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We study the general solution of equation D’é/cu(x) = f(x), where le;,c is the ultrahyper-
bolic Bessel operator iterated k-times and is defined by D;C = [(1/¢*)(Byy + Byy + -+ + By,)-
(Byyy +700 me)]k, p+q =n,nis the dimension of R}, = {x : x = (x1,x2,...,%,), +>0,...,x, >
0}, By, = (32/6xi2 + (20;/x;)(0/0x;), 2v; = 2P + 1, fi > -1/2,x; > 0(i = 1,2,...,n), f(x) is a given
generalized function, u(x) is an unknown generalized function, k is a nonnegative integer, c is a
positive constant, and x € R}.

1. Introduction

The n-dimensional ultrahyperbolic operator (¥ iterated k-times is defined by

k
0? 0? 0? o? o? 0?
k _
T \edted e T, e, Taxd, ) (D
1 2 p p+l p+2 p+q

where p + q = n, nis the dimension of space R", and k is a nonnegative integer.

Consider the linear differential equation of the form

DFu(x) = f(x), (1.2)

where u(x) and f(x) are generalized functions and x = (x1,x2,...,x,) € R™.
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Gel’fand and Shilov [1] first introduced the fundamental solution of (1.2), which is a
complicated form. Later, Trione [2] has shown that the generalized function Rk (x), defined
by (2.8) with |v| = 0, is a unique fundamental solution of (1.2) and Téllez [3] also proved that
Ryi (x) exists only in the case when p is odd with nn odd or even and p+g = n. A wealth of some
effective works on the fundamental solution of the n-dimensional classical ultrahyperbolic
operator have, presented by Kananthai and Sritanratana [4-9].

In 2004, Yildirim et al. [10] have introduced the Bessel ultrahyperbolic operator
iterated k-times withx € R}, = {x : x = (x1,x2,...,%n), x1>0,...,x, >0},

k
ok = (Bx1 + By + - +By — By~ - Bx,ﬁq) , (1.3)

where p + g = n, By, = 0*/0x7 + (20;/x;)(0/0x;), 2v; = 2fi +1, pi > —-1/2 [11], k is a
nonnegative integer, and 7 is the dimension of R},. They also have studied the fundamental
solution of Bessel ultrahyperbolic operator.

In 2007, Sarikaya and Yildirim [12] have studied the weak solution of the compound
Bessel ultrahyperbolic equation and also studied the Bessel ultrahyperbolic heat equation
[13].

In 2009, Saglam et al. [14] have developed the operator of (1.3), defined by (1.6), and
it is called the ultrahyperbolic Bessel operator iterated k-times. They have also studied the
product of the ultrahyperbolic Bessel operator related to elastic waves.

Next, Srisombat and Nonlaopon [15] have studied the weak solution of

Of u(x) = f(x), (1.4)

where u(x) and f(x) are some generalized functions. They have developed (1.4) into the
form

> il u(x) = f (), (15)
k=0

which is called the compound ultrahyperbolic Bessel equation. In finding the solution of (1.5),
they have used the properties of B-convolution for the generalized functions.
The purpose of this study is to find the general solution of equation D’g’cu(x) = f(x),

where D]E;,c is the ultrahyperbolic Bessel operator iterated k-times and is defined by

0k = [%(Bxl + Byt 4By ) = Byt + wa)] k (1.6)

p+ g = n, nis the dimension of R}, = {x : x = (x1,x2,...,x,), x1 >0,...,x, >0}, By, =
?/0x? + (20i/x;)(0/0x;), 2v; = 2B+ 1, B > =1/2,x; > 0 (i = 1,2,...,n), f(x) is a given
generalized function, u(x) is an unknown generalized function, k is a nonnegative integer, c
is a positive constant, and x € R}.
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2. Preliminaries

Let Ty be the generalized shift operator acting on the function ¢, according to the law [11, 16]:

v/ o/
Tftp(x)zczj f (p<\/x%+y%—2x1y1cos91,...,\/x%+y3,—2xnync056n>
0 0

x <Hsin2”"_19i> do, ---de,,

2.1)
i=1

where x,y € R}, and C}, = [T, (I'(v; + 1) /T'(1/2)T (v;)). We remark that this shift operator is
closely connected to the Bessel differential operator [11]:

PU 20dU _PU 204U
dx>  x dx dy>  y dy’
U(x,0) :f(x)r
U,(x,0)=0.

(2.2)

The convolution operator is determined by the T as follows:
(f*9)(y) = J‘W fW)Tio() <l_[yf ”">dy- (23)
n i=1

The convolution (2.3) is known as a B-convolution. We note the following properties of the
B-convolution and the generalized shift operator.

(@ Ty 1=1.

(b) T7 - f(x) = f(x).
(o) If f(x),g(x) € C(R}), g(x)is abounded function all x > 0, and

fﬂv |f ()] <1_[xf”">dx <o, (2.4)
n i=1

then

[ s (T Yav= [_seomseo (T o @9
. i=1 ; i=1
(d) From (c), we have the following equality for g(x) = 1:
f Ty f (x) <l_[yf ”">dy = f f(y) (l_[y?”’)dy- (2:6)
Ry i=1 Ry i=1

(e) (f *&)(x) = (g * f)(x).
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Definition 2.1. Let x = (x1,x2,...,%,) be a point of the n-dimensional space R;,. Denote the
nondegenerated quadratic form by

_2(2 42 2 2 2 2
V—c<x1+x2+---+xp>—xp+1—xp+2—---—xp+q, (2.7)

where p + g = n. The interior of the forward cone is defined by I'y = {x = (x1,...,x,) € R} :
xi>0,i=1,...,nand V > 0}, where I', designates its closure. For any complex number a,
we define

V(a—n—2|v|)/2
—, forxel,,
R (x) =1 Ku(a) * (2.8)

0, forx ¢ 7T,

where

20020 (2 4 o — = 2J) /2)T((1 — &) /2)T (ax)
T(2+a-p-2])/2)I((p+2Jv|-a)/2)

Ky (a) = (2.9)

The function R (x) is introduced by [10, 12, 17, 18]. It is well known that RY (x) is an
ordinary function if Re(a) > n and is the distribution of « if Re(a) < n. Let supp Rfc(x) cT,,
where supp R (x) denotes the support of RE (x).

By putting p = ¢ = 1 into (2.7), (2.8), and (2.9), and using the Legendre’s duplication

of I'(z),
I'(2z) = 222"1Jr_1/2F(z)F<z + %) (2.10)
the formula (2.8) is reduced to

V(@-n-2[o)/2)
forx e,

MH (x) = Hy(a) ' (2.11)
0, forx ¢TI,
where V = x3 - x3 —-+- - x% and
H, (a) = opm2et-0/29a1p (24 &= 1= 20| r(%) (2.12)
n 2 2/ ’

Note that the function M (x) is precisely the Bessel hyperbolic kernel of Marcel Riesz.

Lemma 2.2. Given the equation

Of cu(x) = 6(x), (2.13)
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where D’é/c is defined by (1.6) and x € R}, then we obtain u(x) = Rg{,c(x) as a fundamental solution
of (2.13), where R3}. (x) is defined by (2.8).

The proof of this Lemma is given in [14].
Lemma 2.3. The B-convolutions of tempered distributions.

(a) (D’g,c6) *xu(x) = D’g/cu(x), where u(x) is any tempered distribution.

(b) Let R} (x) and R (x) be defined by (2.8); then R (x) * R}, (x) exists and is
a tempered distribution.
(c) Let R} (x) and R}, (x) be defined by (2.8); then Ri (x) * RY (x) = Ry, (),

2m,c . : 2m,c 2k+2m,c
where k and m are nonnegative integers.

The proof of this Lemma is given in [15].

Lemma 2.4. Given that P is a hypersurface

P&§™ (P) + mP&™V(P) =0, (2.14)

where 8™ is the Dirac-delta distribution with m derivatives.
The proof of this Lemma is given in [1].

Lemma 2.5. Given the equation

0% u(x) =0, (2.15)

where lea,c is the ultrahyperbolic Bessel operator iterated k-times, as defined by (1.6), and x € R},
then

u(x) = [ng_l),c(x)](m), (2.16)

defined by (2.8) with m derivatives, as a solution of (2.15) withm = ((n+2|v|-4)/2), n+2[v| >4
and n is an even dimension.

Proof. We first show that the generalized function 6™ (c?r* — s?), where r? = x? + x5 + -+ +
2 2.2 2 2 o :
Xpy 8" =Xy ¥ X ot F Xy, PHG=mn,isa solution of

Opcu(x) =0, (2.17)

and (g is defined by (1.6) with k = 1 and x € R;;. Now for 1 <i < p, we have

%6(’”) <czr2 - sz> = 2¢%x; 6™+ <czr2 - sz>,

2
%6(’”) (czr2 - sz> = 2c250m) (czr2 - sz> +4ctx25mr2) <c2r2 - sz>.
Xi

(2.18)
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Thus, we have

CZZ[ g (e - ) + 2 D g (2 sz)]
2p60 (22 - 2 4 42260 (22 - ) 3 |60 (22 - 2)
(72— ) + 4(2r2 - )5 (22 - ) 4 42600 (22 - )
— (2p + 4o/ )6 D (2 - ) - 40m + 26D (27 - ) 4 457602 (22 - )

= [2p +4]0'| - 4(m +2)] 6"+ ((:Zr2 - sz> +4526m+2) (czr2 - sz>

= (2p +4|v| )6("‘”)

(2.19)
by applying Lemma 2.4 with P = ¢*r? — 2, where [v'| = v; + 03 + -+ - + 1,
Similarly, we have
prq [ 42
Z I:é)a 6(’")< At -s >+%a%6(’")< cr —sz>]
S ox Po (2.20)

=[- (2q+4|v”|)+4(m+2)]6(m+1)< c’r —s>+4c r26("‘+2)< r —52>

by applying Lemma 2.4 with P = ¢?r? — s?, where [0"| = Ups1 + Upia + -+ + Upag.
Thus, we have

Op,c6™ <cr —52> Cl_zi

0> 2v; 0
i ! (m) 2
i=1 [63612 i Xi axl]6 ( o0 >
= [2(p + g +2v|) - 8(m +2)] 6™+ (czr2 - sz>
_ 4<c2r2 _ Sz>6(m+2) <c2r2 _ Sz)
= [2(n +2|v]) - 8(m +2)]6™D (c2r2 - 52> +4(m +2)6"D <c2r2 - 52>

= [2(n +2[o]) - 4(m + 2)]6D (c2r2 - 52)
(2.21)

by applying Lemma 2.4 with P = c*r? — 52, where |v| = [v/| + [0
If [2(n + 2|v|) —4(m + 2)] = 0, we obtain

Op.6 <c2r2 - s2) = 0. (2.22)
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That is, u(x) = 6" (c?r? — s?) is a solution of (2.15) with m = (n+2|v|-4)/2, n+2|v| >4, and
n is an even dimension. Now Dlé, u(x) = 0 can be written in the form

O, <Dk 1u(x)) (2.23)
From (2.17), we have

D’g,_clu(x) = )<c r* - 52> (2.24)

with m = (n + 2|v| — 4)/2,n + 2|v| > 4, and n being an even dimension. By Lemma 2.3(a), we
can write (2.24) in the from

Dll;l_clﬁ * u(x) = 6™ <czr2 - sz>. (2.25)
B-convolving both sides of the above equation with the function R2(k 1),c (%), we obtain

2(k 1,e (%) * Elk 16 % u(x) = 2(k 1,e (%) * * 6 (c?r? - §2),
(m)
iy 1[R§fk e (0)] () = [RE ) )] , (2.26)

6 *u(x) =u(x) = [Rﬁfk 1>c(x)]( ’

by Lemma 2.2.
It follows that u(x) = [ng_l)lc(x)] (™) is a solution of (2.15) with m = (n+2|v|-4)/2, n+2|v| > 4
and 7 is an even dimension.

The generalized function 6™ (c*r?—s?) mentioned in Lemma 2.5 has been also studied
on the aspect of multiplicative product, distributional product and applications, for more
details, see [19-23]. O

3. Main Result

Theorem 3.1. Given the equation
O u(x) = f(x), @3.1)

where Dk is the ultrahyperbolic Bessel operator iterated k-times and is defined by (1.6), f(x) is a
genemlzzed function, u(x) is an unknown generalized function, x € R}, and n is an even, then (3.1)
has the general solution

u(x) = [Ri ) 0] ™+ RE 0+ £ (), (3.2)

where [Rg(/c(x)](m) is a function defined by (2.8) with m derivatives.
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Proof. B-convolving both sides of (3.1) with R (x), we obtain

e
R () + (0% u(x)) = REL (x) * f(x). (33)
By Lemma 2.2, we have
O (RE () % () = 6 % u(x) = REL (%) * f (). (3.4)
So, we obtain that
u(x) = Ry (x) * f(x) (3.5)

is the solution of (3.1).
For a homogeneous equation % u(x) = 0, we have a solution

u(x) = [Rﬂk_l),c (x)]('") (3.6)

by Lemma 2.5. Thus the general solution of (3.1) is

u(x) = [R;(fk_l),c(x)](m) + RE (%) % f (%) (3.7)

This completes the proof. O

By putting ¢ = 1, (3.1) becomes the Bessel ultrahyperbolic equation

Ofw(x) = f(x), (3.8)

where (% is the Bessel ultrahyperbolic operator iterated k-times, and is defined by (1.3), f(x)
is a generalized function and w(x) is an unknown generalized function. From (3.5) we have
that

w(x) = Ryp (x) * f(x) (3.9)

is a solution of (3.8), where R} (x) = R} ; (x) defined by (2.8).
From (3.2), we obtain that the general solution of the Bessel ultrahyperbolic equation

is

w(x) = [RE .y ()] " + RGO * £ (). (3.10)
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Moreover, if we put k =1, p = 1 and x; = t(times), then (3.8) is reduced to the Bessel wave
equation

Opw(x) = <Bt - ijx)w(x) = f(x), (3.11)
i=2

where

Op = B - > By, (3.12)
i=2

is the Bessel wave operator and By, = 0*/0x7 + (2v;/x;)(3/0x;).

Thus, we obtain w(x) = M;(x) * f(x) as a solution of the Bessel wave equation, since
Ré{ (x) becomes M? (x), where Mf (x) is the Bessel ultrahyperbolic kernel of Marcel Riesz,
and is defined by (2.11) with a = 2. And from (3.2), we obtain the general solution of Bessel
wave equation as

w(x) = 6™ (x) + M (x) * f(x), (3.13)

where 6 (x) is a solution of

<Bt - ini>w(x) = 0. (3.14)

i=2

Now weput V =2 —x% —x2 — -+ — x2 and s* = x3 + x5 + - - + x2. By [24], we obtain that

w(x, t) = 6™ (t2 - s2> (3.15)

is the solution of (3.14) with the initial conditions w(x,0) = 0 and ow(x,0)/0t =
(-1)"27r™16(x) att = 0and x = (x2,X3,...,%,) € R .
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