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A modified PRP nonlinear conjugate gradient method to solve unconstrained optimization
problems is proposed. The important property of the proposed method is that the sufficient descent
property is guaranteed independent of any line search. By the use of the Wolfe line search, the
global convergence of the proposed method is established for nonconvex minimization. Numerical
results show that the proposed method is effective and promising by comparing with the VPRP,
CG-DESCENT, and DL* methods.

1. Introduction

The nonlinear conjugate gradient method is one of the most efficient methods in solving
unconstrained optimization problems. It comprises a class of unconstrained optimization
algorithms which is characterized by low memory requirements and simplicity.

Consider the unconstrained optimization problem

min f(x), (1.1)

XER"

where f : R* — Ris continuously differentiable, and its gradient g is available.
The iterates of the conjugate gradient method for solving (1.1) are given by

X1 = Xk + ardy, (1.2)
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where stepsize ay is positive and computed by certain line search, and the search direction d
is defined by

_gk/ fOI' k = 1,
= (1.3)
—gk + Prdi-1, for k>2,

where gx = V f(xx), and P is a scalar. Some well-known conjugate gradient methods include
Polak-Ribiere-Polyak (PRP) method [1, 2], Hestenes-Stiefel (HS) method [3], Hager-Zhang
(HZ) method [4], and Dai-Liao (DL) method [5]. The parameters i of these methods are
specified as follows:

PRP _ 8x (8k — 8k-1)
ko= 2
[

s Sk (8k = 8k-1)

4

k - 4
i 1(8x = 8-1)
(1.4)
v\ s
HZ -
= Yr-1 —2dka ,
¢ < d};lyk—1> Yk
T T
& Yk-1 81 Sk-1
]k)L = Tk -t Tk ’ (t 2 O)/
A Y1 di Yk
where || - || is the Euclidean norm and yx_1 = gk — gk-1. We know that if f is a strictly convex

quadratic function, the above methods are equivalent in the case that an exact line search is
used. If f is nonconvex, their behaviors may be further different.

In the past few years, the PRP method has been regarded as the most efficient conju-
gate gradient method in practical computation. One remarkable property of the PRP method
is that it essentially performs a restart if a bad direction occurs (see [6]). Powell [7] con-
structed an example which showed that the PRP method can cycle infinitely without ap-
proaching any stationary point even if an exact line search is used. This counterexample also
indicates that the PRP method has a drawback that it may not globally be convergent when
the objective function is nonconvex. Powell [8] suggested that the parameter fi is negative
in the PRP method and defined p as

P = max{O, ﬂiRP } (1.5)

Gilbert and Nocedal [9] considered Powell’s suggestion and proved the global convergence
of the modified PRP method for nonconvex functions under the appropriate line search. In
addition, there are many researches on convergence properties of the PRP method (see [10-
12]).

In recent years, much effort has been investigated to create new methods, which not
only possess global convergence properties for general functions but also are superior to
original methods from the computation point of view. For example, Yu et al. [13] proposed a
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new nonlinear conjugate gradient method in which the parameter fy is defined on the basic
of BR such as

llgell” - |87 x|
VPRP _

k v|gldia| + l|geal®
0, otherwise,

. 2
if [lgxll” > |gi g1l (16)

where v > 1 (in this paper, we call this method as VPRP method). And they proved the
global convergence of the VPRP method with the Wolfe line search. Hager and Zhang [4]
discussed the global convergence of the HZ method for strong convex functions under the
Wolfe line search and Goldstein line search. In order to prove the global convergence for
general functions, Hager and Zhang modified the parameter ' as

M2 = max{ %, i}, (17)

where

-1
|kl min{n, || ]|}

Nk 1n>0. (1.8)

The corresponding method of (1.7) is the famous CG-DESCENT method.
Dai and Liao [5] proposed a new conjugate condition, that is,

diyi-1 = —tg sk, (t20). (1.9)

Under the new conjugate condition, they proved global convergence of the DL conjugate
gradient method for uniformly convex functions. According to Powell’s suggestion, Dai and
Liao gave a modified parameter

T T
SiYk1 }_t&, (t30). (1.10)

Pk = max{ T , -
k-1Yk-1 a1 Yk

The corresponding method of (1.10) is the famous DL* method. Under the strong Wolfe
line search, they researched the global convergence of the DL* method for general functions.
Zhang et al. [14] proposed a modified DL conjugate gradient method and proved its global
convergence. Moreover, some researchers have been studying a new type of method called
the spectral conjugate gradient method (see [15-17]).

This paper is organized as follows: in the next section, we propose a modified PRP
method and prove its sufficient descent property. In Section 3, the global convergence of the
method with the Wolfe line search is given. In Section 4, numerical results are reported. We
have a conclusion in the last section.
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2. Modified PRP Method

In this section, we propose a modified PRP conjugate gradient method in which the param-

eter fy is defined on the basic of ;" as follows:

llgell” - |87 e
MPRP _

e =) max{0,gldi )} + [|gkal®
0, otherwise,

. 2 2
ol gl 2 mlal’s )

in which m € (0, 1). We introduce the modified PRP method as follows.

2.1. Modified PRP (MPRP) Method

Step1. Setx; € R", ¢ >0,and d; = —g1, if ||g1]| < ¢, then stop.

Step 2. Compute aj by some inexact line search.

Step 3. Let Xpi1 = Xic + ardi, k1 = §(Xk41), if ||gk+1]| < €, then stop.
Step 4. Compute P41 by (2.1), and generate dj.q by (1.3).

Step 5. Set k = k +1, and go to Step 2.

In the convergence analyses and implementations of conjugate gradient methods, one
often requires the inexact line search to satisfy the Wolfe line search or the strong Wolfe line
search. The Wolfe line search is to find aj such that

f(xk + axdy) < f (xx) + S gy dr, (2.2)

g(xx + axdi) di > ogl dy, (2.3)

where 0 < 6 < o < 1. The strong Wolfe line search consists of (2.2) and the following
strengthened version of (2.3):

gk + akdk)Tdk| < —O‘g{dk. (2.4)

Moreover, in most references, we can see that the sufficient descent condition

2

grde < —cl|gk]”, ¢>0 (2.5)

is always given which plays a vital role in guaranteeing the global convergence properties of
conjugate gradient methods. But, in this paper, dj can satisfy (2.5) without any line search.

Theorem 2.1. Consider any method (1.2)-(1.3), where fi. = 'R If g #0 for all k > 1, then

ghd < —|lgll>, vk >1. (2.6)
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Proof. Multiplying (1.3) by g/, we get
gidic ==l gell” + B gi i 27)

If pAPRP = 0, from (2.7), we know that the conclusion (2.6) holds. If B'"*" 20, the proof is
divided into two cases in the following.
Firstly, if g,fqu <0, then from (2.1) and (2.7), one has

lgell” - lsigen] 4
max{0, gfdx 1} + [|gea[*

Sidi = _||gk||2+ di

2
lgell” ~ lgigetl -,

= —lgll” + ; ki1
(£
gt g1/l gll”) - gh i - gfdicr + [l g ||
= (~ll&l?) - (i )-8 — (2.8)
[l gl
2 2
(Isl?) g1 ]l” - gFeir (1= 18T g1/l gell”)
= — K .
=1k
N llgial’ 2
< <—||gk|| > 'W = —|lgk]l" <0
k-1
Secondly, if g,fdk_l > 0, then from (2.7), we also have
r 2 el - lsigal - 4 2
ki <[l gell” + T, S s - |8t g | < —mll gl (2.9)
Ak
From the above, the conclusion (2.6) holds under any line search. O

3. Global Convergences of the Modified PRP Method

In order to prove the global convergence of the modified PRP method, we assume that the
objective function f(x) satisfies the following assumption.

Assumption H

(i) The level set Q = {x € R" | f(x) < f(x1)} is bounded, that is, there exists a positive
constant ¢ > 0 such that for all x € Q, ||x|| < ¢.

(ii) In a neighborhood V of Q, f is continuously differentiable and its gradient g is
Lipchitz continuous, namely, there exists a constant L > 0 such that

) =gl < Llx-yll, VxyeV. (3.1)
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Under these assumptions on f, there exists a constant y > 0 such that

@] <y VxeQ. (3.2)

The conclusion of the following lemma, often called the Zoutendijk condition, is used
to prove the global convergence properties of nonlinear conjugate gradient methods. It was
originally given by Zoutendijk [18].

Lemma 3.1. Suppose that, Assumption H holds. Consider any iteration of (1.2)-(1.3), where dj
satisfies gl dx < 0 for k € N* and ay. satisfies the Wolfe line search, then

Td 2
> (8 kz) < 400 (3.3)
i1 |kl

Lemma 3.2. Suppose that Assumption H holds. Consider the method (1.2)-(1.3), where pi = ¥R,
and ay. satisfies the Wolfe line search and (2.6). If there exists a constant r > 0, such that

lgell 27 Vk>1, (3.4)
then one has
> lluk = uga | < +oo, (3.5)
k>2
where uy = di/||dk||-
Proof. From (2.1) and (3.4), we get
8F g1 #0. (3.6)

By (2.6) and (3.6), we know that di #0 for each k.
Define the quantities

-8k 6. = BYRE e |

Tk = , k= (3.7)
[kl [kl
By (1.3), one has
de g+ B
U = = =1k + Okllg_1. (38)
I e '

Since uy is unit vector, we get

7|l = llux — Okl = ||6kux — ur-1]|. (3.9)
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Figure 1: Performance profiles of the conjugate gradient methods with respect to CPU time.
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Figure 2: Performance profiles with respect to the number of iterations.

From 6k > 0 and the above equation, one has

lluk — ug-a |l < (1 + 6k) |lux — ug-1]]

= |(1 + 6k)ux — (1 + 6k ) k1|
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< luk — Gxcttra]| + |6k — i1 |

= 2||rel.

By (2.1), (3.4), and (3.6), one has

2
s |8 gk

2
18«

From (3.3), (2.6), (3.4), and (3.11), one has

T 2
m 2 Inds 2, <||7’k||2‘w
18«

k>1,dx #0 k>1,dx #0

v |8t g |’

2
i z0 Ikl

(g7 d)’

= 2
k>1,dx 20 ||dk||

SO

> ikl < +oo.

k>1,dx #0

By (3.10) and the above inequality, one has

> lluk = upa | < +oo.
k=2

4

)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

O

Lemma 3.3. Suppose that Assumption H holds. If (3.4) holds, then pY'"R” has property (*), that is,

(1) there exists a constant b > 1, such that |ﬂ£APRP| <b,

(2) there exists a constant A > 0, such that ||xj — xc1]| < A = |BYPRP] < 1/20.

Proof. From Assumption (ii), we know that (3.2) holds. By (2.1), (3.2), and (3.4), one has

MPRP| (lIgell + Nlgx=ll) - Il gl < ﬁ B
EAE <A

lgeall”

(3.15)
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Figure 3: Performance profiles with respect to the number of function evaluations.

Define A = r2/2Lyb. If ||xx — xx-1]| < A, then from (2.1), (3.1), (3.2), and (3.4), one has

2
|ﬂMPRP| < ”gk” -g;fgk—l _ g{(gk‘gk—l)

k
||gk_1||2 ||8k—1||2 (3.16)
sl s gl vl 1
[l gkl ! O

Lemma 3.4 (see [19]). Suppose that Assumption H holds. Let {xi} and {dy} be generated by (1.2)-
(1.3), in which ay satisfies the Wolfe line search and (2.6). If fr > 0 has the property (*) and (3.4)
holds, then there exits A > 0, for any A € Z* and ko € Z*, for all k > ko, such that

) (3.17)

where %ﬁA LlieZ  k<i<k+A-1,||xi—xi1]| > A}, |9‘{£,A| denotes the number of the %ﬁA.

Theorem 3.5. Suppose that Assumption H holds. Let {x;} and {di} be generated by (1.2)-(1.3), in
which ay satisfies the Wolfe line search and (2.6), i = BYPRT, then one has

lllcrilil;f”gk” =0. (3.18)
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Table 1: The numerical results of the modified PRP method.

Problem Dim NI NF NG CPU

ROSE 2 24 109 90 0.3651
FROTH 2 11 80 61 0.0594
BADSCP 2 26 227 210 0.2000
BADSCB 2 11 89 79 0.1085
BEALE 2 21 75 59 0.1449
HELIX 3 25 76 61 0.1754
BRAD 3 20 73 61 0.1380
GAUSS 3 3 6 0.0164
MEYER 3 1 1 1 0.0063
GULF 3 1 2 0.0173
BOX 3 1 1 1 0.0574
SING 4 67 263 228 0.5000
WOOD 4 33 150 117 0.2421
KOWOSB 4 57 222 195 0.4000
BD 4 26 127 96 0.1995
OSB1 5 1 1 1 0.0157
BIGGS 6 121 449 396 1.0000
OSB2 11 341 900 811 1.3000
JENSAM 6 12 49 32 0.0900
7 13 56 35 0.1872

8 11 53 30 0.1678

9 12 65 38 0.1160

10 26 133 94 0.2604

11 NaN NaN NaN NaN

VARDIM 3 4 40 26 0.0135
5 6 57 38 0.0296

6 5 65 43 0.0270

8 7 72 47 0.0327

9 7 78 50 0.0647

10 7 81 52 0.0646

12 7 90 58 0.0647

15 8 92 60 0.0948

WATSON 5 59 200 167 0.2000
6 387 1281 1134 1.4000

1768 5834 5191 6.0000
8 3934 13373 11920 14.0000
10 4319 15102 13451 17.0000

12 1892 6762 6007 9.0000

15 1527 5552 4933 7.0000
20 3001 11308 10107 19.0000

PEN2 5 111 439 393 0.4000
10 185 845 752 1.5000

15 154 774 679 0.5000

20 178 989 889 0.6000

30 123 610 534 0.4000

40 147 700 617 0.5000

50 152 744 651 1.2000

60 163 813 720 0.7000
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Table 1: Continued.
Problem Dim NI NF NG CPU
PEN1 5 30 151 125 0.2742
10 88 415 357 0.9000
20 32 155 124 0.3349
30 73 350 290 0.7000
50 72 346 285 0.3000
100 29 189 147 0.2458
200 28 198 152 0.4759
300 27 201 150 1.0464
TRIG 10 41 92 82 0.3817
20 56 136 127 0.5634
50 49 106 103 0.1949
100 61 137 127 0.3857
200 56 116 114 2.0205
300 52 106 101 11.6394
400 57 116 114 44.9734
500 53 109 108 89.8125
ROSEX 100 26 123 103 0.2323
200 26 123 103 0.2583
300 26 123 103 0.3078
400 26 123 103 0.4697
500 26 123 103 0.6781
1000 26 123 103 2.4474
1500 26 123 103 5.3979
2000 26 123 103 9.9364
SINGX 100 78 320 283 0.8000
200 79 335 293 0.8000
300 73 308 269 0.8000
400 89 367 324 1.6000
500 91 374 330 2.2000
1000 93 385 342 8.0000
1500 82 347 306 15.8000
2000 80 341 299 28.4000
BV 200 1813 4326 4063 9.0000
300 636 1501 1418 5.4000
400 226 516 487 2.7000
500 188 420 398 3.2000
600 86 190 184 1.9000
1000 21 40 37 0.9963
1500 11 20 19 1.0900
2000 2 6 5 0.5456
IE 200 6 13 7 0.3063
300 6 13 7 0.6698
400 6 13 7 1.1916
500 6 13 7 1.8511
600 6 13 7 2.6615
1000 6 13 7 7.3635
1500 6 13 7 16.6397
2000 6 13 7 29.4927
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Table 2: The numerical results of the VPRP method.

Problem Dim NI NF NG CPU
TRID 200 35 81 74 0.3327
300 36 83 75 0.3587

400 37 83 75 0.3731

500 35 78 73 0.4935

600 36 80 76 0.6862

1000 35 79 75 1.7180

1500 36 84 79 4.0501

2000 37 85 79 7.5866

ROSE 2 24 111 85 0.1585
FROTH 2 12 78 59 0.0698
BADSCP 2 99 394 336 0.4000
BADSCB 2 13 30 19 0.0448
BEALE 2 12 48 35 0.0402
HELIX 3 74 203 175 0.5000
BRAD 3 30 100 80 0.2027
GAUSS 3 0.0085
MEYER 3 1 1 1 0.0058
GULF 3 1 2 2 0.0052
BOX 3 1 1 1 0.0561
SING 4 101 341 289 0.7000
WOOD 4 174 482 417 0.6000
KOWOSB 4 71 234 203 0.3000
BD 4 42 161 125 0.2451
OSB1 5 1 1 1 0.0063
BIGGS 6 113 375 330 0.8000
OSB2 11 264 667 603 1.5000
JENSAM 6 9 33 17 0.0696
7 11 39 17 0.1137

8 10 42 19 0.0883

9 17 90 57 0.1850

10 17 124 84 0.1435

11 6 76 46 0.1111

VARDIM 3 4 40 26 0.0290
5 6 57 38 0.0203

6 5 65 43 0.0273

8 7 72 47 0.036

9 7 78 50 0.0715

10 7 81 52 0.0458

12 7 90 58 0.0672

15 8 92 60 0.0622

WATSON 5 193 535 473 1.4000
6 342 1002 890 2.2000

7 1451 4157 3678 5.0000
8 6720 19530 17300 20.0000

10 NaN NaN NaN NaN
12 3507 10432 9234 13.0000
15 5271 15817 14006 24.0000

20 NalN NalN NalN NalN
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Table 2: Continued.
Problem Dim NI NF NG CPU
PEN2 5 129 499 434 1.0000
10 90 379 328 0.3000
15 434 1467 1298 2.2000
20 941 2959 2612 3.0000
30 771 2531 2193 3.0000
40 248 978 860 1.6000
50 952 2788 2511 3.0000
60 927 2822 2435 4.0000
PEN1 5 32 151 124 0.3752
10 90 383 324 0.8000
20 28 160 121 0.1119
30 76 334 279 0.3000
50 64 344 280 0.5000
100 23 160 122 0.2212
200 21 174 128 0.4081
300 28 192 143 1.0207
TRIG 10 36 82 71 0.4048
20 56 125 114 0.6413
50 45 93 85 0.3426
100 58 120 113 0.4573
200 64 135 128 2.0248
300 52 102 99 12.4258
400 60 132 125 52.5691
500 59 127 116 101.6207
ROSEX 100 24 111 85 0.2798
200 24 111 85 0.2808
300 24 111 85 0.3136
400 24 111 85 0.4271
500 24 111 85 0.6181
1000 24 111 85 2.1821
1500 24 111 85 4.7644
2000 24 111 85 8.8878
SINGX 100 169 562 483 0.6000
200 199 676 576 1.4000
300 365 1181 1031 3.7000
400 627 2025 1756 9.0000
500 129 431 367 2.5000
1000 229 788 675 16.9000
1500 100 329 280 16.0000
2000 128 428 363 36.0000
BV 200 NaN NaN NaN NaN
300 7278 12990 12989 55.0000
400 3837 6707 6706 42.0000
500 1842 3236 3235 26.0000
600 898 1562 1561 17.6000
1000 133 232 231 6.2000
1500 19 36 35 2.0484
2000 2 6 5 0.5156
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Table 2: Continued.

Problem Dim NI NF NG CPU
IE 200 7 15 8 0.3596
300 7 15 8 0.7986
400 7 15 8 1.4202
500 7 15 8 2.2147
600 7 15 8 3.1811
1000 7 15 8 8.8316
1500 7 15 8 19.7838
2000 7 15 8 34.7553
TRID 200 33 75 71 0.3758
300 35 79 75 0.3654
400 35 78 74 0.3912
500 35 78 74 0.5188
600 37 82 78 0.7388
1000 34 76 72 1.6832
1500 37 86 81 4.1950
2000 37 86 80 7.5255

0.9 g

0.8 R

0.7 R

0.6 ]

Y 05 1

04 F 4

0.3 F g

0.2 F R

0.1F R

0 1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10
X
-~ MPRP method --- CG-DESCENT method
VPRP method —— DL* method

Figure 4: Performance profiles with respect to the number of gradient evaluations.

Proof. To obtain this result, we proceed by contradiction. Suppose that (3.18) does not hold,
which means that there exists » > 0 such that

llgkll > 7 fork>1, (3.19)

so, we know that Lemmas 3.2 and 3.4 hold.
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Table 3: The numerical results of the CG-DESCENT method.

15

Problem Dim NI NF NG CPU
ROSE 2 36 132 107 0.2371
FROTH 2 12 64 48 0.0462
BADSCP 2 40 213 189 0.2000
BADSCB 2 16 101 88 0.1212
BEALE 2 11 45 33 0.0405
HELIX 3 66 179 152 0.4397
BRAD 3 47 143 122 0.2292
GAUSS 3 3 10 8 0.0093
MEYER 3 1 1 1 0.0085
GULF 3 1 2 2 0.0068
BOX 3 1 1 1 0.0600
SING 4 62 198 164 0.3000
WOOD 4 103 298 247 0.5000
KOWOSB 4 77 222 192 0.4000
BD 4 53 204 162 0.3000
OSB1 5 1 1 1 0.0084
BIGGS 6 128 395 341 0.7000
OSB2 11 379 915 827 1.2000
JENSAM 6 NaN NaN NaN NaN
7 12 51 32 0.1114
8 11 50 26 0.0844
9 NaN NaN NaN NaN
10 5 59 34 0.0421
11 21 148 105 0.1749
VARDIM 3 4 40 26 0.0246
5 6 57 38 0.0174
6 5 65 43 0.0266
8 7 72 47 0.0226
9 7 78 50 0.0323
10 7 81 52 0.0495
12 7 90 58 0.0610
15 8 92 60 0.0583
WATSON 5 135 391 336 0.5000
6 421 1186 1043 1.4000
7 1822 5278 4655 6.0000
8 2607 7589 6716 9.0000
10 NaN NaN NaN NaN
12 3370 10111 8930 12.0000
15 5749 17442 15368 27.0000
20 5902 18524 16282 36.0000
PEN2 5 128 485 421 1.1000
10 147 571 486 0.4000
15 663 2262 1996 2.0000
20 734 2452 2181 3.0000
30 810 2438 2264 3.0000
40 1488 4502 3960 5.0000
50 744 2342 2056 2.0000
60 755 2457 2188 3.0000
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Table 3: Continued.

Problem Dim NI NF NG CPU
PEN1 5 39 174 141 0.3298
10 94 404 345 0.8000
20 35 162 127 0.1220
30 76 347 286 0.3000
50 81 375 313 0.4000
100 31 184 141 0.2434
200 25 171 126 0.4106
300 26 186 139 1.0160
TRIG 10 33 74 65 0.2781
20 60 145 132 0.5098
50 43 95 90 0.3620
100 53 116 108 0.4474
200 59 123 118 1.7555
300 51 109 105 12.6411
400 58 121 114 45.0506
500 51 110 105 89.7073
ROSEX 100 36 124 99 0.1230
200 34 125 102 0.1539
300 35 133 107 0.3939
400 31 121 100 0.5789
500 31 129 106 0.8736
1000 37 142 116 3.5602
1500 34 132 106 7.4845
2000 32 128 103 12.9238
SINGX 100 77 227 187 0.7000
200 54 172 141 0.2376
300 99 301 248 1.0000
400 79 245 207 1.3000
500 69 215 180 1.6000
1000 101 322 271 8.6000
1500 66 210 174 12.4000
2000 69 210 173 23.1000
BV 200 NaN NaN NaN NaN
300 NaN NaN NaN NaN
400 4509 8044 8043 63.0000
500 1635 2926 2925 34.0000
600 925 1605 1604 24.5000
1000 247 418 417 16.9000
1500 18 38 37 3.0564
2000 2 6 5 0.6883
1IE 200 7 15 8 0.3546
300 7 15 8 0.7927
400 7 15 8 1.4039
500 7 15 8 2.2022
600 7 15 8 3.1297
1000 7 15 8 8.6892
1500 7 15 8 19.5607
2000 7 15 8 34.7423
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Table 3: Continued.
Problem Dim NI NF NG CPU
TRID 200 31 70 58 0.2691
300 33 73 65 0.2857
400 32 72 61 0.4264
500 34 76 71 0.6853
600 35 78 74 0.9484
1000 36 81 77 2.6056
1500 36 84 79 5.8397
2000 35 80 73 9.9491
We also define uy = di/||dk||, then for all [,k € Z* (I > k), one has
!
xp = X1 = D1 = xia || - i
i=k
(3.20)
! !
= D lIsiall - urea + Do lisicall (i — ug-a),
i=k i=k
where s;_1 = x; — x;_1, that s,
! !
Dllsicall - uror = (= xk1) = Do lIsicall (it — wg1). (3.21)
i=k i=k
From Assumption H, we know that there exists a constant ¢ > 0 such that
|x|| <¢, forxeV. (3.22)
From (3.21) and the above inequality, one has
! !
Dllsiall <28+ Dlllsiall - lltia = uxa- (3.23)
i=k i=k

Let A be a positive integer and A € [8¢/1,8¢/A + 1) where A has been defined in Lemma 3.4.
From Lemma 3.2, we know that there exists ky such that

>l — il

i>ko

1

< —
T 4A

(3.24)
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Table 4: The numerical results of the DL* method.

P Dim It f_iter Grade_iter CPU
ROSE 2 25 110 87 0.1192
FROTH 2 9 65 50 0.0283
BADSCP 2 19 146 133 0.1003
BADSCB 2 11 56 47 0.0434
BEALE 2 11 50 39 0.0355
HELIX 3 50 144 122 0.2616
BARD 3 20 76 64 0.0824
GAUSS 3 2 0.0079
MEYER 3 1 1 1 0.0087
GULF 3 1 0.0062
BOX 3 1 1 1 0.0601
SING 4 91 295 250 0.5000
WOOD 4 148 402 349 0.8000
KOWOSB 4 76 236 204 0.4000
BD 4 67 208 177 0.3000
OSB1 5 1 1 1 0.0083
BIGGS 6 59 211 189 0.3000
OSB2 11 279 699 614 1.4000
JENSAM 6 9 35 19 0.0570
7 9 35 17 0.1276
8 NalN NaN NalN NalN
9 15 91 57 0.1148
10 17 136 96 0.2084
11 5 80 50 0.0882
VARDIM 3 4 40 26 0.0153
5 6 57 38 0.0192
6 5 65 43 0.0184
8 7 72 47 0.0219
9 7 78 50 0.0438
10 7 81 52 0.0242
12 7 90 58 0.0442
15 8 92 60 0.0535
WASTON 5 62 208 173 0.2000
6 346 1055 927 1.8000
7 1247 3443 3085 4.0000
8 2034 6104 5408 7.0000
10 5973 17601 15699 21.0000
12 3200 9291 8259 12.0000
15 1865 5402 4790 8.0000
20 6420 18320 16360 30.0000
PEN2 5 83 329 283 0.7000
10 128 519 449 1.0000
15 277 1040 922 0.9000
20 290 1113 981 0.9000
30 767 2231 2040 3.0000
40 675 1929 1706 3.0000
50 617 2223 1962 2.0000

60 NalN NaN NalN NalN
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Table 4: Continued.
P Dim It f iter Grade._iter CPU
PEN1 5 33 165 139 0.2615
10 78 353 298 0.7000
20 24 119 94 0.0842
30 73 367 305 0.3000
50 66 356 293 0.6000
100 22 154 117 0.1957
200 27 178 136 0.4346
300 29 195 147 1.0408
TRIG 10 34 82 71 0.2910
20 59 140 129 0.5161
50 46 94 88 0.3865
100 55 120 111 0.4625
200 56 116 111 1.6476
300 52 110 105 12.3062
400 56 115 113 44.8831
500 54 121 116 97.7043
ROSEX 100 25 110 87 0.0859
200 25 110 87 0.2019
300 25 110 87 0.2697
400 25 110 87 0.4169
500 25 110 87 0.5990
1000 25 110 87 2.2166
1500 25 110 87 4.8426
2000 25 110 87 9.1263
SINGX 100 113 384 329 1.0000
200 117 397 341 0.5000
300 215 735 634 2.1000
400 113 384 329 1.6000
500 110 367 313 2.2000
1000 137 452 388 9.2000
1500 152 494 420 22.1000
2000 110 367 313 30.2000
BV 200 NaN NaN NaN NaN
300 NaN NaN NaN NaN
400 5624 8458 8457 49.0000
500 3314 4854 4853 38.0000
600 1618 2291 2290 25.0000
1000 258 312 311 8.7000
1500 18 30 29 1.7251
2000 2 6 5 0.5129
IE 200 6 13 7 0.3075
300 6 13 7 0.6731
400 6 13 7 1.1939
500 6 13 7 1.8608
600 6 13 7 2.6785
1000 6 13 7 7.3685
1500 6 13 7 16.5794
2000 6 13 7 29.5854
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Table 4: Continued.

P Dim It f_iter Grade._iter CPU
TRID 200 33 75 71 0.2606
300 35 79 75 0.2866
400 36 80 76 0.3653
500 35 78 73 0.4857
600 37 82 78 0.6950
1000 34 76 72 1.6550
1500 37 86 81 4.1380
2000 37 86 80 7.4702
From the Cauchy-Schwartz inequality and (3.24), for all i € [k, k + A — 1], one has
i-1
lfsim1 = wie-all < Doy — i |
=k
. 1/2
i
< (=0 Sl | 329
=k
1 \1/2
< AV2. <_> ==
- 4A
By Lemma 3.4, we know that there exists k > kg such that
A
|mh| > (3.26)
It follows from (3.23), (3.25), and (3.26) that
1A A \ 1 k+A-1
ol §|mm| <5 > lsiall <2 (3.27)

4

i=k

From (3.27), one has A < 8¢/, which is a contradiction with the definition of A. Hence,

which completes the proof.

4. Numerical Results

lim inf[| g | = 0,

(3.28)

O

In this section, we compare the modified PRP conjugate gradient method, denoted the MPRP
method, to VPRP method, CG-DESCENT method, and DL* method under the strong Wolfe
line search about problems [20] with the given initial points and dimensions. The parameters
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are chosen as follows: 6 = 0.01, ¢ = 0.1, v = 1.25, 7 = 0.01, and ¢t = 0.1. If ||gk|| < 107°
is satisfied, we will stop the program. The program will be also stopped if the number of
iteration is more than ten thousands. All codes were written in Matlab 7.0 and run on a PC
with 2.0 GHz CPU processor and 512 MB memory and Windows XP operation system.

The numerical results of our tests with respect to the MPRP method, VPRP method,
CG-DESCENT method, and DL* method are reported in Tables 1, 2, 3, 4, respectively. In the
tables, the column “Problem” represents the problem’s name in [20], and “CPU,” “NI,” “NFE”
and “NG” denote the CPU time in seconds, the number of iterations, function evaluations,
gradient evaluations, respectively. “Dim” denotes the dimension of the tested problem. If the
limit of iteration was exceeded, the run was stopped, and this is indicated by NaN.

In this paper, we will adopt the performance profiles by Dolan and Moré [21] to
compare the MPRP method to the VPRP method, CG-DESCENT method, and DL* method
in the CPU time, the number of iterations, function evaluations, and gradient evaluations
performance, respectively (see Figures 1, 2, 3, 4). In figures,

X=T|—>nisize{pGP:10g2(rp,S) <}, Y =P{r,s <1:1<s<n}. (4.1)
p

Figures 14 show the performance of the four methods relative to CPU time, the
number of iterations, the number of function evaluations, and the number of gradient
evaluations, respectively. For example, the performance profiles with respect to CPU time
means that for each method, we plot the fraction P of problems for which the method is
within a factor 7 of the best time. The left side of the figure gives the percentage of the test
problems for which a method is the fastest; the right side gives the percentage of the test
problems that are successfully solved by each of the methods. The top curve is the method
that solved of the most problems in a time that was within a factor 7 of the best time.

Obviously, Figure1l shows that MPRP method outperforms VPRP method, CG-
DESCENT method, and DL* method for the given test problems in the CPU time. Figures
2—4 show that the MPRP method also has the best performance with respect to the number
of iterations and function and gradient evaluations since it corresponds to the top curve. So,
the MPRP method is computationally efficient.

5. Conclusions

We have proposed a modified PRP method on the basic of the PRP method, which can
generate sufficient descent directions with inexact line search. Moreover, we proved that
the proposed modified method converge globally for general nonconvex functions. The
performance profiles showed that the proposed method is also very efficient.
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