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This paper presents an efficient semi-analytical technique for modeling two-dimensional, linearly
elastic, inextensible frames undergoing large displacement and rotation. A system of ordinary
differential equations governing an element is first converted into a system of nonlinear algebraic
equations via appropriate enforcement of boundary conditions. Taylor’s series expansion is then
employed along with the co-rotational approach to derive the best linear approximation of
such system and the corresponding exact element tangent stiffness matrix. A standard assembly
procedure is applied, next, to obtain the best linear approximation of governing nonlinear
equations for the structure. This final system is exploited in the solution search by Newton-
Ralphson iteration. Key features of the proposed technique include that (i) exact load residuals are
evaluated from governing nonlinear algebraic equations, (ii) an exact form of the tangent stiffness
matrix is utilized, and (iii) all elements are treated in a systematic way via direct stiffness strategy.
The first two features enhance the performance of the technique to yield results comparable
to analytical solutions and independent of mesh refinement whereas the last feature allows
structures of general geometries and loading conditions be modeled in a straightforward fashion.
The implemented algorithm is tested for various structures not only to verify its underlying
formulation but also to demonstrate its capability and robustness.

1. Introduction

It is well known that a small-deformation analysis of flexure-dominating structures (e.g.,
beams and frames) based primarily on linearized kinematics and fully decoupled axial-
bending interactions (e.g., [1, 2]) can lead to results that are of insufficient accuracy, especially
when the displacement and rotation of a structure are relatively large and the axial-bending
coupling becomes significant (e.g., [3]). In addition, such so-called linear analysis provides
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limited information about either the stability of the structure (e.g., bifurcation loads and
identification of the stability status of structures) or the behavior beyond a point of bifurcation
(i.e., postbuckling behavior). Besides mathematical curiosity and computational challenge,
the necessity to incorporate proper nonlinear kinematics in the mathematical model is
obligatory and arises naturally in numerous practical applications, for example, modeling
of beam-columns where the axial-bending interaction is crucial, analysis and design of
flexible components of machines and systems vulnerable to postbuckling, collapse analysis
of structures under severe loading conditions, and modeling of very slender and flexible
structures where the displacement and rotation are substantial under service conditions.

One simple approach that has been widely used to model geometric nonlinearity of
structures is known as the second-order analysis (e.g., [3–7]). The key improvement of this
approach from the linear analysis stems from the use of simplified nonlinear kinematics
along with forming equilibrium equations based on a deformed state. The integration of
this level of geometric nonlinearity enables the mathematical model to explore additional
structural responses such as critical or bifurcation loads (e.g., [3, 4, 6]) and the interaction
between the bending and axial effects (e.g., [3, 5, 7]). Nevertheless, the second-order analysis
still possesses limited capabilities due to the use of low-order approximate kinematics. For
instance, it still provides limited information on behavior of the structure beyond points of
bifurcation (i.e., postbuckling behavior) and provides results of insufficient accuracy when
the structure undergoes very large displacement and rotation relative to its dimensions.
As a result, modeling of geometric nonlinearity based on exact kinematics has become an
attractive alternative to circumvent all those limitations.

A more sophisticated mathematical model incorporating exact kinematics (i.e., exact
relationship between the displacement, rotation, and curvature) was introduced more than
two centuries ago by Euler (1774) and Lagrange (1770–1773) in their study of finding an
exact, elastic, or deformed curve of beams, known as an elastica problem (see also [8]
for an extensive historical discussion). Later, Kirchhoff [9] made a significant progress by
establishing an analogy between a problem of finding elastica of a cantilever column and
a problem associated with the oscillation of a pendulum. With such simple analogy, a
closed-form solution could be constructed using a so-called, elliptic integral method. Due
to complexity posed by the exact kinematics, solutions of elastica problems in its toddler age,
based purely on analytical techniques, were very limited to structures of simple geometries
and loading conditions.

Due to the rapid growth of powerful computing devices and robust numerical
techniques, the analysis capability has been significantly enhanced and a much broader class
of complex and more practical elastica problems can be solved. In past decades, the large
displacement and rotation analysis based on exact kinematics has gained significant attention
from various researchers and been used extensively to predict complex structural responses
such as the postbuckling behavior. Some of those relevant studies are briefly summarized
here not only to demonstrate the chronological progress and the recent advances in the
area but also to indicate the key contribution of the current study. B. N. Rao and G. V. Rao
[10] employed the fourth-order Runge-Kutta technique to solve for the large deflection of
a cantilever beam subjected to either a rotating distributed load or a rotating concentrated
load. Wang [11] applied a perturbation technique to investigate the postbuckling behavior of
a single columnwith one of its ends being clamped and the other end being simply supported
and subjected to an axial load. The postbuckling behavior of a prismatic cantilever column
under the combined action between a uniformly distributed load and a concentrated load at
the tip was later examined by Lee [12]. In such analysis, the numerical integration scheme
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based on Butcher’s fifth-order Runge-Kutta method was utilized to construct the numerical
solutions. In 2002, Phungpaingam and Chucheepsakul [13] applied both the elliptic integral
technique and the shooting method to analyze a simply supported beam of variable arc-
length and subjected to an inclined follower force at any location within the member. Later,
Vaz and Silva [14] utilized a two-parameter shooting method to generalize the work of
Wang [11] by replacing the clamped end of a column by a rotational spring. Results from
their study revealed that the rotational restraint at the end of the column significantly
influences the postbsuckling configuration. Madhusudan et al. [15] extended the work of Lee
[12] to explore the influence of a nonuniform cross-ssection on the postbuckling behavior
of a cantilever column. The problem was formulated within the dynamic context, and
the resulting nonlinear equations were solved by a fourth-order Runge-Kutta scheme. In
2007, Shvartsman [16] employed a technique of changing variables along with a solution
scheme requiring no iteration to examine the influence of a rotational spring at the base of
a cantilever beam and a tip-concentrated follower force on its deformed shape. Lacarbonara
[17] applied the higher-order perturbation technique to determine postbuckling solutions for
nonsprismatic nonlinearly elastic rods. Wang et al. [18] reexamined a cantilever beam for
an explicit solution of the displacement and rotation at the free end by using a homotopy
analytical method. Banerjee et al. [19] analyzed a cantilever beam subjected to arbitrary
loading conditions and containing an interior inflection point by using a nonlinear shooting
method and an adomain decomposition. Shvartsman [20] generalized the work of [16] to
explore the influence of a variable cross-section and two follower forces on the behavior of a
cantilever beam undergoing large displacement and rotation. Recently, Chen [21] proposed a
moment integral scheme to solve for a large deflection of a cantilever beam. It was found from
this study that the technique is computationally efficient, yields very accurate results, and
is applicable to beams under various loading conditions and varying material and member
properties. While there have been extensive studies related to large displacement and rotation
analysis, all those mentioned above [10–21] are restricted mainly to structures consisting of
only a single member.

A comprehensive literature survey reveals that work focusing on the large displace-
ment and rotation analysis or elastica of structures consisting of multiple members excluding
those based on finite element approximations is still very limited. Some of those studies are
summarized as follows. Ohtsuki and Ellyin [22] obtained an analytical solution in terms
of elliptic integrals for flexural quantities (e.g., displacements, curvature, bending moment,
etc.) of a square frame subjected to a pair of opposite nodal concentrated forces. Dado et
al. [23] studied the postbuckling behavior of a cantilever beam consisting of two segments
with different properties connected by an elastic rotational spring. Several methods including
a semi-analytical technique, a numerical integration scheme, and a finite element method
capable of modeling large displacement and rotation were employed and their performance
was compared. Suwansheewasiri and Chucheepsakul [24] utilized the elliptic integral
method to investigate both buckling and postbuckling of a two-member frame under nodal
loads at its apex. Both symmetric and nonsymmetric postbuckling shapes were examined
in their study. Dado and Al-Sadder [25] proposed a robust numerical technique based on
an approximation of an angular deflection along the beam axis by a polynomial function
to analyze a rhombus frame consisting of nonprismatic members and subjected to a pair of
opposite nodal forces along its diagonal. Hu et al. [26] employed the differential quadrature
element method (DQEM) to perform large displacement analysis of frames containing
discontinuity conditions and initial displacements. While its computational efficiency and
applicability to structures with general geometries were concluded, the technique itself is
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still an approximate scheme, and, as a result, the accuracy of numerical solutions depends
primarily on the level of mesh refinement. Recently, Shatarat et al. [27] reinvestigated a
rhombus nonlinear elastic frame under a pair of opposite nodal forces along its diagonal.
In their study, a semi-analytical technique was utilized to obtain the relation between the
displacement and applied forces at its corners. Based on existing literatures in the area as
clearly indicated, the development of efficient and accurate techniques that are capable of
modeling large displacement and rotation of structures with general geometries and loading
conditions still deserves further investigations.

In this paper, we propose a systematic and simple semi-analytical technique based on a
direct stiffness method for large displacement and rotation analysis of linearly elastic, flexure-
dominating skeleton structures of arbitrary geometries and subjected to general nodal loads.
The crucial feature of the current technique is the use of an exact element tangent stiffness
matrix to form the best linear approximation of the governing nonlinear equations. Such
local linear approximation alongwith the Newton-Ralphson iteration via the exact evaluation
of residuals allows a semi-analytical solution to be obtained. It is worth noting that while
the current approach and various existing techniques based on corotational finite element
formulations (e.g., [28–32]) are closely related, the present study offers an alternative in
which the exact form of governing equations is employed throughout the solution procedure,
and this, as a result, yields results comparable to analytical solutions without refining the
discretization. The accuracy and capability of the proposed technique are demonstrated via
extensive numerical experiments.

2. Basic Equations

Basic assumptions and key components used to form amathematical model for an individual
member and to derive key differential equations governing its behavior include that (i)
the member is prismatic and made of a homogeneous, isotropic, linearly elastic material;
(ii) the curvature, displacement, and rotation are related by an exact kinematics; (iii) static
equilibrium equations are enforced in the deformed state; (iv) member loads are absent; (v)
the member is inextensible; (vi) shear deformation is negligible.

Let us consider a straight, prismatic member of length L and moment of inertia I
and made of an elastic material with Young’s modulus E. An undeformed configuration
of this member occupies a straight line y = 0, 0 ≤ x ≤ L, and its subsequent deformed
state (resulting from a particular motion) is shown in Figure 1(a). It is important to remark
first that the Lagrangion description is utilized throughout the following development, and,
by supplying simplified kinematics of the cross-section (e.g., plane section always remains
plane before and after undergoing deformation), the entire (three-dimensional) member can
be sufficiently and completely represented by a single line connecting the centroid of all cross-
sections (i.e., the neutral axis). From here to what follows, the phrases “cross-section at (S, 0)”
and “point (S, 0)” are often utilized for convenience in this paper to refer to a cross-section at
any state with its centroid located at a point (S, 0) in the undeformed state. During a particular
motion, the cross-section at (S, 0) in the undeformed state displaces to a point (S+u, v) in the
deformed state where u = u(S) and v = v(S) denote the x-component and the y-component
of the displacement at point (S, 0), respectively. Let fx = fx(S), fy = fy(S), and m = m(S)
denote a resultant internal force in x-direction, a resultant internal force in y-direction, and a
resultant bending moment at the cross-section (S, 0), respectively.
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Figure 1: (a) Schematic of deformed and undeformed configurations of member and (b) free body diagram
of infinitesimal element dS.

By enforcing static equilibrium of an infinitesimal element dS in the deformed state
(see its free body diagram in Figure 1(b)), it leads to three differential equations

dfx
dS

= 0, (2.1)

dfy

dS
= 0, (2.2)

dm

dS
= fx sin θ + fy cos θ, (2.3)

where θ is the rotation of any cross-section. Clearly indicated by (2.1) and (2.2), the internal
forces fx and fy must be constant for the entire member. It is evident from geometry of the
element dS in the deformed state that the rotation θ can be related to the two components of
the displacement u and v by

sin θ =
dv

dS
, cos θ = 1 +

du

dS
. (2.4)

From the kinematics assumption (ii), the curvature κ and the rotation θ are related through
κ = dθ/dS, and, by using assumptions (i) and (vi), we then obtain the linear moment-
curvature relationship:m = EIκ. By using these two relations, (2.3) becomes

d2θ

dξ2
= ̂fx sin θ + ̂fy cos θ, (2.5)

where nondimensional parameters appearing in above equation are defined by ξ = S/L,
̂fx = fxL2/EI, and ̂fy = fyL2/EI. By performing a direct integration of (2.5), it leads to

(

dθ

dξ

)2

= C − 2 ̂fx cos θ + 2 ̂fy sin θ, (2.6)
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where C is a constant of integration that can be determined from boundary conditions. It is
worth noting that, from the moment-curvature relationship, sign of the normalized curvature
dθ/dξ is uniquely dictated by that of the bending moment m. As a consequence, dξ/dθ can
readily be solved from (2.6) to obtain

dξ

dθ
=

ϑ(m̂)
√

C − 2 ̂fx cos θ + 2 ̂fy sin θ
, (2.7)

where ϑ(m̂) is a moment-dependent function defined such that ϑ(m̂) = 1 if m̂ = mL/EI > 0
and ϑ(m̂) = −1 if m̂ < 0. By combining (2.4) and (2.7), it leads to following two relations:

dv̂

dθ
=

ϑ(m̂) sin θ
√

C − 2 ̂fx cos θ + 2 ̂fy sin θ
,

dû

dθ
=

ϑ(m̂)(cos θ − 1)
√

C − 2 ̂fx cos θ + 2 ̂fy sin θ
,

(2.8)

where û = u/L and v̂ = v/L. The three differential relations (2.7)-(2.8) constitute a basis for
the development described below.

3. Governing Equations and Tangent Stiffness Matrix for Elements

In this section, we apply basic differential equations derived above to form a set of governing
nonlinear algebraic equations and the exact expression of the tangent stiffness matrix of a
two-dimensional member. To aid such development and attain anticipated outcomes, we first
establish some useful results for a simply supported member and then use them along with
the geometric consideration and the coordinate transformation.

3.1. Results for Simply Supported Member

Now, let us consider a simply-supported member (with a pinned support at its left end
(S = 0) and a roller support at its right end (S = L)) subjected to end loads {m1, m2, fx2}
as shown in Figure 2. By imposing the moment boundary condition at the right end, that is,
dθ/dξ(θ2) = m̂2 = m2L/EI, we obtain the constant C as

C = m̂2
2 + 2 ̂fx cos θ2 − 2 ̂fy sin θ2. (3.1)
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Figure 2: Schematic of simply supported member subjected to end loads {m1,m2, fx2}.

By inserting the constant C into the relations (2.7)-(2.8), it yields

dξ

dθ
= ϑ(m̂)F

(

θ, θ2; ̂fx, ̂fy, m̂2

)

,

dv̂

dθ
= ϑ(m̂) sin θF

(

θ, θ2; ̂fx, ̂fy, m̂2

)

,

dû

dθ
= ϑ(m̂)(cos θ − 1)F

(

θ, θ2; ̂fx, ̂fy, m̂2

)

,

(3.2)

where the function F is defined by

F
(

θ, θ2; ̂fx, ̂fy, m̂2

)

=
1

√

m̂2
2 + 2 ̂fx(cos θ2 − cos θ) − 2 ̂fy(sin θ2 − sin θ)

. (3.3)

By imposing the remaining two natural boundary conditions at the left and right ends of a
member, we obtain

m̂2
2 − m̂2

1 + 2 ̂fx(cos θ2 − cos θ1) − 2 ̂fy(sin θ2 − sin θ1) = 0, (3.4)

̂fx2 − ̂fx = 0, (3.5)

where m̂1 = m1L/EI and ̂fx2 = fx2L
2/EI. Normalized support reactions { ̂fx1, ̂fy1, ̂fy2} can

readily be computed from equilibrium of the entire member, and final results are given by

̂fx1 = − ̂fx, ̂fy1 =
m̂1 + m̂2

̂d
, ̂fy2 = −m̂1 + m̂2

̂d
, (3.6)
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where ̂d = 1 + û2 and û2 = u2/L. Next, by integrating (3.2) from θ = θ1 to θ = θ2, it leads to a
system of three nonlinear algebraic equations

∫θ2

θ1

ϑ(m̂)F
(

θ, θ2; ̂fx, ̂fy, m̂2

)

dθ = 1, (3.7)

∫θ2

θ1

ϑ(m̂) sin θF
(

θ, θ2; ̂fx, ̂fy, m̂2

)

dθ = 0, (3.8)

∫θ2

θ1

ϑ(m̂) cos θF
(

θ, θ2; ̂fx, ̂fy, m̂2

)

dθ = ̂d. (3.9)

For a given set of end loads { ̂fx2, m̂1, m̂2}, the end displacement and rotations {û2, θ1, θ2}
can be solved from a system of nonlinear equations (3.7)–(3.9) with use of (3.4) and (3.5)
to eliminate the internal forces { ̂fx, ̂fy}. On the other hand, the problem finding the end
loads { ̂fx2, m̂1, m̂2} for a particular set of prescribed displacement and rotations {û2, θ1, θ2}
can possess no solution. Because of the geometric constraint imposed by the member
inextensibility, the boundary value problem indicated above is not well-posed or, in other
words, {û2, θ1, θ2} cannot be specified arbitrarily. However, if { ̂fx, θ1, θ2} are prescribed
instead, the end loads { ̂fx2, m̂1, m̂2} can be obtained by solving (3.4), (3.5), (3.7), and (3.8)
simultaneously, and the end displacement û2 can subsequently be computed from (3.9).
However, lack of the displacement component û2 renders a set { ̂fx, θ1, θ2} not well suited
for the development of a solution procedure by a direct stiffness method.

In the present study, {û2, θ1, θ2, ̂fx} is chosen as a set of primary unknowns. It is worth
noting that to allow û2 to be one of independent variables, the strong requirement posed by
(3.9) must be relaxed via the introduction of the residual R such that

R ≡ ̂d −
∫θ2

θ1

ϑ(m̂) cos θF
(

θ, θ2; ̂fx, ̂fy, m̂2

)

dθ. (3.10)

Supplemented by (3.10), for any given set {û2, θ1, θ2, ̂fx}, the quantities { ̂fx2, m̂1, m̂2,R} can
be obtained from (3.5), (3.7), (3.8), and (3.10) with use of (3.4) to get rid of ̂fy. It should be
emphasized that {û2, θ1, θ2, ̂fx} and the corresponding { ̂fx2, m̂1, m̂2,R} are solutions of the
boundary value problem if and only if the residual R vanishes.

Let f be a vector defined by f = [fp fr]
T where fp = { ̂fx2, m̂1, m̂2,R} and fr =

{ ̂fx1, ̂fy1, ̂fy2} and let u be a vector defined by u = {û2, θ1, θ2, ̂fx}
T
. From the relations (3.4)–

(3.8) and (3.10), it can readily be verified that f = f(u), and, from Taylor series expansion,
the best linear approximation of this nonlinear function f in the neighborhood of a vector u0

takes a form

f(u) = f(u0) + g(u0)(u − u0), (3.11)
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where a gradient matrix g is given by

g =
∂f
∂u

=

[

gp

gr

]

. (3.12)

The submatrix gp is expressed explicitly in terms of differentiations as

gp =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∂ ̂fx2
∂û2

∂ ̂fx2
∂θ1

∂ ̂fx2
∂θ2

∂ ̂fx2

∂ ̂fx
∂m̂1

∂û2

∂m̂1

∂θ1

∂m̂1

∂θ2

∂m̂1

∂ ̂fx
∂m̂2

∂û2

∂m̂2

∂θ1

∂m̂2

∂θ2

∂m̂2

∂ ̂fx
∂R

∂û2

∂R

∂θ1

∂R

∂θ2

∂R

∂ ̂fx

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (3.13)

By defining gij as an entry located at the ith row and jth column of the submatrix gp, the
submatrix gr can readily be obtained in terms of gij as

gr =
1
̂d

⎡

⎢

⎢

⎣

−g11 ̂d −g12 ̂d −g13 ̂d −g14 ̂d
−ŝ g22 + g32 g23 + g33 g24 + g34

ŝ −g22 − g32 −g23 − g33 −g24 − g34

⎤

⎥

⎥

⎦

, (3.14)

where ŝ = (m̂1 + m̂2)/ ̂d. As clearly indicated by (3.5), (3.7), (3.8), and (3.10), entries
g11, g12, g13, g21, and g31 vanish whereas g14 = g41 = 1. The remaining entries of gp are
contained in a submatrix gp given by

gp =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∂m̂1

∂θ1

∂m̂1

∂θ2

∂m̂1

∂ ̂fx
∂m̂2

∂θ1

∂m̂2

∂θ2

∂m̂2

∂ ̂fx
∂R

∂θ1

∂R

∂θ2

∂R

∂ ̂fx

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (3.15)

It should be remarked that determination of all entries of the submatrix gp is nontrivial and
requires implicit differentiations.

3.2. Derivation of Submatrix gp

The explicit form of the submatrix gp can be derived for various cases depending on the
location of an inflection point within the member. For instance, a single-curvature member
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contains either no inflection point or an inflection point at its end whereas a double-curvature
member contains an inflection point within the member. The key differences between these
two cases are associated with the value of the moment-dependent function ϑ(m̂) and the
singularity behavior of the function F defined by (3.3).

3.2.1. Member Containing No Inflection Point

The normalized bending moment is strictly positive (i.e., m̂(ξ) > 0) or strictly negative (i.e.,
m̂(ξ) < 0) for the entire beam (i.e., ξ ∈ [0, 1]) when the applied end moments {m̂1, m̂2}
are nonzero and possess different sign (i.e., m̂1m̂2 < 0). The deformed configuration of
the member for this particular case possesses a single curvature, and, in addition, ϑ(m̂)
becomes a constant function with its value equal to either 1 or −1 depending on the sign
of m̂; more specifically, ϑ(m̂) = 1 for m̂ > 0 and ϑ(m̂) = −1 for m̂ < 0. It is worth noting
that the function F, defined by (3.3), is well behaved in the sense that the quantity within
the square root is always greater than zero; this results directly from that m̂ /= 0 for the entire
member. Such desirable feature of F renders all involved integrals nonsingular and, therefore,
allows a standard procedure to be employed in their treatment. For convenience in further
development, the relations (3.7), (3.8), and (3.10) are re-expressed as

Γ1
(

θ1, θ2; ̂fx, ̂fy, m̂2

)

=
∫θ2

θ1

ϑ(m̂)F
(

θ, θ2; ̂fx, ̂fy, m̂2

)

dθ − 1 = 0, (3.16)

Γ2
(

θ1, θ2; ̂fx, ̂fy, m̂2

)

=
∫θ2

θ1

ϑ(m̂) sin θF
(

θ, θ2; ̂fx, ̂fy, m̂2

)

dθ = 0, (3.17)

R = ̂R
(

θ1, θ2, û2; ̂fx, ̂fy, m̂2

)

= ̂d −
∫θ2

θ1

ϑ(m̂) cos θF
(

θ, θ2; ̂fx, ̂fy, m̂2

)

dθ. (3.18)

It is noted that the relation (3.4) implicitly defines ̂fy in terms of {m̂1, m̂2} and {θ1, θ2, ̂fx}. As
a result, by taking derivative of (3.16)–(3.18)with respect to {θ1, θ2, ̂fx} alongwith employing
the chain rule of differentiation, it leads to

Sgp = −D, (3.19)

where the matrices S and D are given by

S =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∂Γ1
∂ ̂fy

∂ ̂fy

∂m̂1

∂Γ1
∂m̂2

+
∂Γ1
∂ ̂fy

∂ ̂fy

∂m̂2
0

∂Γ2
∂ ̂fy

∂ ̂fy

∂m̂1

∂Γ2
∂m̂2

+
∂Γ2
∂ ̂fy

∂ ̂fy

∂m̂2
0

−∂
̂R

∂ ̂fy

∂ ̂fy

∂m̂1
− ∂
̂R

∂m̂2
− ∂̂R

∂ ̂fy

∂ ̂fy

∂m̂2
1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (3.20)
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D =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∂Γ1
∂θ1

+
∂Γ1
∂ ̂fy

∂ ̂fy

∂θ1

∂Γ1
∂θ2

+
∂Γ1
∂ ̂fy

∂ ̂fy

∂θ2

∂Γ1
∂ ̂fx

+
∂Γ1
∂ ̂fy

∂ ̂fy

∂ ̂fx

∂Γ2
∂θ1

+
∂Γ2
∂ ̂fy

∂ ̂fy

∂θ1

∂Γ2
∂θ2

+
∂Γ2
∂ ̂fy

∂ ̂fy

∂θ2

∂Γ2
∂ ̂fx

+
∂Γ2
∂ ̂fy

∂ ̂fy

∂ ̂fx

−∂
̂R

∂θ1
− ∂̂R

∂ ̂fy

∂ ̂fy

∂θ1
−∂
̂R

∂θ2
− ∂̂R

∂ ̂fy

∂ ̂fy

∂θ2
−∂
̂R

∂ ̂fx
− ∂̂R

∂ ̂fy

∂ ̂fy

∂ ̂fx

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (3.21)

Entries of the matrices S and D can be expressed in a closed form and the submatrix gp can
then be obtained by solving (3.19) (see explicit results in Appendix A).

3.2.2. Member Containing Interior Inflection Point

Now, let us consider a member containing an interior inflection point at ξz ∈ (0, 1) or,
equivalently, the bending moment vanishing at ξz and m̂(ξ1)m̂(ξ2) < 0 for ξ1 ∈ [0, ξz) and
ξ2 ∈ (ξz, 1]. This particular case arises when the applied end moments {m̂1, m̂2} are nonzero
and possess the same sign (i.e., m̂1m̂2 > 0). The resulting deformed configuration of the
member possesses a double-curvature shape. As a result, the moment-dependent function ϑ
is discontinuous at ξz and takes different values on both sides of the inflection point. For the
applied end moments m̂1, m̂2 > 0, it results in ϑ = −1 for ξ ∈ [0, ξz) and ϑ = 1for ξ ∈ (ξz, 1],
and for m̂1, m̂2 < 0, it results in ϑ = 1 for ξ ∈ [0, ξz) and ϑ = −1 for ξ ∈ (ξz, 1].

For this special case, the constant C appearing in (2.6) is alternatively obtained by
imposing a condition at the inflection point, that is, dθ/dξ(θz) = 0, and this leads to

C = 2 ̂fx cos θz − 2 ̂fy sin θz, (3.22)

where θz is the rotation at the inflection point. Upon using (3.22), the relations (2.7)-(2.8)
become

dξ

dθ
= ϑ(m̂)Fz

(

θ, θz; ̂fx, ̂fy
)

,

dv̂

dθ
= ϑ(m̂) sin θFz

(

θ, θz; ̂fx, ̂fy
)

,

dû

dθ
= ϑ(m̂)(cos θ − 1)Fz

(

θ, θz; ̂fx, ̂fy
)

,

(3.23)

where the function Fz is defined by

Fz
(

θ, θz; ̂fx, ̂fy
)

=
1

√

2 ̂fx(cos θz − cos θ) − 2 ̂fy(sin θz − sin θ)
. (3.24)
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By integrating equations (3.23) over the entire member, we obtain

ψ

[

−
∫θz

θ1

Fz
(

θ, θz; ̂fx, ̂fy
)

dθ +
∫θ2

θz

Fz
(

θ, θz; ̂fx, ̂fy
)

dθ

]

= 1,

ψ

[

−
∫θz

θ1

sin θFz
(

θ, θz; ̂fx, ̂fy
)

dθ +
∫θ2

θz

sin θFz
(

θ, θz; ̂fx, ̂fy
)

dθ

]

= 0,

ψ

[

−
∫θz

θ1

(cos θ − 1)Fz
(

θ, θz; ̂fx, ̂fy
)

dθ +
∫θ2

θz

(cos θ − 1)Fz
(

θ, θz; ̂fx, ̂fy
)

dθ

]

= û2,

(3.25)

where a constant ψ is defined such that ψ = 1 if m̂1, m̂2 > 0 and ψ = −1 if m̂1, m̂2 < 0.
It is evident from (3.24) that the function Fz is weakly singular at the inflection

point (i.e., at θ = θz); as a result, all singular integrals appearing in equations (3.25) need
special treatment. A series of variable transformations and some identities used to remove
and regularize such singularity are summarized as follows: (i) introducing identities ̂f2

s =
√

̂f2
x + ̂f2

y, cos θo = ̂fx/ ̂f2
s , and sin θo = − ̂fy/ ̂f2

s , (ii) applying change of variable θ = π+(θ−θo)
and identity cos θ = 1 − 2 sin2(θ/2), and (iii) introducing another variable transformation
p sinφ = sin(θ/2) with p = sin(θz/2). The function Fz simply reduces to

Fz =
1

√

2 ̂f2
s [cos(θz − θo) − cos(θ − θo)]

=
1

√

4 ̂f2
s

[

sin2
(

θz/2
)

− sin2
(

θ/2
)]

=
1

2 ̂fsp cosφ
,

(3.26)

where θz = π + (θz − θo). Finally, the nonlinear algebraic equations (3.25) can be expressed in
terms of integrals over a dummy variable φ as

Γo
(

θ1, θ2, θz, ̂fx, ̂fy
)

=
∫π/2

φ1

fo
(

φ; p
)

dφ +
∫π/2

φ2

fo
(

φ; p
)

dφ − ̂fs = 0, (3.27)

Γv
(

θ1, θ2, θz, ̂fx, ̂fy
)

=
∫π/2

φ1

fv
(

φ, θo; p
)

dφ +
∫π/2

φ2

fv
(

φ, θo; p
)

dφ = 0, (3.28)

R
(

θ1, θ2, û2, ̂fx
)

= ̂R
(

θ1, θ2, θz, û2, ̂fx, ̂fy
)

= û2 − 1
̂fs

[

∫π/2

φ1

fu
(

φ, θo; p
)

dφ +
∫π/2

φ2

fu
(

φ, θo; p
)

dφ

]

,

(3.29)
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where p sinφ1 = sin(θ1/2), p sinφ2 = sin(θ2/2), θ1 = π + (θ1 − θo), θ2 = π + (θ2 − θo), and

fo
(

φ; p
)

=
1

√

1 − p2sin2φ
,

fv
(

φ, θo; p
)

=
sin θo

√

1 − p2sin2φ
− 2 sin θo

√

1 − p2sin2φ − 2ψp cos θo sinφ,

fu
(

φ, θo; p
)

=
cos θo − 1
√

1 − p2sin2φ
− 2 cos θo

√

1 − p2sin2φ + 2ψp sin θo sinφ.

(3.30)

By enforcing the remaining two moment boundary conditions at both ends of the
member, it leads to

m̂2
1 + 2 ̂fx(cos θ1 − cos θz) − 2 ̂fy(sin θ1 − sin θz) = 0,

m̂2
2 + 2 ̂fx(cos θ2 − cos θz) − 2 ̂fy(sin θ2 − sin θz) = 0.

(3.31)

By taking derivative of (3.31)with respect to θ1, θ2, and ̂fx, it results in

⎡

⎢

⎢

⎢

⎢

⎣

∂m̂1

∂θ1

∂m̂1

∂θ2

∂m̂1

∂ ̂fx
∂m̂2

∂θ1

∂m̂2

∂θ2

∂m̂2

∂ ̂fx

⎤

⎥

⎥

⎥

⎥

⎦

= M1 +M2A, (3.32)

where matrices M1, M2, and A are given by

M1 =

⎡

⎢

⎢

⎣

λ1
m̂1

0
cz − c1
m̂1

0
λ2
m̂2

cz − c2
m̂2

⎤

⎥

⎥

⎦

, (3.33)

M2 =

⎡

⎢

⎢

⎣

− λz
m̂1

s1 − sz
m̂1

− λz
m̂2

s2 − sz
m̂2

⎤

⎥

⎥

⎦

, (3.34)

A =

⎡

⎢

⎢

⎢

⎣

∂θz
∂θ1

∂θz
∂θ2

∂θz

∂ ̂fx
∂ ̂fy

∂θ1

∂ ̂fy

∂θ2

∂ ̂fy

∂ ̂fx

⎤

⎥

⎥

⎥

⎦

, (3.35)
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where s1 = sin θ1, s2 = sin θ2, sz = sin θz, c1 = cos θ1, c2 = cos θ2, cz = cos θz, λ1 = ̂fxs1 + ̂fyc1,
λ2 = ̂fxs2+ ̂fyc2 and λz = ̂fxsz+ ̂fycz. Differentiating (3.29)with respect to θ1, θ2, and ̂fx yields

[

∂R

∂θ1

∂R

∂θ2

∂R

∂ ̂fx

]

= B + CA, (3.36)

where matrices B and C are given by

B =

[

∂̂R

∂θ1

∂̂R

∂θ2

∂̂R

∂ ̂fx

]

, C =

[

∂̂R

∂θz

∂̂R

∂ ̂fy

]

. (3.37)

Note that all entries of the matrices B and C can be obtained directly from (3.29) along
with the change of variables θ = π + (θ − θo) and p sinφ = sin(θ/2) (see explicit results
in Appendix B).

To compute all entries of the matrix A, we differentiate (3.27) and (3.28) with respect
to θ1, θ2, and ̂fx, and this results in

DA = F, (3.38)

where matrices D and F are given by

D =

⎡

⎢

⎢

⎢

⎢

⎣

∂Γo
∂θz

∂Γo
∂ ̂fy

∂Γv
∂θz

∂Γv
∂ ̂fy

⎤

⎥

⎥

⎥

⎥

⎦

, F = −

⎡

⎢

⎢

⎢

⎣

∂Γo
∂θ1

∂Γo
∂θ2

∂Γo
∂ ̂fx

∂Γv
∂θ1

∂Γv
∂θ2

∂Γv
∂ ̂fx

⎤

⎥

⎥

⎥

⎦

. (3.39)

Similarly, all entries of the matrices D and F can be obtained directly from (3.27) and (3.28)
along with the change of variables θ = π + (θ − θo) and p sinφ = sin(θ/2) (see explicit results
in Appendix B). Once the matrix A is solved from (3.38), it is inserted into (3.32) and (3.36)
to obtain all entries of the matrix gp. Due to the complexity of all functions resulting from
variable transformations, the matrices B,C,D, and F are evaluated numerically by standard
Gaussian quadrature.

3.2.3. Member Containing Inflection Point at Member End

Finally, consider a member containing an inflection point at one of its ends, or, equivalently,
the bending moment possesses the same sign throughout the member and vanishes only at
one of its ends. This particular case arises when one of the applied end moments {m̂1, m̂2}
vanishes. The deformed configuration of the member possesses a single-curvature shape,
and, in addition, the moment-dependent function ϑ becomes a constant function with its
value equal to either 1 or −1 depending on the direction of the nonzero applied moments.
Without loss of generality, the development presented below focuses only on the member
containing an inflection point at its right end. While results for the member containing an
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inflection point at its left end are also needed, the treatment of such case follows the same
procedure and is not presented here for brevity.

Now, let us restrict our attention to a member subjected only to a nonzero m̂1. It
should be noted that this particular member can be treated as a special case of a double-
curvature member discussed in the Section 3.2.2 by simply taking θz = θ2 and ξz = 1. As
a consequence, basic equations and procedures adopted in the previous case can, after the
proper specialization, be applied to this particular case. By replacing θz = θ2 into (3.25), it
leads to

−ψ
∫θ2

θ1

Fz1
(

θ, θ2; ̂fx, ̂fy
)

dθ = 1, (3.40)

−ψ
∫θ2

θ1

sin θFz1
(

θ, θ2; ̂fx, ̂fy
)

dθ = 0, (3.41)

−ψ
∫θ2

θ1

(cos θ − 1)Fz1
(

θ, θ2; ̂fx, ̂fy
)

dθ = û2, (3.42)

where a function Fz1 is given by

Fz1
(

θ, θ2; ̂fx, ̂fy
)

=
1

√

2 ̂fx(cos θ2 − cos θ) − 2 ̂fy(sin θ2 − sin θ)
. (3.43)

By introducing the same type of variable transformations as employed in the previous
case, (3.40)–(3.42) become

Γo
(

θ1, θ2, ̂fx, ̂fy
)

=
∫π/2

φ1

fo
(

φ; p
)

dφ − ̂fs = 0, (3.44)

Γv
(

θ1, θ2, ̂fx, ̂fy
)

=
∫π/2

φ1

fv
(

φ, θo; p
)

dφ = 0, (3.45)

R
(

θ1, û2, ̂fx
)

= ̂R
(

θ1, θ2, û2, ̂fx, ̂fy
)

= û2 − 1
̂fs

∫π/2

φ1

fu
(

φ, θo; p
)

dφ. (3.46)

Since the right-end moment is prescribed (i.e., m̂2 = 0), the rotation at the right end θ2 is no
longer an independent quantity but can be obtained in terms of {θ1, ̂fx}.
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Let us redefine f = [fp fr]
T
where fp = { ̂fx2, m̂1,R} and fr = { ̂fx1, ̂fy1, ̂fy2} and redefine

u = {û2, θ1, ̂fx}
T
. Consistent with these new definitions, the reduced gradient matrix takes the

form g = [gTp gTr ]
T
where the submatrices gp and gr are given by

gp =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∂ ̂fx2
∂û2

∂ ̂fx2
∂θ1

∂ ̂fx2

∂ ̂fx
∂m̂1

∂û2

∂m̂1

∂θ1

∂m̂1

∂ ̂fx

∂R

∂û2

∂R

∂θ1

∂R

∂ ̂fx

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

gr =
1
̂d

⎡

⎢

⎢

⎢

⎣

−g11
̂d −g12

̂d −g13
̂d

−̂s g22 g23

̂s −g22 −g23

⎤

⎥

⎥

⎥

⎦

,

(3.47)

where gij denotes any entry of the submatrix gp and ̂s = m̂1/ ̂d. As clearly indicated in the
previous section, the entries g11, g12, and g21 vanish and g13 = g31 = 1. The remaining entries
are contained in a submatrix gp given by

gp =

⎡

⎢

⎢

⎢

⎢

⎣

∂m̂1

∂θ1

∂m̂1

∂ ̂fx
∂R

∂θ1

∂R

∂ ̂fx

⎤

⎥

⎥

⎥

⎥

⎦

. (3.48)

By imposing the remaining moment boundary conditions at the left end of the member, we
obtain

m̂2
1 + 2 ̂fx(cos θ1 − cos θ2) − 2 ̂fy(sin θ1 − sin θ2) = 0. (3.49)

Taking derivative of (3.49)with respect to θ1 and ̂fx leads to

[

∂m̂1

∂θ1

∂m̂1

∂ ̂fx

]

= M1 +M2A, (3.50)

where matrices M1, M2, and A are given by

M1 =
[

λ1
m̂1

c2 − c1
m̂1

]

, M2 =
[

− λ2
m̂1

s1 − s2
m̂1

]

, A =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

∂θ2
∂θ1

∂θ2

∂ ̂fx
∂ ̂fy

∂θ1

∂ ̂fy

∂ ̂fx

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (3.51)
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By differentiating (3.46) with respect to θ1 and ̂fx, it results in

[

∂R

∂θ1

∂R

∂ ̂fx

]

= B + CA, (3.52)

where matrices B and C are

B =

[

∂̂R

∂θ1

∂̂R

∂ ̂fx

]

, C =

⎡

⎣

∂̂R

∂θ2

∂̂R

∂ ̂fy

⎤

⎦. (3.53)

Note that all entries of the matrices B and C can be obtained directly from (3.46) along with
the transformations θ = π+(θ−θo) and p sinφ = sin(θ/2) (see explicit results in Appendix C).
To compute all entries of the matrix A, (3.44) and (3.45) are differentiated with respect to θ1
and ̂fx and this yields

DA = F, (3.54)

where matrices D and F are given by

D =

⎡

⎢

⎢

⎢

⎢

⎣

∂Γo
∂θ2

∂Γo
∂ ̂fy

∂Γv
∂θ2

∂Γv
∂ ̂fy

⎤

⎥

⎥

⎥

⎥

⎦

, F = −

⎡

⎢

⎢

⎢

⎢

⎣

∂Γo
∂θ1

∂Γo
∂ ̂fx

∂Γv
∂θ1

∂Γv
∂ ̂fx

⎤

⎥

⎥

⎥

⎥

⎦

. (3.55)

Explicit expressions for all entries of the matrices D and F are reported in Appendix C.
Once the matrix A is solved from (3.54), it is substituted into (3.50) and (3.52) to obtain all
entries of the matrix gp. Again, due to the complexity of all functions resulting from variable

transformations, the matrices B,C,D, and F are evaluated numerically using Gaussian
quadrature.

3.3. Local Element Tangent Stiffness Matrix

Consider now a member with general boundary conditions as shown schematically in
Figure 3. Let {x, y} be a local coordinate system of the undeformed member and {x∗, y∗} be
the coordinate system of the deformed member defined such that a chord connecting its end
points always lies on the x∗ axis. With this specific choice of {x∗, y∗}, behavior of the member
observed from this coordinate system is identical to that of a simply supported member.

The normalized end loads and normalized end displacements and rotations are
denoted by { ̂fx1, ̂fy1, m̂1, ̂fx2, ̂fy2, m̂2} and {û1, v̂1, θ1, û2, v̂2, θ2} in the {x, y} coordinate system
and by { ̂f∗

x1,
̂f∗
y1, m̂

∗
1,
̂f∗
x2,
̂f∗
y2, m̂

∗
2} and {û∗2, θ∗1, θ∗2} in the {x∗, y∗} coordinate system. From
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f
y1
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fy1
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θ2
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y

x

φ

φ

y2

Figure 3: Schematic of undeformed and deformed configurations of a member subjected to general
boundary conditions.

geometric consideration of the deformed configuration, {û∗2, θ∗1, θ∗2} can readily be expressed
in terms of {û1, v̂1, θ1, û2, v̂2, θ2} by

θ1 = θ∗1 + φ,

θ2 = θ∗2 + φ,

û∗2 = (1 + û2 − û1) cosφ + (v̂2 − v̂1) sinφ − 1,

(3.56)

where φ is a chord rotation governed by

(1 + û2 − û1) sinφ − (v̂2 − v̂1) cosφ = 0. (3.57)

Let ̂f∗
x be the internal force in x

∗ direction andR∗ be the residual defined in the {x∗, y∗}
system in the same way as given by (3.10). In the {x, y} coordinate system, we choose
{ ̂fx,R} such that

̂fx = ̂f∗
x, R = R∗. (3.58)

By applying the coordinate transformation, a vector f = { ̂fx1, ̂fy1, m̂1, ̂fx2, ̂fy2, m̂2,R} is
related to a vector f∗ = { ̂f∗

x2, m̂
∗
1, m̂

∗
2,R

∗, ̂f∗
x1,
̂f∗
y1,
̂f∗
y2} by

f = R
(

φ
)

f∗, (3.59)
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where R(φ) is a transformation matrix of dimensions 7 × 7 given by

R
(

φ
)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 cφ −sφ 0

0 0 0 0 sφ cφ 0

0 1 0 0 0 0 0

cφ 0 0 0 0 0 −sφ
sφ 0 0 0 0 0 cφ

0 0 1 0 0 0 0

0 0 0 1 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (3.60)

in which sφ = sinφ and cφ = cosφ. By defining u = {û1, v̂1, θ1, û2, v̂2, θ2, ̂fx} and u∗ =
{û∗2, θ∗1, θ∗2, ̂f∗

x} and then recalling (3.56)–(3.58), we obtain the relation u∗ = u∗(u). From the fact
that behavior of the member in the {x∗, y∗} system is identical to that for a simply supported
member, f∗ and u∗ are therefore related by f∗ = f∗(u∗). Combining (3.59), u∗ = u∗(u) and
f∗ = f∗(u∗) leads to the relation f = f(u) = R(φ)f∗(u∗(u)), and, from Taylor series expansion,
this nonlinear function possesses the best linear approximation in the neighborhood of a
vector u0

f(u) = f(u0) + kl(u0)(u − u0), (3.61)

where kl is a local element tangent stiffness matrix given by

kl =
∂R
∂φ

f∗
∂φ

∂u
+ Rg

∂u∗

∂u
, (3.62)

in which the relation g = ∂f∗/∂u∗ is utilized.
For a special case in which the member contains an inflection point at its right end, the

end moment m̂2 vanishes and the corresponding end rotation θ2 is eliminated from the set
of unknowns. Let us first define following reduced vectors f = { ̂fx1, ̂fy1, m̂1, ̂fx2,

̂fy2,R}, f∗ =
{ ̂f∗

x2, m̂
∗
1,R

∗, ̂f∗
x1,
̂f∗
y1,
̂f∗
y2}, u = {û1, v̂1, θ1, û2, v̂2, ̂fx}, and u∗ = {û∗2, θ∗1, ̂f∗

x}. By applying the

coordinate transformation, the relationship between the reduced vectors f and f
∗
is given by

f = R
(

φ
)

f
∗
, (3.63)
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where R(φ) is a reduced transformation matrix of dimensions 6 × 6 given by

R
(

φ
)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 cφ −sφ 0

0 0 0 sφ cφ 0

0 1 0 0 0 0

cφ 0 0 0 0 −sφ
sφ 0 0 0 0 cφ

0 0 1 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (3.64)

The relation u∗ = u∗(u) is then obtained by recalling (3.56)–(3.58) and f
∗
= f

∗
(u∗) results from

the fact that the behavior of the member in the {x∗, y∗} system is identical to that for a simply
supported member. Combining (3.63), u∗ = u∗(u) and f

∗
= f

∗
(u∗) yields f = R(φ)f

∗
(u∗(u)),

and, from Taylor series expansion, the best linear approximation of this nonlinear function in
the neighborhood of a vector u0 takes the form

f(u) = f(u0) + kl(u0)(u − u0), (3.65)

where kl is a reduced local element tangent stiffness matrix given by

kl =
∂R
∂φ

f
∗ ∂φ
∂u

+ Rg
∂u∗

∂u
, (3.66)

in which the relation g = ∂f
∗
/∂u∗ is utilized. Note that the local element tangent stiffness

matrix for this particular case is of dimensions 6 × 6.

3.4. Global Element Tangent Stiffness Matrix

Let the orientation of a member in the undeformed state be denoted by an angle β measured
from the global X-axis to the local x-axis (defined in the Section 3.3). The element tangent
stiffness matrix kg referring to the global coordinate system {X,Y} can be obtained using the
following standard coordinate transformation

kg = QTklQ, (3.67)
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where Q is a transformation matrix of dimension 7 × 7 given by

Q =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

cβ sβ 0 0 0 0 0

−sβ cβ 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 cβ sβ 0 0

0 0 0 −sβ cβ 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (3.68)

in which sβ = sin β and cβ = cos β. Similarly, for a member containing an inflection point at
the right end, we obtain

kg = Q
T
klQ, (3.69)

where kg is the reduced, global element tangent stiffness matrix and Q is a reduced
transformation matrix given by

Q =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

cβ sβ 0 0 0 0

−sβ cβ 0 0 0 0

0 0 1 0 0 0

0 0 0 cβ sβ 0

0 0 0 −sβ cβ 0

0 0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (3.70)

4. Structure Stiffness Equations

The best linear approximation of nonlinear algebraic equations governing the entire structure
can readily be obtained by a direct assembly of the linear approximation of all members.
This strategy employs two key ingredients, that is, the compatibility of the displacement
and rotation at nodes and ends of members and the equilibrium between external loads and
member end forces at nodes. The resulting linear approximation is given by

P = Po +Kt(U −Uo), (4.1)

where P is a vector of nodal loads and zero residuals of all members, U is a vector of nodal
displacements, nodal rotations and the internal axial force of all members, {Po,Uo} are vectors
{P,U} at the reference state, and Kt is the structure tangent stiffness matrix. Note that the
matrix Kt can readily be obtained from a direct assembly of the global element tangent
stiffness matrices kg or kg of all members. The linear approximation (4.1) is then used in
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the Newton-Raphson iteration to search for a solution of a system of nonlinear equations
governing the entire structure.

5. Verifications and Results

As a means to verify both the formulation and numerical implementation and also to
demonstrate the capability and versatility of the proposed technique, extensive numerical
experiments are performed for various structures. In the verification procedure, a set of
simple boundary value problems is considered first and obtained results are compared with
existing analytical solutions, and, subsequently, more complex structures are analyzed and
results are verified by those obtained from a reliable commercial FEM package, ANSYS.

5.1. Cantilever Beam Subjected to Concentrated Moments

Consider a cantilever beam of length L and flexural rigidity EI and subjected to two
concentrated moments −M (negative sign simply indicating that the applied moment is in
clockwise direction) and 1.5M where the former is applied at the tip and the latter is applied
at the mid-span as shown in Figure 4(a). It is clear from equilibrium that the bendingmoment
within the left half of the beam is equal to 0.5Mwhereas, in its right half, the bendingmoment
is equal to –M. Three uniform meshes (consisting of 2, 4, and 8 identical members) employed
in the analysis are illustrated in Figure 4(b). Responses of the beam are obtained for several
levels of the applied moment, that is, m̂ = ML/EI ∈ {1, 2, 3, 4, 5}.

Since the bending moment for the left and right halves of the beam is constant and the
internal resultant forces identically vanish, the closed form solution for the rotation and the
displacement can readily be obtained from the direct integration of the governing equations
(3.2). The explicit solutions are given by

θ =

⎧

⎨

⎩

0.5 m̂ξ, 0 ≤ ξ ≤ 0.5,

m̂(0.75 − ξ), 0.5 ≤ ξ ≤ 1,

û =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

2 sin(0.5 m̂ξ)
m̂

− ξ, 0 ≤ ξ ≤ 0.5,

sin(0.25 m̂) + sin((0.75 − ξ)m̂)
m̂

+ ξ − 1, 0.5 ≤ ξ ≤ 1,

v̂ =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

2 − 2 cos(0.5 m̂ξ)
m̂

, 0 ≤ ξ ≤ 0.5,

2 − 3 cos(0.25 m̂) + cos((0.75 − ξ)m̂)
m̂

, 0.5 ≤ ξ ≤ 1.

(5.1)

The deflected shapes of the beam for different values of m̂ are shown in Figure 5. Numerical
results obtained for all three meshes are reported only at nodal points and compared with
the analytical solution given by (5.1). As evident from this set of results, numerical solutions
exhibit excellent agreement with the benchmark solution. It is important to emphasize that
the accuracy of numerical solutions obtained from the proposed technique is independent
of the level of mesh refinement; use of three meshes in the analysis is mainly to verify the
implementation of the direct stiffness strategy for structures consisting of multiple members.
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Figure 4: (a) Schematic of cantilever beam subjected to two concentrated moments and (b) three meshes
adopted in the analysis.
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Figure 5: Deformed shapes of cantilever beam subjected to two concentrated moments.

While results are reported only at nodes, responses at any point within the member can
readily be obtained once the nodal quantities are determined.

5.2. Frame Subjected to Concentrated Moments

Next, consider a more complex boundary value problem associated with a frame consisting
of a column and two overhanging beams. The column and the two beams are of the
same length L and flexural rigidity EI, and the frame is subjected to three concentrated
moments {M1, M2, M3} as shown schematically in Figure 6(a). In the analysis, we choose
{M1,M2,M3} such that M1 = M2 = αEI/L and M3 = −2.5αEI/L, and three meshes
(consisting of 3, 6, and 12 members) are adopted as shown in Figure 6(b). Note again that use
of different meshes in the experiments is merely to demonstrate capability of the technique
to model structures consisting of multiple members.
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Figure 6: (a) Schematic of frame subjected to three moments and (b) three meshes adopted in the analysis.

This particular loading condition yields a constant bending moment within the two
beams and the column and zero resultant forces over the entire structure. Similar to the
previous case, the analytical solution for the rotation and displacement at any point within
the structure can readily be obtained by directly solving the governing equations (3.2) for
each beam and column along with the use of boundary conditions at the fixed base and
the continuity conditions at the junction. The deflected shapes of the rigid frame for various
values of loading parameter α are reported in Figure 7. Again, numerical results for the
displacement at the nodal points obtained from all three meshes coincide with the analytical
solutions, and, in addition, no dependence on the level of mesh refinement is observed. These
experiments again confirm the validity of the current implementation.

5.3. Opened Square Frame Subjected to Pair of Opposite Forces

Consider an opened square frame subjected to a pair of opposite vertical loads as shown
in Figure 8(a). The frame consists of a horizontal member, two vertical members of the
same length L and two overhanging members of length 0.5 L, and all members have the
same flexural rigidity EI. As clearly demonstrated by the two previous problems, the
current technique displays an attractive feature, namely, the independence of a level of mesh
refinement. Thus, without loss of accuracy of numerical solutions, it is common to discretize
the structure using the minimum number of elements to reduce the computational cost. For
this particular case, a mesh consisting of 3 horizontal members and 2 vertical members is
adopted as shown in Figure 8(b).

The deflected shapes of the structure are reported in Figure 9 for many values of
normalized vertical loads f∗ = FL2/EI ∈ {0.2, 0.6, 1.0, 1.4, 1.8}. From this set of results, the
numerical solutions exhibit excellent agreement with the benchmark solutions obtained from
a reliable commercial FEM package, ANSYS; in fact, the computed results from the proposed
technique are nearly indistinguishable from those obtained from ANSYS. It is also worth
pointing out that in the construction of a (converged) benchmark solution by ANSYS, a series
of meshes were considered and a reasonably fine mesh was needed to achieve such highly
accurate results.
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Figure 7: Deformed shapes of frame subjected to three concentrated moments.
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Figure 8: (a) Schematic of opened square frame subjected to pair of opposite vertical forces and (b) mesh
used in analysis.

5.4. Diamond Box Frame Subjected to Vertical Force

As a final example, consider a diamond box frame subjected to a vertical downward force F
as shown schematically in Figure 10(a). The frame consists of four 45-degree bevel elements
of the same length

√
2L, and all elements have the same flexural rigidity EI. In the analysis,

the structure is discretized into four elements (see Figure 10(b)) and various values of a
normalized load (i.e., ̂fy = FL2/EI ∈ {5, 10, 15, 20}) are treated.

Deflected shapes of a structure for different ̂fy are reported in Figure 11. It can be
concluded again from these results that the proposed technique yields highly accurate
solutions for any level of applied loads treated. In particular, the computed displacements
and rotations coincide with those obtained from ANSYS. In addition, the nonlinear
relationship between the vertical applied load and the vertical displacement at the upper
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Figure 9: Deformed shapes of opened square frame subjected to pair of opposite vertical forces.
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Figure 10: (a) Schematic of diamond box frame subjected to vertical force at upper tip and (b) mesh
adopted in analysis.

tip is also investigated and results are reported in Figure 12. Besides the obvious monotonic
increase of the applied load versus the displacement, it is observed that the stiffness of the
structure (represented by the slope of the load-displacement curve) gradually decreases, for
small ̂fy and then starts to increase rapidly for large ̂fy. This is due to that for small ̂fy, change
of structure configuration is not significant and the axial force within all members is still in
compression, and this results in a reduction of the member stiffness due to the influence of
geometric nonlinearity. As ̂fy is sufficiently large, the configuration of the structure changes
considerably from the initial state (see Figure 11) and the axial force within the members
switches from compression to tension and thus increasing the member stiffness.
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Figure 11: Deformed shapes of diamond box frame subjected to vertical force at upper tip.
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Figure 12: Relation between downward vertical displacement of upper tip and normalized vertical force.

6. Conclusion

A simple, systematic method has been developed for analysis of flexure-dominating skeleton
structures undergoing large displacement and rotation. The technique is based upon the
direct stiffness method along with the use of exact element tangent stiffness matrices. These
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matrices have been derived at a member level using a classical elastica approach and the
constraint condition posed by member inextensibility has been directly incorporated in such
development. This therefore results in the element tangent stiffness matrix of dimension
7 × 7. It is also worth noting that the resulting tangent stiffness matrix possesses two positive
features: (i) it is exact in the sense that it involves no approximation of both the solution
form and the governing equations, and (ii) all entries of the matrix are given in an explicit
form concerning the elliptic or other similar integrals. The former feature enhances the rate
of convergence of a nonlinear solver, and, when properly incorporated with the evaluation
of exact residuals, it can in principle yield numerical solutions of the same quality as an
analytical solution. The latter feature is well-suited for numerical evaluation of the tangent
stiffness matrix by a standard Gaussian quadrature.

As evident from various numerical experiments, the current technique offers two
crucial benefits. Firstly, the method provides a simple and systematic means to model large
structures of various geometries (consisting of multiple members with different orientations)
by using exact kinematics (i.e., exact curvature-displacement relationship), and, secondly,
it provides “exact” numerical solutions (within round off errors and errors caused by a
nonlinear solver and numerical quadrature) that are independent of mesh refinements.
One practical contribution of the current investigation is that it provides an accurate
computational tool well suited for analysis of structures undergoing large displacement
and rotation, for example, very flexible structures, moment-resisting cables, slender drill
string rods, and so forth. According to its high accuracy, the proposed technique can also be
employed to generate benchmark solutions for a comparison purpose. As a final remark, the
proposed technique can further be generalized to treat two important classes of problems,
one associated with the treatment of material nonlinearity and the other corresponding to
nonlinear structural dynamics. It is apparent that, under severe time-dependent loading
conditions (e.g., earthquake and blasting loads), not only the inertia effect becomes significant
but also structures generally undergo both large displacement and large deformation prior to
collapse.

Appendices

In this section, we demonstrate the derivation of gradientmatrices in Section 3.2. The gradient
matrix gp of a member containing no inflection point (Section 3.2.1) is presented in an
explicit form, while, in the case of a member containing an inflection point (Section 3.2.2 and
Section 3.2.3), we expand all entries of matrices B,C,D,F,B,C,D, and F.

A. Member Containing No Inflection Point

Let us refer to (3.20) and (3.21); the explicit form of matrices S and D are given by

S =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ϑ(i2 − i1s2)m̂1

s2 − s1 −ϑ(i2 − i1s1)m̂2

s2 − s1 0

ϑ(i4 − i2s2)m̂1

s2 − s1 −ϑ(i4 − i2s1)m̂2

s2 − s1 0

ϑ(i5 − i3s2)m̂1

s2 − s1 −ϑ(i5 − i3s1)m̂2

s2 − s1 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,
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D =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−ϑ(i2 − i1s2)λ1
s2 − s1

ϑ(i2 − i1s2)λ2
s2 − s1 ϑ

i2(c1 − c2) + i1s12
s2 − s1

−ϑ(i4 − i2s2)λ1
s2 − s1

ϑ(i4 − i2s2)λ2
s2 − s1 ϑ

i4(c1 − c2) + i2s12
s2 − s1

−ϑ(i5 − i3s2)λ1
s2 − s1

ϑ(i5 − i2s3)λ2
s2 − s1 ϑ

i5(c1 − c2) + i3s12
s2 − s1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1
m̂1

1
m̂2

ϑi3
s1
m̂1

s2
m̂2

ϑi5
c1
m̂1

c2
m̂2

ϑi6

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

(A.1)

where s1 = sin θ1, s2 = sin θ2, s12 = sin(θ1−θ2), c1 = cos θ1, c2 = cos θ2, λ1 = ̂fxs1+ ̂fyc1, λ2 =
̂fxs2 + ̂fyc2, and integrals {i1, i2, i3, i4, i5, i6} are defined by

i1 =
∫θ2

θ1

F3
(

θ, θ2; ̂fx, ̂fy, m̂2

)

dθ,

i2 =
∫θ2

θ1

F3
(

θ, θ2; ̂fx, ̂fy, m̂2

)

sin θdθ,

i3 =
∫θ2

θ1

F3
(

θ, θ2; ̂fx, ̂fy, m̂2

)

cos θdθ,

i4 =
∫θ2

θ1

F3
(

θ, θ2; ̂fx, ̂fy, m̂2

)

sin2θdθ,

i5 =
∫θ2

θ1

F3
(

θ, θ2; ̂fx, ̂fy, m̂2

)

sin θ cos θdθ,

i6 =
∫θ2

θ1

F3
(

θ, θ2; ̂fx, ̂fy, m̂2

)

cos2θdθ.

(A.2)

By substituting (A.1) into (3.19), and then solving such system of linear equations, it leads to
the explicit forms of the matrix gp

gp =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2i2s1 − i1s21 − i4
ϑζ3m̂

2
1

i2(s1 + s2) − i1s1s2 − i4
ϑζ3m̂1m̂2

ζ1s1 + ζ2
ζ3m̂1

i2(s1 + s2) − i1s1s2 − i4
ϑζ3m̂1m̂2

2i2s2 − i1s22 − i4
ϑζ3m̂

2
2

ζ1s2 + ζ2
ζ3m̂2

ζ1s1 + ζ2
ζ3m̂1

ζ1s2 + ζ2
ζ3m̂2

2i2i3i5 − i23i4 − i1i25
ϑζ3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

λ1
m̂1

0
−c1
m̂1

0
λ2
m̂2

−c2
m̂2

−c1
m̂1

−c2
m̂2

−i6
ϑ

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

(A.3)

where ζ1 = i2i3 − i1i5, ζ2 = i2i5 − i3i4, and ζ3 = i22 − i1i4.
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B. Member Containing Interior Inflection Point

This section presents explicit results for all entries of matrices B,C,D, and F. By employing
chain rule of differentiation and recalling all involved identities and changes of variables,
entries of the matrices B,C,D, and F are given by

∂̂R

∂θ1
=
∂̂R

∂φ1

∂φ1

∂θ1
,

∂̂R

∂θ2
=
∂̂R

∂φ2

∂φ2

∂θ2
,

∂̂R

∂ ̂fx
=
∂̂R

∂φ1

∂φ1

∂ ̂fx
+
∂̂R

∂φ2

∂φ2

∂ ̂fx
+
∂̂R

∂p

∂p

∂ ̂fx
+
∂̂R

∂θo

∂θo

∂ ̂fx
+
∂̂R

∂ ̂fs

∂ ̂fs

∂ ̂fx
,

∂̂R

∂θz
=
∂̂R

∂φ1

∂φ1

∂θz
+
∂̂R

∂φ2

∂φ2

∂θz
+
∂̂R

∂p

∂p

∂θz
,

∂̂R

∂ ̂fy
=
∂̂R

∂φ1

∂φ1

∂ ̂fy
+
∂̂R

∂φ2

∂φ2

∂ ̂fy
+
∂̂R

∂p

∂p

∂ ̂fy
+
∂̂R

∂θo

∂θo

∂ ̂fy
+
∂̂R

∂ ̂fs

∂ ̂fs

∂ ̂fy
,

∂Γo
∂θz

=
∂Γo
∂φ1

∂φ1

∂θz
+
∂Γo
∂φ2

∂φ2

∂θz
+
∂Γo
∂p

∂p

∂θz
,

∂Γv
∂θz

=
∂Γv
∂φ1

∂φ1

∂θz
+
∂Γv
∂φ2

∂φ2

∂θz
+
∂Γv
∂p

∂p

∂θz
,

∂Γo
∂ ̂fy

=
∂Γo
∂φ1

∂φ1

∂ ̂fy
+
∂Γo
∂φ2

∂φ2

∂ ̂fy
+
∂Γo
∂p

∂p

∂ ̂fy
+
∂Γo
∂ ̂fs

∂ ̂fs

∂ ̂fy
,

∂Γv
∂ ̂fy

=
∂Γv
∂φ1

∂φ1

∂ ̂fy
+
∂Γv
∂φ2

∂φ2

∂ ̂fy
+
∂Γv
∂p

∂p

∂ ̂fy
+
∂Γv
∂θo

∂θo

∂ ̂fy
,

∂Γo
∂θ1

=
∂Γo
∂φ1

∂φ1

∂θ1
,

∂Γo
∂θ2

=
∂Γo
∂φ2

∂φ2

∂θ2
,

∂Γo
∂ ̂fx

=
∂Γo
∂φ1

∂φ1

∂ ̂fx
+
∂Γo
∂φ2

∂φ2

∂ ̂fx
+
∂Γo
∂p

∂p

∂ ̂fx
+
∂Γo
∂ ̂fs

∂ ̂fs

∂ ̂fx
,

∂Γv
∂θ1

=
∂Γv
∂φ1

∂φ1

∂θ1
,

∂Γv
∂θ2

=
∂Γv
∂φ2

∂φ2

∂θ2
,

∂Γv
∂ ̂fx

=
∂Γv
∂φ1

∂φ1

∂ ̂fx
+
∂Γv
∂φ2

∂φ2

∂ ̂fx
+
∂Γv
∂p

∂p

∂ ̂fx
+
∂Γv
∂θo

∂θo

∂ ̂fx
.

(B.1)
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By taking derivatives of functions {̂R,Γo,Γv}with respect to {φ1, φ2, p, θo, ̂fs}, we obtain

∂̂R

∂φ1
=

−1
fs

⎛

⎜

⎝2 cos θo
√

1 − p2sin2φ1 + 2ψ sin θop sinφ1 +
(1 − cos θo)
√

1 − p2sin2φ1

⎞

⎟

⎠,

∂̂R

∂φ2
=

−1
fs

⎛

⎜

⎝2 cos θo
√

1 − p2sin2φ2 + 2ψ sin θop sinφ2 +
(1 − cos θo)
√

1 − p2sin2φ2

⎞

⎟

⎠,

∂̂R

∂p
=
∫π/2

φ1

2p cos θo
√

1 − p2sin2φ
+ 2ψ sin θo sinφ − p(1 − cos θo)

√

1 − p2sin2φ
3
dφ +

∫π/2

φ2

2p cos θo
√

1 − p2sin2φ

+ 2ψ sin θo sinφ − p(1 − cos θo)
√

1 − p2sin2φ
3
dφ,

∂̂R

∂θo
=
∫π/2

φ1

−2 sin θo
√

1 − p2sin2φ + 2ψ cos θop sinφ +
sin θo

√

1 − p2sin2φ
dφ

+
∫π/2

φ2

−2 sin θo
√

1 − p2sin2φ + 2ψ cos θop sinφ +
sin θo

√

1 − p2sin2φ
dφ,

∂̂R

∂ ̂fs
=

⎛

⎜

⎝−
∫π/2

φ1

2 cos θo
√

1 − p2sin2φ1 + 2ψ sin θop sinφ1 +
(1 − cos θo)
√

1 − p2sin2φ1

dφ

−
∫π/2

φ2

2 cos θo
√

1 − p2sin2φ1 + 2ψ sin θop sinφ1 +
(1 − cos θo)
√

1 − p2sin2φ1

dφ

⎞

⎟

⎠

(

1
̂f2
s

)

,

∂Γo
∂φ1

= − 1
√

1 − p2sin2φ1

,

∂Γo
∂φ2

= − 1
√

1 − p2sin2φ2

,

∂Γo
∂p

=
∫π/2

φ1

p
√

1 − p2sin2φ
3
dφ +

∫π/2

φ2

p
√

1 − p2sin2φ
3
dφ,

∂Γo
∂ ̂fs

= −1,

∂Γv
∂φ1

= 2 sin θo
√

1 − p2sin2φ1 − 2ψ cos θop sinφ1 − sin θo
√

1 − p2sin2φ1

,
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∂Γv
∂φ2

= 2 sin θo
√

1 − p2sin2φ2 − 2ψ cos θop sinφ2 − sin θo
√

1 − p2sin2φ2

,

∂Γv
∂p

=
∫π/2

φ1

−2p sin θo
√

1 − p2sin2φ
− 2ψ cos θo sinφ − p sin θo

√

1 − p2sin2φ
3
dφ

+
∫π/2

φ2

−2p sin θo
√

1 − p2sin2φ
− 2ψ cos θo sinφ − p sin θo

√

1 − p2sin2φ
3
dφ,

∂Γv
∂θo

=
∫π/2

φ1

2 cos θo
√

1 − p2sin2φ + 2ψ sin θop sinφ − cos θo
√

1 − p2sin2φ
dφ

+
∫π/2

φ2

2 cos θo
√

1 − p2sin2φ + 2ψ sin θop sinφ − cos θo
√

1 − p2sin2φ
dφ.

(B.2)

By taking derivatives of functions {φ1, φ2, p, θo, ̂fs} with respect to {θ1, θ2, θz, ̂fx, ̂fy}, we
obtain

∂φ1

∂θ1
=

cos
(

θ1/2
)

2 sin
(

θz/2
)

cosφ1

,

∂φ1

∂ ̂fx
=

⎛

⎜

⎝

cos
(

θ1/2
)

2 sin
(

θz/2
)

cosφ1

− tanφ1

2 tan
(

θz/2
)

⎞

⎟

⎠

̂fy

̂f2
x + ̂f2

y

,

∂φ1

∂θz
=

− tanφ1

2 tan
(

θz/2
) ,

∂φ1

∂ ̂fy
=

⎛

⎜

⎝

cos
(

θ1/2
)

2 sin
(

θz/2
)

cosφ1

− tanφ1

2 tan
(

θz/2
)

⎞

⎟

⎠

̂fx
̂f2
x + ̂f2

y

,

∂φ2

∂θ2
=

cos
(

θ2/2
)

2 sin
(

θz/2
)

cosφ2

,

∂φ2

∂ ̂fx
=

⎛

⎜

⎝

cos
(

θ2/2
)

2 sin
(

θz/2
)

cosφ2

− tanφ2

2 tan
(

θz/2
)

⎞

⎟

⎠

̂fy

̂f2
x + ̂f2

y

,

∂φ2

∂θz
=

− tanφ2

2 tan
(

θz/2
) ,
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∂φ2

∂ ̂fy
=

⎛

⎜

⎝

cos
(

θ2/2
)

2 sin
(

θz/2
)

cosφ2

− tanφ2

2 tan
(

θz/2
)

⎞

⎟

⎠

̂fx
̂f2
x + ̂f2

y

,

∂p

∂θz
=

1
2
cos

θz
2
,

∂p

∂ ̂fx
=

1
2
cos

θz
2

̂fy

̂f2
x + ̂f2

y

,

∂p

∂ ̂fy
=

1
2
cos

θz
2

̂fx
̂f2
x + ̂f2

y

,

∂θo

∂ ̂fx
= −

̂fy

̂f2
x + ̂f2

y

,

∂θo

∂ ̂fy
= −

̂fx
̂f2
x + ̂f2

y

,

∂ ̂fs

∂ ̂fx
=
̂fx
̂f3
s

,

∂ ̂fs

∂ ̂fy
=
̂fy

̂f3
s

.

(B.3)

All entries of matrices B,C,D, and F can now be obtained via the relation (B.1) along with
the results (B.2) and (B.3).

C. Member Containing Inflection Point at Its Right End

This section presents explicit results for all entries of matrices B, C, D, and F. By employing
chain rule of differentiation and recalling all involved identities and changes of variables,
entries of the matrices B, C,D, and F are given by

∂̂R

∂θ1
=
∂̂R

∂φ1

∂φ1

∂θ1
,

∂̂R

∂ ̂fx
=
∂̂R

∂φ1

∂φ1

∂ ̂fx
+
∂̂R

∂p

∂p

∂ ̂fx
+
∂̂R

∂θo

∂θo

∂ ̂fx
+
∂̂R

∂ ̂fs

∂ ̂fs

∂ ̂fx
,

∂̂R

∂θ2
=
∂̂R

∂φ1

∂φ1

∂θ2
+
∂̂R

∂p

∂p

∂θ2
,
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∂̂R

∂ ̂fy
=
∂̂R

∂φ1

∂φ1

∂ ̂fy
+
∂̂R

∂p

∂p

∂ ̂fy
+
∂̂R

∂θo

∂θo

∂ ̂fy
+
∂̂R

∂ ̂fs

∂ ̂fs

∂ ̂fy
,

∂Γo
∂θ2

=
∂Γo
∂φ1

∂φ1

∂θ2
+
∂Γo
∂p

∂p

∂θ2
,

∂Γv
∂θ2

=
∂Γv
∂φ1

∂φ1

∂θ2
+
∂Γv
∂p

∂p

∂θ2
,

∂Γo
∂ ̂fy

=
∂Γo
∂φ1

∂φ1

∂ ̂fy
+
∂Γo
∂p

∂p

∂ ̂fy
+
∂Γo
∂ ̂fs

∂ ̂fs

∂ ̂fy
,

∂Γv
∂ ̂fy

=
∂Γv
∂φ1

∂φ1

∂ ̂fy
+
∂Γv
∂p

∂p

∂ ̂fy
+
∂Γv
∂θo

∂θo

∂ ̂fy
,

∂Γo
∂θ1

=
∂Γo
∂φ1

∂φ1

∂θ1
,

∂Γo
∂ ̂fx

=
∂Γo
∂φ1

∂φ1

∂ ̂fx
+
∂Γo
∂p

∂p

∂ ̂fx
+
∂Γo
∂ ̂fs

∂ ̂fs

∂ ̂fx
,

∂Γv
∂θ1

=
∂Γv
∂φ1

∂φ1

∂θ1
,

∂Γv
∂ ̂fx

=
∂Γv
∂φ1

∂φ1

∂ ̂fx
+
∂Γv
∂p

∂p

∂ ̂fx
+
∂Γv
∂θo

∂θo

∂ ̂fx
.

(C.1)

By taking derivatives of functions {̂R,Γo,Γv}with respect to {φ1, p, θo, ̂fs}, we obtain

∂̂R

∂φ1
=

−1
fs

⎛

⎜

⎝2 cos θo
√

1 − p2sin2φ1 + 2ψ sin θop sinφ1 +
(1 − cos θo)
√

1 − p2sin2φ1

⎞

⎟

⎠,

∂̂R

∂p
=
∫π/2

φ1

2p cos θo
√

1 − p2sin2φ
+ 2ψ sin θo sinφ − p(1 − cos θo)

√

1 − p2sin2φ
3
dφ,

∂̂R

∂θo
=
∫π/2

φ1

−2 sin θo
√

1 − p2sin2φ + 2ψ cos θop sinφ +
sin θo

√

1 − p2sin2φ
dφ,

∂̂R

∂ ̂fs
=

−1
f2
s

⎛

⎜

⎝

∫π/2

φ1

2 cos θo
√

1 − p2sin2φ1 + 2ψ sin θop sinφ1 +
(1 − cos θo)
√

1 − p2sin2φ1

dφ

⎞

⎟

⎠,
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∂Γo
∂φ1

= − 1
√

1 − p2sin2φ1

,

∂Γo
∂p

=
∫π/2

φ1

p
√

1 − p2sin2φ
3
dφ,

∂Γo
∂ ̂fs

= −1,

∂Γv
∂φ1

= 2 sin θo
√

1 − p2sin2φ1 − 2ψ cos θop sinφ1 − sin θo
√

1 − p2sin2φ1

,

∂Γv
∂p

=
∫π/2

φ1

−2p sin θo
√

1 − p2sin2φ
− 2ψ cos θo sinφ − p sin θo

√

1 − p2sin2φ
3
dφ,

∂Γv
∂θo

=
∫π/2

φ1

2 cos θo
√

1 − p2sin2φ + 2ψ sin θop sinφ − cos θo
√

1 − p2sin2φ
dφ.

(C.2)

By taking derivatives of functions {φ1, p, θo, ̂fs}with respect to {θ1, θ2, ̂fy}, we obtain

∂φ1

∂θ1
=

cos
(

θ1/2
)

2 sin
(

θ2/2
)

cosφ1

,

∂φ1

∂ ̂fx
=

⎛

⎜

⎝

cos
(

θ1/2
)

2 sin
(

θ2/2
)

cosφ1

− tanφ1

2 tan
(

θ2/2
)

⎞

⎟

⎠

̂fy

̂f2
x + ̂f2

y

,

∂φ1

∂θ2
=

− tanφ1

2 tan
(

θ2/2
) ,

∂φ1

∂ ̂fy
=

⎛

⎜

⎝

cos
(

θ1/2
)

2 sin
(

θ2/2
)

cosφ1

− tanφ1

2 tan
(

θ2/2
)

⎞

⎟

⎠

̂fx
̂f2
x + ̂f2

y

,

∂p

∂θ2
=

1
2
cos

θ2
2
,

∂p

∂ ̂fx
=

1
2

(

̂fy

̂f2
x + ̂f2

y

)

cos
θ2
2
,

∂p

∂ ̂fy
= −1

2

(

̂fx
̂f2
x + ̂f2

y

)

cos
θ2
2
,



36 Mathematical Problems in Engineering

∂θo

∂ ̂fx
= −

̂fy

̂f2
x + ̂f2

y

,

∂θo

∂ ̂fy
= −

̂fx
̂f2
x + ̂f2

y

,

∂ ̂fs

∂ ̂fx
=
̂fx
̂f3
s

,

∂ ̂fs

∂ ̂fy
=
̂fy

̂f3
s

.

(C.3)

All entries of matrices B, C, D, and F can now be obtained via the relation (C.1) along with
the results (C.2) and (C.3).
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