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We focus on the dynamic fracture problem of octagonal quasicrystals by applying a rectangular
sample with a Griffith crack which is often used in classical elastic media based on the method
of finite difference. This paper mainly is to investigate the variation of phonon, phason fields,
and stress singularity around the crack tip including the stress intensity factor. In addition, the
moving boundary due to the crack propagation has also been treated by introducing an addi-
tional condition for determining solution. The influence of wave propagation and diffusion in the
dynamic process is also discussed in detail. Through comparing the results of octagonal quas-
icrystals with the results of crystal, this paper proclaims the influence of phonon-phason coupling
in dynamic fracture problem of octagonal quasicrystals which should not be neglected.

1. Introduction

Quasicrystals are a form of solids different from both crystals and glassy solids, which pos-
sess quasiperiodic long-range translational symmetry and noncrystallographic rotational
symmetry [1]. Due to the quasiperiodicity, quasicrystals have a special type of elastic degrees
of freedom, termed as phason degrees of freedom apart from phonon degrees which exist
too for crystals. Under given load conditions, they are giving rise to two displacement fields
u(r, t) for phonon field and w(r, t) for phason field, which also yield the elastic strain tensors
εij and wij , respectively [2–4],

εij ≡ 1
2

(
∂ui

∂xj
+
∂uj

∂xi

)
, wij ≡ ∂wi

∂xj

(
wij /=wji

)
. (1.1)
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In linear elasticity the stress tensors are related to the strain tensors obtained by [2]

σij = Cijklεkl + Rijklwkl, Hij = Rklijεkl +Kijklwkl, (1.2)

where ui, wi are phonon and phason displacements, σij and εij phonon stresses and strains,
Hij and wij phason stresses and strains, Cijkl, Kijkl, and Rijkl the phonon, phason, phonon-
phason coupling elastic constants, respectively. But for the elasto-/hydro-dynamics, there are
different theoretical points of view, for example, those being put forward by Bak [5, 6] and
by Lubensky et al [7]. Here we adopt the viewpoint raised by Fan [2]:

ρ
∂2ui

∂t2
=
∂σij

∂xj
,

1
Γw

∂wi

∂t
=
∂Hij

∂xj
,

(1.3)

in which Γw = 1/κ denotes the kinetic coefficient of phason field.
For this subject, Zhu and Fan and Wang et al. have used the icosahedral Al-Pd-Mn

quasicrystal and the decagonal Al-Ni-Co quasicrystal to simulate dynamic behaviour of
quasicrystals [8, 9]. However, little attention has been devoted to the octagonal quasicrystals
which occupy a very important position in this solids. Of course, there are many theoretical
and experimental results reported up to now [10–33]. Their results could be better convinced
if they have considered the dynamic behaviour of octagonal quasicrystals.

In the following sections, we will reveal the dynamic fracture behaviour of octagonal
quasicrystals by introducing a rectangular sample with a Griffith crack based on the method
of finite difference. In the end, we explain physical significance of the results obtained in
the paper. Of course, further studies of the quasicrystals should be consummated by the
future results. It is hoped that the dynamics question of quasicrystals will be observed by
experiments.

2. Basic Formulas and Simplified Model

We focus on the solution for the plane elasticity of the octagonal quasicrystals that is, the atom
arrangement along the z-direction is periodic and along the x − y plane is quasiperiodic. For
the octagonal quasicrystals, we have the elastic constants matrix [CKR]:

[CKR] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

L + 2M L 0 0 R R 0 0

L L + 2M 0 0 −R −R 0 0

0 0 M M 0 0 −R R

0 0 M M 0 0 −R R

R −R 0 0 K1 K2 0 0

R −R 0 0 K2 K1 0 0

0 0 −R −R 0 0 K1 +K2 +K3 K3

0 0 R R 0 0 K3 K1 +K2 +K3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.1)
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In this case, the stress-strain relations are reduced to (2.2) from (2.1),

σxx = L
(
εxx + εyy

)
+ 2Mεxx + R

(
wxx +wyy

)
,

σyy = L
(
εxx + εyy

)
+ 2Mεyy − R

(
wxx +wyy

)
,

σxy = σyx = 2Mεxy + R
(
wyx −wxy

)
,

Hxx = K1wxx +K2wyy + R
(
εxx − εyy

)
,

Hyy = K1wyy +K2wxx + R
(
εxx − εyy

)
,

Hxy = (K1 +K2 +K3)wxy +K3wyx − 2Rεxy,

Hyx = (K1 +K2 +K3)wyx +K3wxy + 2Rεxy,

(2.2)

where L = C12, M = (C11 − C12)/2 are the phonon elastic constants, K1, K2, and K3 are the
phason elastic constants, and R is phonon-phason coupling elastic constant.

Substituting (2.2) into (1.3), we obtain the equations of motion of octagonal quasi-
crystals given by displacement components as follows:

∂2ux

∂t2
= c21

∂2ux

∂x2 +
(
c21 − c22

) ∂2uy

∂x∂y
+ c22

∂2ux

∂y2 + c23

(
∂2wx

∂x2 + 2
∂2wy

∂x∂y
− ∂2wx

∂y2

)
,

∂2uy

∂t2
= c22

∂2uy

∂x2 +
(
c21 − c22

) ∂2ux

∂x∂y
+ c21

∂2uy

∂y2 + c23

(
∂2wy

∂x2 − 2
∂2wx

∂x∂y
− ∂2wy

∂y2

)
,

∂wx

∂t
= d2

1
∂2wx

∂x2 + d2
2
∂2wx

∂y2 +
(
d2
2 − d2

1

)∂2wy

∂x∂y
+ d2

3

(
∂2ux

∂x2 − 2
∂2uy

∂x∂y
− ∂2ux

∂y2

)
,

∂wy

∂t
= d2

1

∂2wy

∂x2 + d2
2

∂2wy

∂y2 +
(
d2
2 − d2

1

)∂2wx

∂x∂y
+ d2

3

(
∂2uy

∂x2 + 2
∂2ux

∂x∂y
− ∂2uy

∂y2

)
,

(2.3)

in which

c1 =

√
L + 2M

ρ
, c2 =

√
M

ρ
, c3 =

√
R

ρ
,

d1 =

√
K1

κ
, d2 =

√
K1 +K2 +K3

κ
, d3 =

√
R

κ
,

(2.4)

note that constants c1, c2, and c3 have the meaning of elastic wave speeds, while d2
1, d

2
2, and

d2
3 do not represent wave speed; they are diffusive coefficients.

To ensure the uniform configuration along the periodic direction physically and
geometrically, we consider such model that a rectangular octagonal quasicrystal containing
a Griffith crack in the center is subjected a dynamic tensile stress on both upper and lower
boundaries. Assume that the Griffith crack penetrates through the solid along the periodic
direction. As shown in Figure 1(a), the size of the specimen is that ED equals to 2L and EF
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Table 1: The related parameters used in numerical computation [24, 26, 28] (unit: 1012 dyn/cm2).

C11 C12 K1 K2 K3 κ ρ

2.3430 0.5741 1.2000 0.2400 0.1200 1/4.8 × 1010 g/cm3 · μs 54.186 × 10−3 g/cm3

equals to 2H , and a is the length of the crack, which is constant, and p(t) is the dynamic load,
which varies with time. This represents the condition of the initiation of crack growth. As
shown in Figure 1(b), the conditions are almost the same to that in Figure 1(a) except that
the length of the crack a(t) is a function of time instead of constant and the dynamic load
p(t) becomes constant.

As shown in Figures 1(a) and 1(b), only the upper right quarter needs to consider
due to the symmetry. Referring to the upper right part and considering a fix grips case, the
following boundary conditions should be satisfied:

ux = 0, σyx = 0, wx = 0, Hyx = 0 on x = 0 for 0 ≤ y ≤ H,

σxx = 0, σyx = 0, Hxx = 0, Hyx = 0 on x = L for 0 ≤ y ≤ H,

σyy = p(t), σxy = 0, Hyy = 0, Hxy = 0 on y = H for 0 ≤ x ≤ L,

σyy = 0, σxy = 0, Hyy = 0, Hxy = 0 on y = 0 for 0 ≤ x ≤ a(t),

uy = 0, σxy = 0, wy = 0, Hxy = 0 on y = 0 for a(t) ≤ x ≤ L,

(2.5)

in which p(t) is the dynamic load.
In addition, the initial conditions including the initial displacement and velocity are

equal to zeroes:

ux

(
x, y, t

)|t=0 = 0, uy

(
x, y, t

)|t=0 = 0,

wx

(
x, y, t

)|t=0 = 0, wy

(
x, y, t

)|t=0 = 0,

∂ux

∂t

(
x, y, t

)|t=0 = 0,
∂uy

∂t

(
x, y, t

)|t=0 = 0.

(2.6)

In the following section, we let the related parameters 2H = 40mm and 2L = 20mm,
the initial length a0 = 2.4mm of the crack, and elastic constants can be found in Table 1.

3. Demonstrations of the Finite Difference Method and the Results

The final governing equation (2.3) along with boundary conditions equation (2.5) and initial
conditions equation (2.6) are very complicated, analytic solution for the boundary-initial
value problem is not available at present, which has to be solved by numerical method. Here
we extend themethod of finite difference of Shmuely andAlterman [22] scheme for analyzing
crack problem for conventional engineering materials to quasicrystalline materials. A grid is
imposed on the upper right of the specimen shown in Figure 2, the grid is extended beyond
the half step.
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Figure 1: Sample of cracked quasicrystal under tension: (a) Crack stable with a dynamic load, (b) Crack
fast propagation with a constant load.
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Figure 2: Finite difference scheme quarter specimen.

Taking the finite difference scheme proposed by [22], (2.3) and the conditions equa-
tions (2.5) and (2.6) can be reduced to certain difference equations to solve. The details on
numerical computation are listed in the Appendix. To check the validity of the model and
the accuracy of the algorithm, at first we give a numerical example for phason displacement.
Figure 3 depicts displacement component of phason field wx versus time. According to the
presentmodel phasons represent diffusion, the computational results indicate this is true, and
the component wx is identical to the fundamental solution of pure diffusion in mathematical
physics, that is,

w ∼ 1√
t − t0

e−(x−x0)
2/Γw(t−t0), (3.1)

where t is the time t0 is a special value of t, x is a distance, and x0 is a special value of x.
Though there is small fluctuation around the fundamental solution due to phonon-phason
coupling, this checking confirms that the model is reasonable and the finite differencemethod
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Figure 3: Displacement component of phason field wx versus time and comparison with the fundamental
solution of pure diffusion equation in mathematical physics.

and its computer implementation are effective and of high accuracy. In addition the phonons
present the character of wave propagation this is natural and easily understood, and need
not to give additional discussion and graphic illustration.

In the “phase” of dynamic initiation of crack growth, the specimen with stationary
crack assuming a(t) = constant is subjected to a rapidly varying load p(t) = pf(t), where f(t)
is taken as the Heaviside function. The stresses at the crack tip present singularity of order
r−1/2, where r denotes the distance from the crack tip, so that we can obtain the dynamic
stress intensity factor for phonon stress field such as

KI(t) = lim
x→a+

√
2π(x − a)σyy(x, 0, t) (3.2)

and the normalized dynamics stress intensity factor; that is, KI(t)/
√
πap (

√
πap denotes the

static stress intensity factor of a Griffith crack) versus time is depicted in Figure 4.
In Figure 4, there are two curves in the figure: one represents quasicrystal, that is,

R/M = 0.01, and the other describes periodic crystals corresponding to R/M = 0. Because
of the phonon-phason coupling effect, the mechanical properties of the quasicrystals are
obviously different from the classical crystals. But the phonon wave propagation plays
dominating role in dynamics of quasicrystals.

The follows are the cases that the specimenwith a stationary crack are subjected to two
most common types of pulse dynamic load. The pulses possess different period T0, respec-
tively.

From Figure 5, it can be easily concluded that S.I.F. is influenced greatly by the shape
of the load of the pulse imposed. Also it is interesting that there is a time of lag between the
variables and the load getting extremum. The reason for that is the influence of stress wave
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Figure 4: Normalized S.I.F. for phonon stress field versus time.
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Figure 5: Normalized S.I.F. versus time for different wave length of zigzag pulse dynamic loads.

propagation as well as the effect of refraction and reflection. It is obviously seen that the
shape of these sets of waves in the initial is like sawtooth. there will be of a bit fluctuations in
the process when the wave reaches the second peak value. From the above analysis it can be
concluded that the curve of S.I.F. is influenced greatly by the shape of the load of the pulse
imposed, and the shapes of both are similar.
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From Figure 6, we conclude that the curved line of S.I.F. has relationships with the
energy of the relative load. The larger the time of the pulse continues, the more mildly the
S.I.F. varies also in the same conditions S.I.F. is larger on average in the long run.

Now we focus on the discussion for the “phase” of fast crack propagation. To explore
the inertia effect caused by the fast crack propagation, the specimen are designed under the
action of constant load p(t) = p rather than time-varying load, but the crack grows with high
speed. The problem for fast crack propagation is a nonlinear problem, because one part of
the boundaries’ crack is of unknown length beforehand. For this moving boundary problem,
we must give additional condition for determining solution. That is, we must give a criterion
checking crack propagation or crack arrest at the growing crack tip. This criterion can be
imposed in different ways, for example, the critical stress criterion or critical energy criterion.
The stress criterion is used in this paper: σyy < σc represents crack arrest, σyy = σc represents
critical state, and σyy > σc represents crack propagation. Here σc = 450Mpa is adopted as this
criterion. The detailed introduction is cited from [2].

The crack velocity for quasicrystals and periodic crystals is constructed in Figure 7,
from which, we can see that the velocity in quasicrystals is lower than that of the periodic
crystals. The simulation reveals the dominating role of highly coordinate atomic environment
as structure-intrinsic obstacles for crack propagation. For explaining this phenomenon we can
explain a specific crack propagationmechanism: because the phonon-phason coupling makes
the quasicrystals different from periodic crystals, the crack tip propagation velocity maybe
hindered by phonon-phason coupling effect. Though the term seems like that introduced by
[32], the meaning of them is different.

Next we will explore the velocity under different loads in quasicrystal. The above
described procedure was conducted, keeping the same geometry and material constants.
With various loads, the relation between velocity and crack growth is depicted in Figure 8. It
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is understandable, while the load is increasing, the time to reach the stress criterion is short;
so that the velocity becomes fast.

For the profile of growing crack shown in Figure 9, presents roughness when load
level is growing, but there is no experimental observation for fast crack propagation though
Ebert et al. had made some observation by scanning tunneling microscopy for quasistatic
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Figure 10: Normalized S.I.F. for quasicrystal in the criterion σc = 450Mpa.

crack growth [33]. Because the fast propagation and quasistatic crack growth belong to two
different regimes, the comparison cannot be done.

In Figure 10, we can see that the fluctuation of normalized S.I.F. is very large when the
criterion σc = 450Mpa, that is, because the surface of the crack is not flat.
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4. Conclusion and Discussion

The dynamic fracture process of octagonal quasicrystals occupies an important position in
dynamic response of quasicrystals. Of course, many analytic solutions which are related
to the static mechanics of octagonal quasicrystals have been obtained. But obtaining the
analytic solution of dynamic fracture process of octagonal quasicrystals is very difficult.
In this paper, we simulate dynamic fracture process of octagonal quasicrystals. Because
the analytic solution about it is not available, we develop the finite difference procedure
based on argument of Bak as well as argument of Lubensky et al., which can also be seen
as a collaborating model of wave propagation and motion of diffusion. Numerical results
reveal the validity of wave propagation behavior of phonon field and behavior of motion
of diffusion of phason field; the interaction between phonons and phasons is also recorded.
The dominant physical quantities (i.e., stress intensity factors) have been discussed in
detail. The formulism is applied to analysis of dynamic initiation of crack growth and
crack fast propagation for two-dimensional octagonal quasicrystals of point group 8mm
the displacement and stress fields around the tip of stationary and propagating cracks are
revealed. The results show that the phonon-phason coupling plays an important role in
dynamic fracture behaviour of octagonal quasicrystals, which is different from crystals.

Appendix

The Details of Finite Difference Scheme

Here we extend the method of finite difference of Shmuely and Alterman scheme for
analyzing crack problem for conventional engineeringmaterials to quasicrystalline materials.
A grid is imposed on the upper right of the specimen shown in Figure 2. For convenience, the
mesh size h is taken to be the same in both x and y directions. The grid is extended beyond the
half step by adding four special grid lines x = −h/2, x = L + h/2, y = −h/2, and y = H + h/2
which form the grid boundaries. Denoting the time step by τ and using central difference
approximations, the finite difference formulations for the above text are

ux

(
x, y, t + τ

)
= 2ux

(
x, y, t

) − ux

(
x, y, t − τ

)

+
(
τ

h
c1

)2[
ux

(
x + h, y, t

) − 2ux

(
x, y, t

)
+ ux

(
x − h, y, t

)]

+
(
τ

h

)2(
c21 − c22

)[
uy

(
x + h, y + h, t

) − uy

(
x + h, y − h, t

)

−uy

(
x − h, y + h, t

)
+ uy

(
x − h, y − h, t

)]

+
(
τ

h
c2

)2[
ux

(
x, y + h, t

) − 2ux

(
x, y, t

)
+ ux

(
x, y − h, t

)]

+
(
τ

h
c3

)2[
wx

(
x + h, y, t

) − 2wx

(
x, y, t

)
+wx

(
x − h, y, t

)]
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+ 2
(
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c23
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(A.1d)

The displacements at mesh points located at the special lines are determined by satisfying
the boundary conditions; we obtain, respectively, for points on the grid lines x = −h/2 and
x = L + h/2
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(A.2d)

where (A.2a) and (A.2b) related to x = −h/2 are not valid. From the first condition of (2.5),
at x = 0, ux = 0 andwx = 0. To satisfy the condition the displacements ux andwx at x = −h/2
are approximated by
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(A.3)

On the grid line y = −h/2 and y = H + h/2, we obtain
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in which, (A.4c) and (A.4d) related to y = −h/2 is valid only along the crack surface, namely,
only for x ≤ a−h/2 at y = 0, in which the crack terminates. From the last condition of (2.5), at
y = 0 and the ahead of the crack, uy = 0, wy = 0. To satisfy this condition the displacements
uy and wy at y = −h/2 are approximated by
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(A.5)

In constructing the approximation ((A.2a)-(A.2b)–(A.5)) we follow a method pro-
posed by Alterman and Rotenberg. According to this method, derivatives perpendicular
to the boundary are proposed by uncentered differences and derivatives parallel to the
boundary by centered difference. The real boundary can be considered as located at a dis-
tance of half the mesh size from the grid boundaries. The four grid corners require a special
treatment. Difference methods of handling the discontinuities at such points have been
proposed in the past. Here we found that satisfactory results are obtained when the displace-
ments sought are extrapolated from those given along both sides of the corner in question.
Accordingly, the components ux, uy,wx, wy at (−h/2,−h/2) are given by
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(A.6)

Similar expressions are used for deriving the displacement components at (−h/2,H +
h/2), (L + h/2, L + h/2), and (L + h/2,−h/2). By following relevant stability criterion of
the scheme, the computation is always stable and achieves high exactness. The detailed
introduction can be seen in [2].
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