-evp) =TI (- (ewn™)) =TI <H (12 \/E)n/d>>

=1 =1 =1 \ g1

) ;Hl< [10- §(€Aﬁ>n/d>> :1_[< IT (1 g/ (gd/mwa)””))

g=1 g1 \g1=1
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§dl_=[1<l _ <<§d/nj\\/]§>n/d)l7—1> _ H(l B gpfl)tn(pfl)/d\/ﬁn(p—l)/d>

gl

d

(1 _J\n(P—l)/d\/ﬁn(P—l)/d> _ <1 _ (_1)n/d\/ﬁn(p—1)/d>

d—1

2%

(1.17)

That is, for any positive integer n, the order of the Jacobian group of the curve C, over F
with a being a primitive element modulo p can be computed as

#, () = (1- (<1474, (1.18)

where d is the factor of n such that ged(n/d,p-1) = 1.

In Table 2, we give some essential parameters with which the Jacobian group order of
C, has some large prime factors, which shows that the C,; with these parameters may be used
for cryptographic applications.

2. Isomorphic Curves, Twisted Curves, and
Their Characteristic Polynomials

Two hyperelliptic curves of the same genus over the field F are called isomorphic over F
if they are isomorphic as projective varieties over F. If C; and C, are isomorphic over F,
then their Jacobian groups Jc, (F) and Jc,(F) are also isomorphic [7]. Hence, the hyperelliptic
curve cryptosystem based on the Jacobian group of C; is equivalent to that based on the
Jacobian group of Cs.

From [8], we know how to the hyperelliptic curves are isomorphic. Precisely, suppose
Ci and C; are two hyperelliptic curves of the equation forms H; : v?+h;(u)v = fitu) (i=1,2),
respectively, with h;(u), fi(u) (monic) € F[u], deg(hi(u)) < g, and deg(fi(u)) = 2¢g + 1. Then
C; and C; are isomorphic over F if and only if there exist s € F*, t € F, and r(u) € F[u] with
deg(r(u)) < g, such that H; can be transformed into H; through the coordinate change:

(u,v) — <52u +t,58 1y + r(u)). (2.1)

In our case, a hyperelliptic curve C; is isomorphic to the hyperelliptic curve C, if and
only if there exist s € F; and t € F; such that C] has the equation form

v = uP + $? P Vau + s (P + at + b). (2.2)
If g = p, then C has the equation form
VP =uP +au+s*((1+a)t+b), s#0. (2.3)

By using (1.10), we can easily show that if C; and C, are isomorphic then their
characteristic polynomials P; (t) and P, (t) are equal.
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Table 2: Some cases in which C,; have reducible characteristic polynomials.

n a b
-1 0
1 1 eF,
2 <ordr;(a) <p-1 eF,
-1 0
1 €T,
2 a primitive root of p € Fp
2 <ordy;(a) <p-1 S
a ¢ F,, a nonprimitive root of p? €Fy
agF,at =1 Oora=>bl"?
Theorem 2.1. Let ag = 1 and
2g+1
C:v*= Z au*8- (2.4)
i=0

be a hyperelliptic curve of genus g over F, of odd characteristic p, and P(t) its characteristic
polynomial. Let y be a quadratic nonresidue in ;. Then, the hyperelliptic curve

2g+1 ) )
C':0% = Y ylaus (2.5)
i=0

has the characteristic polynomial P'(t) = P(-t).

Proof. Let N denote the number of rational points of the hyperelliptic curve C' over F,; and
X;j denote the extended quadratic character of [F,;. Then, since

X () = plaDD@ D) o ()T 2y (2.6)

hence, according to (1.10), we have

2g+1 2g+1 _—
b ; +1-i ' i +1-i
Ni=q +1+ Zx]-<2yaix231 >:q1+1+ ij<20yai(yx)g >

xeF j i=0 xeF j
q q

) 2g+1 ) ) ) 2g+1 )
=g +1+ 3 5Ny < > aixZg”’> =g +1+ X (-Dy; < > a,-x23*“>
i=0

x€eF j i=0 x€eF j
q q

N; j is even,
2@ +1) =N, jis odd.

(2.7)

It follows P'(t) = P(-t) from (1.6), (1.7), and (1.10). O
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The hyperelliptic curve C' is called a twisted curve of C over I, by y. For the curve C,,
its twisted curve is a hyperelliptic curve of the equation

v* =uP +y"au +yPb (2.8)

with y a quadratic nonresidue in [, .
In the following, we compute the characteristic polynomials of C, over [, with g = p".
Case 1. For the curve C, : v> = uP +au+bwitha = -1 and 0#£b € F,, Cp has (p - 1)/2

isomorphic curves over [F,, which are

(r- 1)' (2.9)

Hence, there are three isomorphism classes of hyperelliptic curves C, over F, which are
denoted as C,(-1,0), C,(-1,+) and C,(-1, -), respectively,

Cy(~1,0) = {v2 —uP - u},
Cp(-1,+) = {vz =uP —u+b" | b" is a quadratic residue modulo p}, (2.10)

Cp(-1,-) = { v =uw” —u+b | b is a quadratic nonresidue modulo p}.

Ifv* = uwP—u+b* € Cy(-1,+) and y is a quadratic nonresidue modulo p, then its twisted
curve v* = uP —yP~lu + yPb* or v* = P — u + yb* belongs to Cp(-1,-).

According to [9], we know that the characteristic polynomial of the hyperelliptic curve
v?> =uP —uover F, is

A P-1)/2
Pe,cao®) = (P-p)" . @)

While for all the curves in C, (-1, +) or C,(~1, -), their characteristic polynomials were
proved by Duursma [9] to be

e-GFh) = fie-Onm oo

respectively.

2 5 2 7

For examples, the curve v = u> — u over Fs5 and the curve v~ = u” — u over F; have the
characteristic polynomial (#* - 5)2and P(t) = (2 +7)%, respectively. The curves in C5(-1, +) or
C7(-1,+) have the characteristic polynomial #* + 5t° + 15t + 25¢ + 25 or t° + 7> + 21t* + 4943 +
14712 + 343t + 343, respectively. The curves in C5(-1,-) or Cy(-1,—) have the characteristic
polynomial #* — 5t + 152 — 25t + 25 or t° — 7t° + 21t* — 493 + 147t — 343t + 343, respectively.
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Case 2. Over F,, the hyperelliptic curve v? = u? + u is a quotient of the Hermitian curve

Pl = uP +u which is maximal, and this leads to that over Fp, v? = uP +u has the characteristic
polynomial [10]

P(t) = (t+p) . (2.13)

Based on the following Theorem 2.6, for any b € [,, the curve v = uP +u+bis

isomorphic to v = u” +u. Thus, v* = uP +u+b over F, also has the characteristic polynomial
(2.13). And it follows that the characteristic polynomial of v* = 4" + u + b over F, equals to

)(p—l)/z

P(t) = (t2 +p (2.14)

Case 3. Suppose a#0, +1. Then for the fixed a and all b € F,, all the hyperelliptic curves
v? = uP + au + b are isomorphic. Hence, each of these curves is isomorphic to its twisted
curve. Thus, the coefficients of the terms of odd degrees in their corresponding characteristic
polynomials are zero. In fact, we have the following Lemma 2.2.

Lemma 2.2. Suppose p is an odd prime number, a € F,, and r is a positive integer satisfying 1 <r <

(p—1)/2. Then

Z Xr(xP +ax) =0 (2.15)

XGFPr

holds if one of the following three conditions is satisfied:

(1) r =2orrisodd,;

(2) (> 2) is even and a is a primitive root modulo p.

Proof. Suppose r is odd, and let y be a quadratic nonresidue in F,. Then, we have

Z Xr(xP + ax) = Z xr ((xy)? + axy)

X€EF,r Xy€F,r
= D (N +ax) = (1" 3] xr (e +ax) (2.16)
xE]Fpr xE]Fpr
= - Z xXr(xP + ax),
X€EF,r

and it follows 3 cie . Xr(x” + ax) = 0.

Letr =2 or r even and a a primitive root modulo p. We first show that x? + ax will run
through F, if x runs through F,. It is equivalent to show that for any x € F,r, if x #0, then
xP + ax #0. That is, we have to show that the equation x” + ax = 0 has no nonzero solution in
Fyr.
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Assume that xp is a nonzero root of x¥ + ax = 0 in F,r, that is, xg = —axp. Then we
2 T
have x¥ = —ax? = (-1)%a%xo, and it follows x¥ = (—a)"'x" = (-1)"a"x,, that is, xy = a"x, or
0 0 0 0
x0(1 —a") =0. Thus, xg = 0 or a” = 1, it is impossible. Therefore,
Z Xr(xP +ax) = Z Xr(x) =0. (2.17)
xG]Fpr xE]Fpr 0

Lemma 2.3. For any odd prime number p, we have

> x4 x) = (2.18)

X€EF,r

0 if risodd,
(1) /2(p-1) if r is even and no larger than p.
Proof. 3 er, Xr(x” + x) = 0 comes directly from Lemma 2.2 if 7 is odd.
Suppose r is even and r < p — 1. Let ax(0 < k < p — 1) be the coefficients of the
characteristic polynomial (2.14); then ax = 0 if k is odd, and

~1)(p-3)---(p-k+1
ap =2 P )(Zk/z '>(k/g! +1) (2.19)

if k is even. Thus, from (1.7), we have

kag = > xk(P +x) +az D, ka2 + %)+ +ara D) xa(x +x). (2.20)

xerk xerk—Z XGFPZ

From this above equation and (2.19), we can inductively show

> (P +x) = (1) (p-1). (2.21)
xE]Fpr 0

Theorem 2.4. Suppose p is an odd prime number and a(#0,+1) € F,. Let m be the order of a in the
multiplicative group If,. Then, the characteristic polynomial of the curve v* = uP + au + b over F, is

- (p-1)/m
(t"’ + (%) (—p)m/2> if mis even,

(£2m 4 ) P02 if mis odd.

P(t) = (2.22)

Proof. Since v* = uP + au + b is isomorphic to v* = u” + au, we only have to consider the curve
v? = uP + au over F,,.

Let p — 1 = ml, then a”* = 1 for k = 1,2,...,1. For any even positive integer r not
divided by m, since a” #1, the mapping x — x” + ax is a one-to-one mapping in F,-, hence,

we have

> e +ax) = Y x(x) =0. (2.23)

XGFPr xE]Fpr
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It follows that a, = 0 based on (1.7) and Lemma 2.2. Thus, for all positive integer r satisfying

r 1 m, the coefficients a, of v* = uP + au’s characteristic polynomial are equal to 0.

Let 0 be a generator of the cyclic multiplicative group Iy, then there exists an integer
k(1 <k < (p™-1)/2) such that (p™ —1)/m | k and a = 6%, and it follows that there exists an
integer r satisfying 1 <r <m -1, (r,m) =1and

(o=’ pf/m))”’l . (2.24)

Let ¢ = 0"Z%'P'/m); then ¢! = a and

>(pm—1+pm—2+~-~+p+1)/2 _ a(pm71+pm—2+_,_+p+1)/2' (225)

Xm(@) = ()" = (!

From p —1 = ml or p = ml +1, we know that there exist integers sx such that

pk = m*Psi + kml + 1, (2.26)

and it follow that there exists an integer s such that

m-1 -1
Zpk =m?s + mim-1) . ml + m. (2.27)
k=0 2
If m is even, then we have
4" tpr])  mi(m-Dl m (2.28)

> 1 +Emodm.

Hence,

— (_1)(m—1)m1/2+1 - (_1)m1/2+1 — (_1)(p+1)/2‘ (2'29)

m- -1)ml/2+1
on(eP) = aSEL 2 2 () I

Thus, from (2.21), we have

5 reor o= e ((2) i 2)) - 0(E) -2

xE]Fpm JCG]Fpm xE]Fpm

= Xm(P) D ym(x? +x) = (-) P22 (p — 1),

XGFPM

(2.30)
In addition, for any positive integer k, we have

ka(cp) _ (Cp)(pmkfl)/z — (_1)(p+1)k/2' (231)
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And so for k < (p — 1) /m, based on (2.21), we have

5 e 3 suo(E) e ) S 0u((3) )

xE]Fpmk xE]Fpmk xe]Fpmk

_ ka(cp) Z ka(xp +x) = (_1)(P+1+m)k/(2—1)pmk/2(P _ 1).

xE]Fpmk

(2.32)

Therefore, fork =1, ..., |(p—1)/2m]|, we have the coefficients a,,, of the corresponding
characteristic polynomial P(t) as follows:

_ -1 k (p—l)/m mk/2
amk—(?>< ) >(—p) . (2.33)

Hence, the characteristic polynomial for even m is

P(t) = (tm ¥ (%1) (—p)’“/z)(pl)/m. (234)

Especially, if a is a primitive element modulo p, we have
P(t) =t + p /2, (2.35)

Suppose m is odd. Then 2m | (p — 1) and 2m is the smallest even positive integer
satisfying a*™ = 1. According to the equalities (2.25) and (2.27), we have

2m-1_j .
om(c) = (CP)(pzm_l)/z _ <Cp_1>r’2i:o p'/2 _ (am)zflf'fl p/am _q (2.36)

where ¢ = §1(EE " P/2m) for some integer . And it follows that y2u,k(c?) = 1 holds for any
positive integer k.

Since for any odd integer k, we have a,x = 0. Hence, similar to the proof of the formula
(2.21), for any positive integer k(1 < k < |[(p — 1) /4m]), we have

> omk(xP +ax) = (1) p"™* (p - 1). (2.37)

xE]Fpka

Hence, the corresponding characteristic polynomial coefficient as,k for 1 < k < [(p —1)/4m]|

equals to
-1)/2m
< u k) / > pmE. (2.38)
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Thus, the corresponding characteristic polynomial is
(p—l) /2m _ 1 2 _
Pt <(P )/ m> ()3 () -/ 239)
k=0 k 0
For example, let p = 13, then a = 5 is not a primitive root of modulo p = 13. In fact, we

have 5* = 1 mod 13, and the characteristic polynomial of the curve v? = u!3 + 5u over Fi3 is
3
(t* +169)°.

Case 4. Now we consider the curves v? = u? + au + b over Fp.

Theorem 2.5. Suppose p is an odd prime number.

(1) The curve v* = uP — u over B> has the characteristic polynomial
(t-p)" . (2.40)
(2) For any nonzero element b € .2, the all roots of the equation
Yy q
X —x+b-21b+b) =0 (2.41)

are in Kz Therefore, for every nonzero element b € Fyz, the hyperelliptic curve v* = uP —
u + b over F,2 has the characteristic polynomial

[T ¢t-2p). (2.42)

¢F=1,6#1
Proof. (1) If xP — x #£0 for x € 2, then we have

/2 NPT R AN G N 1oV S Al
(xP - x) <(x’” x)P (3 - x) ) (-1) (p). (2.43)

Hence,

> et -x) = (P -p) (—(%)) (2.44)

xE]sz

It follows that if a; (i = 1,...,p — 1) are the all roots of the characteristic polynomial of v* =
uP —u over F,z, then

-9 (2)-0-0((2))
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and so we have

(szﬂ(“i +ai - 2(%)1@) =0, aa=p~. (2.46)

i=1

It follows a; = (-1/p)p =p fori=1,2,...,(p — 1)/2. Hence, the characteristic polynomial of
the curve v* = uP — u over Fp is

(t-p) . (2.47)

(2) Let fbe aroot of x¥ —x +b—-2"1(b+bP) =0, then ¥ = p—b+271(b + bP), and it
follows 7" = B, which means f§ € .

For any element b( #0) in F,2, let s be a root of the equation x* = 2(b+ b*)lin [z and t
arootof x* —x+b-2"1(b+b") = 0. Then s, t € [z, and so the curve v? = uP —u+bis isomorphic
to v? = u? —u + 1. Hence, for any nonzero element b € [, all the curve ©v? = uP —u+b has the
characteristic polynomial

[T (t-¢p). (2.48)

F=10#1
O

2 5

For example, let v be a root of u? +u+2=0mod 5, then the curve C_; ,: v* =’ —u+v

over F5. has the characteristic polynomial

o= gngﬂc -i(5)5) (2.49)

= t* + 563 + 25¢% + 125t + 625.

Since v is a quadratic nonresidue in Fs:, the curve C'_1

2 5

V?=u’ - viu+v® orv*=u’-Q2+3v)u+2 (2.50)

is one twisted curve of C_y,. Hence, C'_; ,’s characteristic polynomial is

P'(t) = t* — 5t° + 25¢> — 125t + 625. (2.51)
Suppose ¢ is a root of x? + x + 3 = 0 mod 7. Then the curve C_1z: v* = u” — u + ¢ over

F» has the characteristic polynomial
P(t) = t° — 7> + 49¢* — 343t + 2401+> — 16807t + 117649. (2.52)

Since ¢ is a quadratic nonresidue in Fy, the curve C'_ ¢

v =u - (4+5)u+3 overFp (2.53)
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is one twisted curve of C_; ;. C'_;; has the characteristic polynomial

P'(t) = t° + 7t° + 49¢* + 343> + 2401t + 16807t + 117649. (2.54)

Theorem 2.6. Suppose p is an odd prime number. Then,

(1) the equation

x*+x+b=0 (2.55)

has roots in Fy. if and only if b € F,.

Forany b € F,, the curve vP=uP+u+b=0is isomorphic to the curve v% = uP + u over [y
ifand only if b € .

(2) For any b, ¢ € Fy2 \ F,, the curve v* = uP +u+b is isomorphic to the curve v* = uP + u+c
over Isz .

Proof. (1) Suppose b € F, and xy € F,» is a root of u” + u + b = 0. Then, xh = —xp - band it
follows xgz = xo, which implies xj € F,2. On the other hand, if xj is a root of u”? + u +b = 0 in
2, then b — bP = 0, which implies b € I,

Let xobe arootof v2 = wP +u+b = 0in Fpr, then xp € Iz, and over Fp, the curve
v? = uP + u + b is isomorphic to the curve v* = uP + u + (x’é7 +xo + b), thatis, v*> = uP + u.

(2) Suppose b and c are two different elements in [F,> \ IF,. Then, obviously, (¢ —c?)(b -
| = [F,. Let s be a square root of (c - c?)(b - bP) in [F,2, and let b = b - cs2. Then,
b= (cb? —bcP)(c - cP) ! €F,.

According to (1), the equation x¥ + x + b = 0 has roots in 2. Let t € F,2 be a root of
xXP+x+b= 0; then, over F,z, the curve vP=uP+u+bis isomorphic to the curve

V2 =uP + 2PV (P + £+ D). (2.56)

That is, v* = u? + u + b is isomorphic to v* = u? + u + c over F,» since we have
2P D =1, SP(tP +t+b) =2 (—l; + b) =32 <cs*2> =c. (2.57)
O

For any b € F,» \ I, the curve v* = u? + u + b has the same characteristic polynomial.

Theorem 2.7. Suppose p is an odd prime number and b € Fx \F,. Ifp =1 mod 4, then for every
b € Fy2 \ F,, the curve v* = uP +u + b is a twisted curve of some curve of the form v* = uP —u + b’
withb' € B, If p=-1 mod 4, then for every b € F,2 \ By, the curve v* = uP + u + b is isomorphic
to the curve v* = uP — u+1 over Fp.

Hence, over K2, the characteristic polynomial of the curve v* = uP +u+b with b € Fjp \ F, is

[T (t+ip). (2.58)

¢F=1,6#1
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Proof. Let 0 be a generator of the cyclic multiplicative group IP‘;Z .
(1) Assume p=1 mod 4.Sety = 0%*1)/2; then

Yp_l = <9(P+1)/2>p71 = —]., YP = —Y, X(Y> = <9(p2_1)/2>(P+1)/2 = (_1)(P+1)/2 = —]_.
(2.59)

It follows that y is a quadratic nonresidue in F,2, and the curve v* = u” + u + b is a twist of the
curve 02 = uP —u—0@-3F+)/2p Hence, due to Theorems 2.1 and 2.5, the curve v? = u” +u+b
has the characteristic polynomial

[T (t-¢p) or Hl(”éﬁ) (2.60)

F=14#1 P=10#

(2) Assume p = -1 mod 4. Lets = 0P 2®*D/4 = 0, and b = OP*1)/2 Then, s,b €
F,> \ F,, and the curve v* = w? + u + b is isomorphic to the curve

v? = uP + 2P Dy + 2. (2.61)

It follows that v? = u” + u + b is isomorphic to the curve v? = u? — u + 1 since s2P"1) = -1 and
sPb = 0-P*V/2p = 1. Therefore, for every b € F,2 \ F,, the curve v* = u” + u + b has the same
characteristic polynomial as the curve v* = u? — u + 1 over F., that is,

[T ¢t-2p). (2.62)

¢F=1,6#1

In a word, for any odd prime number, the characteristic polynomial of the curve v* = P +u+b
is

Il <t+<_;1>§ﬁ> or [T (t+¢p)- (2.63)

F=1,6#1 F=14#1
(|

Theorem 2.8. Suppose p is an odd prime number, a,b € F,z2, and a#0,+1. Let m be the order of a in
I, if a € Iy, that is, m = ordy; (a). And let m = ordy, (a) and e(>1) be the smallest positive integer
P

suchthatm |e(p+1)ifa € Fpe \ Fp,.

(1) Suppose aP*' = 1. Then a € F2 \ F,, and the characteristic polynomial is

(t+ a<p+1)/2p)p71 if b#0, a=b'"?, or b=0,
P(t) = [T (t+ep)  if azblr.

F=14#1

(2.64)
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(2) Suppose aP*! #1; then the characteristic polynomial of the curve v* = uP + au + b over
F,. is
p

((tPD/2 4 pp-1)/2)? if ack, m=p-1,

-1 m/2 Hp=1)/m
<tm/2+<?>(_p) > if aeF,, m<p-1, mis even,

P(t) = < (2.65)

(tm +pm)(r'—1)/m ifaeF, m<p-1, misodd,

if aelFe \F,.

(p-1)/e
e 1)eP+D)/m+e=1 e
n( (-1) e/ P )

Proof. (1) If a”*! = 1, then a ¢ F, since a® #1. Let 0 be a generator of the cyclic multiplicative
group F,z. Then, there exists an integer e satisfying 1 <e <p,e#(p+1)/2,and a = 0¥,
If a?*D/2 = —1, then e is odd. Let y = 67*'~¢, then

y 7 D/2 2 gl PP1/2 2 ge(p’-1)/2 o <9<p2—1>/z>’e = (1)° = —1; (2.66)

it means that y is a quadratic nonresidue in .. Hence, the curve v* = u? +au+b has a twisted
curve defined by the equation

v* =u” +yPau+yPb, thatis, v* = uP +u+ 0P P, (2.67)

If 67*1°Pb € F,, then b = 0, or b#0 and (67*!~Pb)” ~1 = 1 which means a = b'P. Hence, the
curve v? = uP + u + OP*1"Pb is isomorphic to the curve v* = u” + u. Thus, over F,z, the curve
v? = uP + au + b has the characteristic polynomial (-t + p)P™", that is, (t — p)P ™.

If OP*1-¢Pb ¢ I, thatis, b#0 and a # b' 7, then according to Theorem 2.7, v* = u” + u +
67+1=Pb has the characteristic polynomial [Ty ;41 ( + ¢p).

If a?*1)/2 = 1, then e is even. Let s = 0¢/2 and f = 0, then the curve v? = u” + au+b, that
is,

V2 =ul + 2PV + PP+t +by) (2.68)
is an isomorphic curve of the curve
> =uP +u+b; with by = s%#b=0"Db. (2.69)

It is clear that by = 67°Pb € F, if and only if a = b'P. Hence, based on Theorems 2.6
and 2.7, the curve v = u” + au + b has the characteristic polynomial

(t+p)’™" fora=b"" or H (t+gp) for azb'?. (2.70)
P=10#1

For b = 0, we can also show our result as follows.
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Set a = 0°+P+Dk+1)/2 with 0 < k < p - 2. Then, ay are the p — 1 different nonzero roots
of x + ax = 0 in F2. Hence, if x is a nonzero root of x” + ax = 0 in 2, we have

- _1\ (D)2
X +ax) = (x + ax)? /2 = ((xp + ax)P (x + ax) 1)

.71
= (ap(ax +xP) (P + ax)_1>(p+1)/2 = (a(””)/z)p = aP*/2,

Thus, according to (1.4) and (1.10), each root of the corresponding characteristic polynomial
equals to —aP*1)/2p. It follows that the corresponding characteristic polynomial is

P(t) = <t + a(P”)/zp)P_l. (2.72)

(2) If aP*' #1, then (1 - a?*')" (aPb — bP) is a root of P + au +b = 0. Set s = 1 and
t = (1-aP*)” (aPb — bP), then, over the field F,2, v2 = uP + au + b is isomorphic to v* =
uP + s?P Vau + s?P (P + at + b), that is, v> = uP + au. Hence, we only have to compute the
characteristic polynomial of the curve v* = u” + au over Fy».

(i) If a € F,, then a?*! #1 means a# + 1. Suppose a is a primitive root of p; then the
equation x? + ax = 0 has only zero root in F, for any positive integer r : 1 <1 < (p - 3)/2,
and it follows that the r-th coefficient a, of the characteristic polynomial of v = u? + au is 0.

Now we compute the (p — 1) /2-th coefficient a(,-1y/2. Let 0 be a generator of the cyclic

multiplicative group IP‘(“P then there exists an integer r satisfying 1 <r <p-2,(r,p-1) =

1,and (0”5 P/p-Dyl = g,
P2 i, _ *
Set ¢ = 0"Zi0 P/(P-1); then ¢ € IP‘;p,l, ¢! =g, and Xp1y/2(P) = xp-1(c?) = (-1)P*D72,
Hence, based on Lemma 2.3, we have

z)<p—1>/z;

2 Xy ran) = 3 x’gp_l)/z<cp<<§>p+cpi—1'§>>

xeF(pZ)(P*I)/Z XG]F(pz)(p,l)/z

=xp1(c") D, Xp1(x” +x)=(-1)PV2(<1)pr V2 (p - 1)

x€F -
pPt

=pP 2 (p-1),
(2.73)

where y} denotes the extended quadratic character of the degree k extension of . (i.e., F,ax),
which is equivalent to y2x, the extended quadratic character of the degree 2k extension of I,.
Thus,

pPV2(p 1) = 2pr 12, (2.74)

1
Ap-1)/2 = m



Mathematical Problems in Engineering 19

Therefore, the corresponding characteristic polynomial is
_ _ _ (p-1)/2 _ B 2
P(t) = #7714 2p®D/24(01/2 4 <p2> - (t<p /2 4 b 1>/2> , (2.75)

(ii) Suppose a € F, and m < p — 1; then similar to the proof of Theorem 2.4, we have
the corresponding characteristic polynomial coefficients as the the following if m is even:

Ak )2 = (_1)(p—1)k/2 (_P)mk/Z <2(P _kl)/m> (2.76)

for 1 < k < (p—1)/m, while the other coefficients are equal to zero. Hence, the corresponding

characteristic polynomial is
- 2(p-1)/m
(tm/2 + <?1>(—p)’“/2> : (2.77)

By the same way, we can show that if m is odd, the corresponding characteristic
polynomial is (£ + p™)#~D/™

(iii) Suppose a € Fj2 \ F,, then m { (p +1). If an integer k satisfies 1 < k < (p—-1)/2 and
m { k(p + 1), then the corresponding characteristic polynomial is 7! + pP~L.

Now suppose e is the smallest integer such that 2 < e < (p-1)/2and m | e(p + 1).
Then e | (p — 1). Otherwise, let p — 1 = de + e; with d being an integer and 1 < e; < e. Then,
(p+1)(p-1)=de(p+1)+ei(p+1), and it follows m | e1(p + 1), which contradicts e being
the smallest integer satisfying m | e(p + 1). Setp —1 = el, e(p + 1) = mt. Clearly, (e, t) = 1.

For any positive integer k satisfying e { k, since x” + ax = 0 has no nonzero root in F,
we have

2k 7

Z Xk xp + ax) Z xk(x) Z XZk(x) =0, (278)

xE]F(FZ)k xeF p2k XE]FFZk

which implies the corresponding characteristic polynomial coefficient ax = 0.
Hence, we only have to compute the characteristic polynomial coefficients a., for r =
L 11/72].

Let 6 be a generator of the cyclic multiplicative group ]F‘gpz)e or ]F‘;ZE. Then there exists

an integer k(1 < k < p? - 2) such that a = 0 =% 7", Since a??*1) = 1, we have

1= (6437 2’>e‘p D _ grelpr) SE P _ gk/D-D(H) S5 P _ g/, (2.79)

and it follows that k/I must be a positive integer. Set k = k', where k' is some positive integer
satisfying (e, k') = 1 due to the smallest of e.
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Fromp -1 =-elorp = el +1, we can deduce that there exists a positive integer n such
that

-1
p* =e’Pn+e*(e-1)l +e. (2.80)

o

~.
]
o

Hence, we have

a= Qlk’(ezlzn+ez(e—1)l+e) — Q(el)k’(elzn+e(e—1)l+1) — Q(p—l)k’(elzn+e(e—1)l+1). (2.81)

Let 6 = @ (ePPnte(e=DI+D). then g = 671 and for every integer r : 2 < r < |I/2], we have

r=1_2ei

X (87) = xare(67) = (87) W7 D/2 = (5p) PN/ Elp

- _— (2.82)
_ <(6P)(p 371)/2> i=0 _ <(_1)g(p+l)/m> i=0 _ (_1)re(p+l)/m'
And according to (2.21), we obtain
* X P a X

2 X Hax) = 3 o +ax) = 3 er3<6’7><<3) e 5)
XG]F(pZ)rE XG]FFZrE xe]sz,g (2 83)

= Xm((sr’) Z XZre(xp +x) = (_1)r(8(P+1)/m+e)*1pre(p _ 1)'

xe]FPZrE

Therefore, the corresponding characteristic polynomial coefficient a,, can be computed as
follows:

1 r-1 .
re = EZ Z X(r—i)e(xp +ax)ai

i=0 XEF(FZ)(Y,I')E

-1
_ %rZ(_l)(rfi)(e(p+1)/m+e)71p(r—i)e (p-1a (2.84)
=0

e(p+1)/m+e-1_e\" (p_l)/e
- ((_1) (p+1)/ 1p> < ) >

and it follows that the corresponding characteristic polynomial is

(p-1)/
P(t) = <te N (_1)8(P+1)/m+e—1pe> /e (2.85)
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3. Some Hyperelliptic Curves C, Suitable for
Cryptographic Applications

Due to the Pollard’s rho algorithm, Index-calculus algorithm or their modified versions [11-
14], the order of the Jacobian group should have a large prime factor or an almost large prime
factor (i.e., the order should be a large prime times a small integer, and the hyperelliptic
curves of genus greater than 3 may not be secure for cryptographic applications). Otherwise,
the discrete logarithm problems on the Jacobian group may probably be solved in a
subexponential time complexity or even in a polynomial time complexity. Hence, the
characteristic polynomial of C,; should be irreducible over the rational number field, and
the field characteristic p should be no larger than 7 when the curve C, is considered for
cryptographic uses. The following Table 2 lists some values of (n, a, b) with which C; have
reducible characteristic polynomials in rational number field and so they are not secure for
cryptographic applications.

According to the Theorem 1 in [15], the curve v* = u” + u + b over F, is supersingular
and thus the parameters (the characteristic p and the extension degree of F,) have to be
chosen carefully to defend against an MOV-type attack where the group is embedded in the
multiplicative group of a finite field. Furthermore, the curves have a large automorphism
group [16], and the size of the Jacobian should be large enough to defend against a
parallelized Pollard rho-type attack.

If the characteristic polynomial P(t) of a hyperelliptic curve C, over I, is determined,
then for any positive integer m, the Jacobian group order #Jc(F;~ ) can be computed as (1.8).

But if finding the roots of P(t) is of some high computational complexity, then one can
obtain the Jacobian group order by computing the determinant of the (2g x2g)-matrix A” -1,
where A is the companion matrix of P(t), that is,

0 1 0 0
0 0 1 0
A= . (3.1)
0 0 o -1
-8 ¢¢'ay ¢5%ay - m

For a positive integer m, by taking " — 1 modulo P(t) in the polynomial ring Z [t] and
setting ¢(t) = " — 1 mod P(t), then we get that ¢(¢) is a monic polynomial of degree no larger
than2¢g -1 and

2g 2g
#lc(Bp) = [ -7") =] [¢(m), (3.2)
i=1 i=1

which may be another more efficient method for the computation of the Jacobian group order
if the field extension degree m is very large. For C; with g = p, a = -1, and b(#0) € F,,
Duursma and Sakurai gave a table about the bit-sizes of the large prime factors of the orders
of the Jacobian groups #Jc,(F;n) for some parameters (p,m) in [6]. In Table 3, we list some
parameters (g,a,b,m) with which the Jacobian group orders #Jc, (Fs) have large prime
factors, together with the corresponding characteristic polynomials, the largest prime factors,
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and their bit sizes. Where “Bits” in Table 3 denotes the bit-sizes of the largest prime factors of
the corresponding Jacobian group orders, v is a root of #> + u + 2 = 0 mod 5 and ¢ is a root of
x?+x+3=0mod 7.

For the listed parameters (g, a,b,m) in Table 3, the corresponding Jacobian group
orders are almost large primes, and so these hyperelliptic curves C; are suitable for secure
hyperelliptic curve cryptographic applications.

4. Conclusion

The computation of hyperelliptic curve Jacobian group orders is an essential step during
constructing HECC. At the present, the most common method used for the computation of
Jacobian group orders is by computing the zeta functions or the characteristic polynomials
of the related hyperelliptic curves. Hence, computing the characteristic polynomials of
hyperelliptic curves is a very useful work, and it is often a challenging work.

In this paper, we determine the characteristic polynomials of C,; over the finite field F,»
forn =1,2and a,b € F,:. By using the characteristic polynomials one can easily compute out
the Jacobian group orders. And we also describe some parameters with which the Jacobian
group orders of C,; have large prime factors.

The hyperelliptic curves of genus larger than 3 are not secure for cryptographic
applications since the corresponding hyperelliptic curve discrete logarithm problems can
be solved by the Index-calculus algorithm or its modified versions in some subexponential
time. Hence, we should be careful when the curve C; with p > 11 is used for practical
cryptosystems. If the implementation speed is the first consideration in the construction of
HECC, while the security is not in high demand, then one may choose the curve C, with
some high genus or with the Jacobian group order not having so much large prime factor.
Besides, some special hyperelliptic curves having fast arithmetic over finite fields can be
found efficient applications in pairing-based cryptosystems or identity-based cryptosystems
([15,17]).

Since the (divisor) scalar multiplication computation is the most extremely time-
consuming operation, we will employ the characteristic polynomials of C; obtained here to
develop some efficient scalar multiplication algorithms on C, in our future work.

Acknowledgments

The authors would like to thank Professor Shuhong Gao for his comments which greatly
improved this paper. The authors would also like to thank the anonymous referee for the
careful review and the valuable comments. This research is supported by the Zhejiang
Natural Science Foundation of Outstanding Youth Team Project (no. R1090138), the National
Science Foundation of China (no. 60763009), and the Science and Technology Key Project of
the Ministry of Education of China (no. 207089).

References

[1] N. Koblitz, “Hyperelliptic cryptosystems,” Journal of Cryptology, vol. 1, no. 3, pp. 139-150, 1989.

[2] J. Pelzl, T. Wollinger, J. Guajardo, and C. Paar, Hyperelliptic Curve Cryptosystems: Closing the Performance
Gap to Elliptic Curves, vol. 2779 of Lecture Notes in Computer Science, Springer, Berlin, Germany, 2003.

[3] A. Weil, “Numbers of solutions of equations in finite fields,” Bulletin of the American Mathematical
Society, vol. 55, pp. 497-508, 1949.



Mathematical Problems in Engineering 25

[4] R. Hartshorne, Algebraic Geometry, vol. 52 of Graduate Texts in Mathematics, Springer, New York, NY,
USA, 1977.

[5] K. S. Kedlaya, “Counting points on hyperelliptic curves using Monsky-Washnitzer cohomology,”
Journal of the Ramanujan Mathematical Society, vol. 16, no. 4, pp. 323-338, 2001.

[6] 1. Duursma and K. Sakurai, “Efficient algorithms for the Jacobian variety of hyperelliptic curves y* =
xP — x + 1 over a finite field of odd characteristic p,” in Proceedings of the International Conference on
Coding Theory, Cryptography and Related Areas, pp. 73-89, Springer, Guanajuato, Mexico, 2000.

[7] J. H. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, vol. 151 of Graduate Texts in
Mathematics, Springer, New York, NY, USA, 1994.

[8] P. Lockhart, “On the discriminant of a hyperelliptic curve,” Transactions of the American Mathematical
Society, vol. 342, no. 2, pp. 729-752, 1994.

[9] 1. Duursma, “Class numbers for some hyperelliptic curves,” in Arithmetic, Geometry and Coding Theory,
pp. 45-52, de Gruyter, Berlin, Germany, 1996.

[10] S. Tafazolian, On supersingular curves over finite fields, Ph.D. thesis, Instituto Nacional de Matematica
Pura e Aplicada, 2008.

[11] J. M. Pollard, “Carlo methods for index computation modp,” Mathematics of Computation, vol. 32, no.
143, pp. 918-924, 1978.

[12] O. Schirokauer, D. Weber, and T. Denny, “Discrete logarithms: the effectiveness of the index calculus
method,” in Algorithmic Number Theory, vol. 1122 of Lecture Notes in Computer Science, pp. 337-361,
Springer, Berlin, Germany, 1996.

[13] P. Gaudry, “An algorithm for solving the discrete log problem on hyperelliptic curves,” in Advances in
Cryptology—Eurocrypt 2000, vol. 807 of Lecture Notes in Computer Science, pp. 19-34, Springer, Berlin,
Germany, 2000.

[14] P. Gaudry, E. Thomé, N. Thériault, and C. Diem, “A double large prime variation for small genus
hyperelliptic index calculus,” Mathematics of Computation, vol. 76, no. 257, pp. 475-492, 2007.

[15] S. D. Galbraith, “Supersingular curves in cryptography,” in Advances in Cryptology—ASIACRYPT
2001, vol. 2248 of Lecture Notes in Computer Science, pp. 495-513, Springer, Berlin, Germany, 2001.

[16] H. Stichtenoth, “Uber die Automorphismengruppe eines algebraischen Funktionenkorpers von
Primzahlcharakteristik. II. Ein spezieller Typ von Funktionenkérpern,” Archiv der Mathematik, vol.
24, pp. 615-631, 1973.

[17] D. Boneh, “A brief look at pairings based cryptography,” in Proceedings of the Annual IEEE Symposium
on Foundations of Computer Science (FOCS '07), pp. 19-26, IEEE Press, Los Alamitos, CA, USA, 2007.



-

Advances in

Operations Research

/
—
)

Advances in

DeC|S|on SC|ences

Mathematical Problems
in Engineering

Algebra

2

Journal of
Probability and Statistics

The Scientific
\(\(orld Journal

International Journal of

Combinatorics

Journal of

Complex Analysis

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Journal of

Mathematics

Journal of

DISBJBLL alhematics

International Journal of

Stochastic Analysis

Journal of

Function Spaces

Abstract and
Applied Analysis

Journal of

Applied Mathematics

ol

w2 v (P
/

e

\jtl (1)@" W, E

International Journal of
Differential Equations

ces In

I\/lathémamcal Physics

Discrete Dynamics in
Nature and Society

Journal of

Optimization



