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This paper proposes a novel intelligent control scheme using type-2 fuzzy neural network (type-2
FNN) system. The control scheme is developed using a type-2 FNN controller and an adaptive
compensator. The type-2 FNN combines the type-2 fuzzy logic system (FLS), neural network,
and its learning algorithm using the optimal learning algorithm. The properties of type-1 FNN
system parallel computation scheme and parameter convergence are easily extended to type-
2 FNN systems. In addition, a robust adaptive control scheme which combines the adaptive
type-2 FNN controller and compensated controller is proposed for nonlinear uncertain systems.
Simulation results are presented to illustrate the effectiveness of our approach.

1. Introduction

In recent years, the fuzzy systems (FSs) and neural networks (NNs) have successfully been
applied in nonlinear system identification and control [1–11]. The fuzzy neural network
(FNN) system is realized with the FS in the NN structure. Thus, the FNN becomes an active
subject inmany areas due to its advantages, such as universal approximation, learning ability,
and convergence of parameters [2, 8, 12]. The above advantages are established by training
the parameters of FNN through iterations. In particular, the backpropagation (BP) algorithm
(also known as gradient descent method) is usually adopted to tune the parameters of FNN,
which consist of fuzzy sets and the weighting factors of NN [2, 8, 12, 13]. For each of the
iterations, all parameters of FNN are adjusted to reduce the error between the desired and
actual outputs. The cost function is the indicator adopted tominimize the error. Therefore, the
dynamic and optimal learning rate for FNN has been proposed to accelerate the convergence
of the BP algorithm [3, 14–16].

To treat the “uncertainty information” problem, Zadeh proposed the concept of a type-
2 fuzzy systemwhich is an extension of ordinary fuzzy sets (called type-1) [17]. Subsequently,
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Mendel and Karnik developed a complete theory of type-2 fuzzy logic systems (FLSs)
[7, 10, 18–20]. These systems are characterized by IF-THEN rules, and type-2 fuzzy rules are
more complex than type-1 fuzzy ones because there are some differences, for example, their
antecedents and consequent sets are type-2 fuzzy sets [7, 10]. By using type-2 fuzzy systems
(T2 FSs), we outperform the use of type-1 fuzzy systems (T1 FSs). The T2FSs are described
by type-2 fuzzy membership functions that are characterized by more design degrees of
freedom [19, 21]. This approach has been adopted in many applications, for example, system
identification, nonlinear control, and signal processing [1, 4, 10, 14, 21–23].

In this paper, the interval valued type-2 fuzzy membership functions and interval
sets are utilized to implement in the network structure, called type-2 fuzzy neural network
(type-2 FNN). Thus, the Type-2 FNN has more design degrees of freedom to enhance the
performance. The analysis and applications of type-2 FNN are proposed. The type-2 FNN is
a multilayered connectionist network for realizing the type-2 fuzzy inference system, and
it can be constructed from a set of type-2 fuzzy rules. The type-2 FNN consists of type-
2 fuzzy linguistic process as both the antecedent and consequent parts. The consequent
part denotes the output through type reduction and defuzzification. The computation of
interval type-2 FNN is more complex than that of type-1 one. In addition, we show that the
characteristics of the FNN, fuzzy inference, and convergence properties, can be extended to
type-2 FNN. According to the Lyapunov theorem, rigorous proofs are presented to guarantee
the convergence of type-2 FNN and system stability. An adaptive control scheme using type-
2 FNN is presented to treat the control problem of nonlinear uncertain system. Simulation
results are shown to demonstrate the effectiveness and performance of the proposed type-2
FNN system.

The paper is organized as follows. In Section 2, we briefly introduce the type-2 FNN
system. Section 3 presents the main result of adaptive control scheme and optimal learning
for type-2 FNN controller. In Section 4, the simulation results of the control uncertain chaotic
system are presented. Concluding remarks are given in Section 5.

2. Type-2 Fuzzy Neural Network Systems (Type-2 FNN)

As the results of previous literature and applications, the fuzzy neural systems by using
type-2 fuzzy systems (T2 FSs) can outperform the use of type-1 fuzzy systems (T1 FSs). The
T2FSs are described by type-2 fuzzy membership functions that are characterized by more
design degrees of freedom [19, 21]. Therefore, using T2 FSs has the potential to outperform
using T1FSs, especially for uncertain environments. Herein, the interval valued type-2 fuzzy
membership functions and interval sets are utilized to implement the type-2 fuzzy neural
network (type-2 FNN). Details are introduced as follows.

2.1. System Structure

The construction of the jth component of type-2 FNN system is shown in Figure 1, which is a
kind of fuzzy inference system in the neural network structure [1–3, 9, 15]. When compared
with type-1 FNN, the major difference is that the type-1 fuzzy membership functions (MFs)
are replaced by type-2 ones and the interval sets of consequent part. Herein, we first indicate
the signal propagation and the basic function of every node in each layer. In the following
symbols, the subscript ij indicates the jth term of the ith input O(k)

ij , where j = 1, . . . , l, and
the superscript (k) denotes the kth layer.
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Figure 1: Construction of MISO type-2 FNN system with uncertain mean.

Layer 1: Input Layer

For the ith node of layer 1, the net input and output are represented as

O
(1)
i = w

(1)
i x

(1)
i , (2.1)

where the weights w
(1)
i = 1, i = 1, . . . , n and x

(1)
i represent the ith input to the ith node of

layer 1.

Layer 2: Membership Layer

In this layer, each node performs a type-2 interval fuzzy MF, as shown in Figure 2. Note that
when all T2 FSs are interval type, then the firing set and fired rule output set are interval
values, and this simplifies all computational effort enormously. We here introduce two cases
of the output of layer 2 [7, 10, 18–20].

Case 1. For the Gaussian MF with uncertain mean as shown in Figure 2(a)

O
(2)
ij = exp

⎡⎢⎣−12
(
O

(1)
i −mij

)2

(
σij

)2
⎤⎥⎦ =

⎧⎨⎩O
(2)
ij as mij = mij ,

O
(2)
ij as mij = mij .

(2.2)

Case 2. For the Gaussian MF with uncertain variance as shown in Figure 2(b)

O
(2)
ij = exp

⎡⎢⎣−12
(
O

(1)
i −mij

)2

(
σij

)2
⎤⎥⎦ =

⎧⎨⎩O
(2)
ij as σij = σij ,

O
(2)
ij as σij = σij ,

(2.3)
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Figure 2: Gaussian MFs, (a) uncertain mean by upper and lowerMFs; (b) uncertain variance by upper and
lower MFs.

wheremijand σij represent the center (or mean) and the width (or variance), respectively. As
shown in Figure 2, type-2 interval MFs can be represented as interval bound by upper and
lower MFs, denoted by μF̃i

and μ
F̃i

, respectively. Therefore, the output O(2)
ij is represented as

[O(2)
ij , O

(2)
ij ].

Layer 3: Rule Layer

The links in this layer are employed to implement the antecedent matching, and they work
like rule engine of the type-2 FLSs. Here, the operation chosen is the simple PRODUCT
operation. Then, for the jth input rule node

O
(3)
j =

n∏
i=1

(
w

(3)
ij O

(2)
ij

)
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
O

(3)
j =

n∏
i=1

(
w

(3)
ij O

(2)
ij

)
,

O
(3)
j =

n∏
i=1

(
w

(3)
ij O

(2)
ij

)
,

(2.4)

where the weights w(3)
ij are set to be unity. Similar to layer 2, the outputO(3)

ij is represented as

[O(3)
j , O

(3)
j ].

Layer 4: Output Layer

The links in this layer are employed to implement the consequent matching, type reduction,
and defuzzification [7, 10, 14, 18–20]. A type-reducer combines all fired-rule output sets in
some way, just like a type-2 defuzzifier combines the type-1 rule output sets, which leads to
a T1 FS that is called a type-reduced set. Finally, we defuzzify the type-reduced set to get a
crisp output, that is,

ŷ = O(4) =
O

(4)
R +O

(4)
L

2
, (2.5)
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where

O
(4)
R =

l∑
j=1

(
fR
j w

(4)
j

)
=

R∑
j=1

(
O

(3)
j w

(4)
j

)
+

l∑
k=R+1

(
O

(3)
j w

(4)
k

)
, (2.6)

O
(4)
L =

l∑
j=1

(
fL
j w

(4)
j

)
=

L∑
j=1

(
O

(3)
j w

(4)
j

)
+

l∑
k=L+1

(
O

(3)
j w

(4)
k

)
. (2.7)

According to the results of [2, 3], normalization is not used here. This simplifies the
computation of type-2 FNN system in real-time applications. Moreover, in order to obtain
O

(4)
L and O

(4)
R , we need to find coefficients R and L first by the so-called Karnik-Mendel

procedure [10, 19, 20]. Without loss of generality, it is assumed that the precomputed w
(4)
j

and w
(4)
j are arranged in the ascending order, that is, w

(4)
1 ≤ w

(4)
2 ≤ · · · ≤ w

(4)
l

and

w
(4)
1 ≤ w

(4)
2 ≤ · · · ≤ w

(4)
l [7, 10, 20]. The usual utilized Karnik-Mendel procedure for type

reduction is introduced as follows:

R1: compute O(4)
R in (2.6) by initially setting fR

j = 1/2(O
(3)
j +O

(3)
j ) for i = 1, . . . , l, and let

yr ≡ O
(4)
R ;

R2: find R(1 ≤ R ≤ l − 1) such that w(4)
R ≤ yr ≤ w

(4)
R+1;

R3: compute O
(4)
R in (2.6) with fR

j = O
(3)
j for j ≤ R and fR

j = O
(3)
j for j > R, and let

y′
r = O

(4)
R ;

R4: if y′
r /=yr , then go to step R5. If y′

r = yr , then stop and set O(4)
R = y′

r ;

R5: set y′
r equal to yr , and return to step R2.

Subsequently, the computation of O(4)
L is similar to the above procedure. Thus, the

input/output representation of type-2 FNN system with uncertain mean is

ŷ
(
mij,mijσij , wj ,wj

)

=
1
2

⎡⎣ R∑
j=1

(
O

(3)
j w

(4)
j

)
+

l∑
k=R+1

(
O

(3)
k w

(4)
k

)
+

L∑
j=1

(
O

(3)
j w

(4)
j

)
+

l∑
k=L+1

(
O

(3)
k
w

(4)
k

)⎤⎦. (2.8)

Thus, the adjustable parameters of type-2 FNN system with uncertain mean are m,m, σ,w,
and w. Furthermore, the type-2MFs with uncertain variance, as shown in Figure 2(b), can be
simplified as

ŷ
(
mij , σij , σij , wj

)
=
1
2

l∑
j=1

[(
O

(3)
j +O

(3)
j

)
w

(4)
j

]
. (2.9)

The adjustable parameters of type-2 FNN system with uncertain variance are
m, σ, σ, and w. Therefore, when the rule number is R, the parameters number of n
input and one output type-2 FNN systems are (3n+2)×R and (3n+1)×R for uncertain mean
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Figure 3: Adaptive control scheme using type-2 FNNs.

and variance, respectively. As the same condition, the type-1 FNN system has (2n + 1) × R
adjustable parameters (m, σ, and w).

2.2. Adaptive Control Scheme and Learning Algorithm

According to the results of [2, 3], the model reference adaptive schematic of type-2 FNN
control system is shown in Figure 3. The control objective of the nonlinear plant is to make the
system output Y follow the reference input R and minimize the system error e. The purpose
of the control scheme is to use the system control error e = Y − R through the type-2 FNN
controller (type-2 FNNC) to generate the proper control signal uC. In order to minimize the
system error, the weights of type-2 FNN are updated on line through the dynamic gradient
descent learning algorithm. Let the cost function be minimized, which is defined as

EC =
1
2
(R − Y)2. (2.10)

That is, our goal is to minimize the tracking error. For training type-2 FNN, we utilize the
well-known backpropagation algorithm with time-varying learning rate [4, 14, 15, 24]. It can
be written as

W(k + 1) = W(k) + ΔW = W(k) + η(k)
(
−∂EC(k)

∂W

)
, (2.11)

where η(k) and W = [m, σ, σ,w] represent the time-varying learning rate and tuning
parameters of type-2 FNN with uncertain variance, respectively. To obtain on line
performance, avoid local minimum, and guarantee system stability, we use the Lyapunov
theory to derive an adaptive learning algorithm with a time-varying learning rate to speed
up the convergence. From (2.10) and (2.11), we have

ΔW = η(k)
(
−∂Ec

∂W

)
= η(k)

(
−∂Ec

∂Y

∂Y

∂u

∂u

∂ŷ

∂ŷ

∂W

)
= −η(k)(R − Y)Yu

∂ŷ

∂W
, (2.12)



Mathematical Problems in Engineering 7

where Yu ≡ ∂Y/∂u denotes the system sensitivity and ŷ denotes the type-2 FNN controller’s
output. The updated laws are represented as

mij = mij + Δmij, w
(4)
j = w

(4)
j + Δw

(4)
j ,

σij = σij + Δσij , σij = σij + Δσij .
(2.13)

Subsequently, we obtain the time-varying learning rate for the parameters using the results
of [2–4]. We then have the following theorem.

Theorem 2.1. The type-2 FNN is trained by the backpropagation algorithm (2.11). Then, the closed
loop of the nonlinear system is stable if the learning rates are chosen as

0 < η(k) <
2

(Pmax)2
, (2.14)

where Pmax ≡ [P1,max P2,max P3,max P4,max P5,max P6,max]T. In addition, One has the following
optimal learning rate preserving high-speed convergence and nonlinear system stability

ηopt(k) =
1∥∥Yu

(
∂ŷ(k)/∂W

)∥∥2
. (2.15)

Proof. See the appendix.

As above, this is a model-free control approach for nonlinear system, that is, the
designed control scheme does not use the system dynamic model. In practical systems,
system dynamics are not usually known exactly and the sensitivity needs to be estimated. As
discussed above, the system sensitivity Yu can be obtained from type-2 FNNI in each iteration
if the identifier is efficient and accurate (the type-2 FNN output Ŷ can approximate the
nonlinear plant output Y). Thus, Yu can be represented in terms of type-2 FNNI’s parameters
m, σ, σ, w. In general, the calculation of Yu needs complex computation, and it is time vary-
ing. It usually fails for real-time control problem of industrial applications. Therefore, based
on the system dynamic model, a simple modification in adaptation laws is introduced below.

3. Robust Adaptive Control Scheme Using Type-2 FNN System

3.1. Nonlinear System Description

An nth-order nonlinear dynamic system considered in the companion form or controllability
canonical form is given by

x(n) = F(x) +G(x)u +D, y = x, (3.1)

where u and y are the control input and nonlinear system output, respectively. x =
[x ẋ · · ·x(n−1)]T ∈ �n×1, F(·) and G(·) are unknown nonlinear and continuous functions, D
is the bounded external disturbance or system uncertainty. In order to make system (3.1)
controllable, G(x) needs to be invertible for all x ∈ UC ⊂ �n×1.
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Our purpose is to design a robust adaptive control scheme which guarantees
boundedness of all closed-loop variables and tracking of a given reference trajectory yd =
[yd ẏd · · ·yd

(n−1)]T ∈ �n. Define the tracking error e as

e = yd − y =
[
e ė · · · e(n−1)

]T ∈ �n. (3.2)

If the plant dynamics is well known, the ideal control law u∗ can be designed by the feedback
linearization approach [25]

u∗ = G(x)−1
[
x(n) − F(x) −D(t) +Ke

]
, (3.3)

where K = [kn kn−1 · · · k1] ∈ �1×n. Positive control gain K is chosen as (ki > 0, I =
1, . . . , n) such that all roots of the polynomial sn + k1 · s(n−1) + · · · + kn = 0 are in the open
left-half plane. Substituting (3.3) into (3.1) yields

e(n) + k1e
(n−1) + · · · + kne = 0 (3.4)

which implies that limt→∞e(t) = 0. However, the nonlinear functions F(x) and G(x) are
not well known in general. Therefore, we cannot obtain the ideal control law (3.3). To solve
this problem, the adaptive type-2 FNN control system is proposed to approximate the ideal
control law (3.3).

3.2. Design for Type-2 FNN Control System

The configuration of the proposed robust type-2 FNN control system is depicted in Figure 4.
The type-2 FNN controller uf is connected to the compensated controller um to generate a
control signal uC. That is, the control law is given by

uC = uf + um. (3.5)

From (2.9), we can define the control input by type-2 FNN with uncertain variance which is
used to approximate ideal control (3.3)

uf = ŵTÔ3. (3.6)
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The minimum approximation error ε can be defined as

ε = u∗ − u∗
f . (3.7)

By the universal approximation theorem [3, 8, 10], there exists optimal parametersw∗

such that uf(w∗) = u∗
f
can approximate u as close as possible. Consequently, (3.7) can be

rewritten as

u∗ = u∗
f + ε = (w∗)TO∗

3 + ε. (3.8)

From (3.1), (3.5), and (3.8), the system tracking error equation is rewritten as

ė = Λe + BG(u∗ − uC), (3.9)

where

Λ =

⎡⎢⎢⎢⎢⎢⎢⎣

0 1 · · · 0

...
...

. . .
...

0 0 · · · 1

−kn −kn−1 · · · −k1

⎤⎥⎥⎥⎥⎥⎥⎦, BG =

⎡⎢⎢⎢⎢⎢⎢⎣

0

...

0

G(x)

⎤⎥⎥⎥⎥⎥⎥⎦. (3.10)

Subsequently, we define ũ = u∗ − uC, thus

ũ =
[
u +G(x)−1Ke

]
− (

uf +Ke + um

)
=
[
(w∗)TO∗

3 + ε − ŵTÔ3

]
− um

=
[
(w∗)TO∗

3 + ε − ŵTO∗
3 + −ŵTO∗

3 − ŵTÔ3

]
− um

= (w∗)TÕ3 + w̃TO∗
3 + ε − um.

(3.11)

Using the linearization technique, we have the Taylor expansion of Õ3

Õ3 =
[
h̃1 h̃2 · · · h̃l

]T

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂h̃1

∂m
∂h̃2

∂m
...

∂h̃l

∂m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
m=m̂

(m∗ − m̂) +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂h̃1

∂σR

∂h̃2

∂σR
...

∂h̃l

∂σR

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
σR=σ̂R

(
σ∗
R − σ̂R

)
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂h̃1

∂σL

∂h̃2

∂σL
...

∂h̃l

∂σL

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
σL=σ̂L

(
σ∗
L − σ̂L

)
+H0,

(3.12)



10 Mathematical Problems in Engineering

where H0 represents higher-order terms. h̃j = (O
(3)
j + O

(3)
j )/2 and j = 1, . . . , l denote the

jth-output of type-2 fuzzy antecedent matching. Substituting (3.12) into (3.11) gives

ũ = w̃T
(
Ô3 +OT

Cm̃ +OT
Rσ̃R +OT

Lσ̃L +H0

)
+ ε + ŵT

(
OT

Cm̃ +OT
Rσ̃R +OT

Lσ̃L +H0

)
− um

= w̃TÔ4 + ŵT
(
OT

Cm̃ +OT
Rσ̃R +OT

Lσ̃L

)
+ (w∗)TH0 + w̃T

(
OT

Cm̃ +OT
Rσ̃R +OT

Lσ̃L

)
− um

= w̃TÔ4 + ŵT
(
OT

Cm̃ +OT
Rσ̃R +OT

Lσ̃L

)
− um + Δ0.

(3.13)

From (3.9) and (3.13), we have

ė = Λe + BG ·
⌊
w̃TÔ4 + ŵT

(
OT

Cm̃ +OT
Rσ̃R +OT

Lσ̃L

)
+ Δ0 − um

⌋
. (3.14)

Theorem 3.1. Consider the nonlinear system (3.1). The adaptive control input is presented in (3.5).
Thus, the adaptive control input uf is designed as (3.6) and compensated controller um is designed as
(3.16) with the estimation gain δ̂ given in (3.16), where ŵ = [ŵ1 ŵ2 · · · ŵl]

T ∈ �n×1, γw, γm, γR,
γL, and γδ are positive constant, P is a symmetric positive definite matrix that satisfies

ΛTP + PΛ = −Q, (3.15)

whereQ is a symmetric positive definite matrix and is selected by the designer. As a result, the stability
of the closed-loop system is guaranteed using the type-2 FNN system.

˙̂w = γweTPBGÔ4,

˙̂m = γmeTPBGOCŵ,

˙̂σR = γReTPBGORŵ,

˙̂σL = γLeTPBGOLŵ,

˙̂δ = γδ
∣∣∣eTPBG

∣∣∣,
um = δ̂ sgn

(
eTPBG

)
.

(3.16)

Proof. We consider the following Lyapunov candidate

V
(
e, w̃, m̃, σ̃R, σ̃L, δ̃, t

)
=

1
2
eTPe +

1
2γw

w̃Tw̃ +
1

2γm
m̃Tm̃ +

1
2γR

σ̃T
Rσ̃R +

1
2γL

σ̃T
Lσ̃L +

1
2γδ

δ̃2,

(3.17)
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where the estimation error of the uncertainty bound is defined as δ̃ = δ − δ̂. Taking the
derivative of the Lyapunov candidate (3.17) yields

V̇
(
e, w̃, m̃, σ̃R, σ̃L, δ̃, t

)
=
1
2
ėTPe +

1
2
eTPė − 1

γw
w̃T ˙̃w − 1

γm
m̃T ˙̃m − 1

γR
σ̃T
R
˙̃σR − 1

γL
σ̃T
L
˙̃σL − 1

γδ
δ̃ ˙̂δ

=
1
2
eT
(
ΛTP + PΛ

)
e +

1
2

(
BT
GPe + eTPBG

)
ũ − 1

γw
w̃T ˙̃w − 1

γm
m̃T ˙̃m

− 1
γR

σ̃T
R
˙̃σR − 1

γL
σ̃T
L
˙̃σL − 1

γδ
δ̃ ˙̂δ

=
1
2
eTQe + eTPBG

[
w̃TÔ4 + w̃T ·

(
OT

mm̃ +OT
Rσ̃R +OT

L · σ̃L

)]
− eTPBG(um −Δt) − 1

γw
w̃T ˙̃w − 1

γm
m̃T ˙̃m − 1

γR
σ̃T
R
˙̃σR − 1

γL
σ̃T
L
˙̃σL − 1

γδ
δ̃ ˙̂δ.

(3.18)

From (3.16), (3.18) can be re-written as

V̇
(
e, w̃, m̃, σ̃R, σ̃L, δ̃, t

)
= −1

2
eTQe − eTPBG(um −Δt) − 1

γδ
δ̃ ˙̂δ

= −1
2
eTQe + eTPBGΔt − eTPBGum − 1

γδ
δ̃ ˙̂δ

= −1
2
eTQe + eTPBGΔt − δ̂

∣∣∣eTPBG

∣∣∣ − (
δ − δ̂

)∣∣∣eTPBG

∣∣∣
≤ −1

2
eTQe −

∣∣∣eTPBG

∣∣∣(δ − |Δt|) ≤ 0.

(3.19)

As the above V̇ (e, w̃, m̃, σ̃R, σ̃L, δ̃, t) ≤ 0 is a negative semidefinite function, it implies that e,
w̃, m̃, σ̃R, σ̃L and δ̃ are bounded. Let the function φ(t) = 1/2eT Qe ≤ −V̇ (e, w̃, m̃, σ̃R, σ̃L, δ̃, t),
and integrating the function with respect to time, we have

∫ t

0
φ(τ)dτ ≤ V

(
e, w̃, m̃, σ̃R, σ̃L, δ̃, 0

)
− V

(
e, w̃, m̃, σ̃R, σ̃L, δ̃, t

)
. (3.20)

Since V (e, w̃, m̃, σ̃R, σ̃L, δ̃, 0) is bounded, and V (e, w̃, m̃, σ̃R, σ̃L, δ̃, t) is not increasing, that is,
V (e, w̃, m̃, σ̃R, σ̃L, δ̃, t) is bounded. Thus,

lim
t→∞

∫ t

0
φ(τ)dτ ≤ ∞. (3.21)

Differentiating φ(t) with respect to time, we get

φ̇(t) = eTQė. (3.22)
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Since all the variables on the right side of (3.19) are bounded, which implies that ė is also
bounded. Therefore, φ(t) is uniformly continuous [25]. By Babalat’s lemma [25], it can be
shown that limt→∞φ(t) = 0. Therefore, limt→∞e(t) → 0, the stability of the closed-loop
system is guaranteed using type-2 FNN system.

Remark 3.2. Comparing the computation of control schemes shown in Figures 3 and 4, we can
observe clearly that Figure 4 is less than Figure 3 (almost half) in each iteration. In addition, a
compensator is designed to improve the control performance. Therefore, the adaptive control
scheme shown in Figure 4 is suitable for practical applications.

3.3. Optimal Learning Rate Algorithm for Type-2 FNN Control System

According to the gradient method, the update laws of parameters of type-2 FNN system
are shown in (2.12) and (2.13). In order to obtain the system sensitivity and reduce the
computation complexity, herein, we have a comparison in (2.12) and (3.16). Rewrite (2.12)
as

Δŵj = ηw(k)Yue

⎛⎝O
(3)
j +O

(3)
j

2

⎞⎠,

Δm̂ij = ηm(k)Yue

⎡⎣ŵj

⎛⎝∂O
(3)
j

∂m̂ij
+
∂O

(3)
j

∂m̂ij

⎞⎠⎤⎦,

Δσ̂Rij = ηR(k)Yue

⎡⎣ŵj

⎛⎝∂O
(3)
j

∂σij
+
∂O

(3)
j

∂σij

⎞⎠⎤⎦,

Δσ̂Lij = ηL(k)Yue

⎡⎣ŵj

⎛⎝∂O
(3)
j

∂σ̂ij

+
∂O

(3)
j

∂σ̂ij

⎞⎠⎤⎦,

(3.23)

and then transfer (3.16) to a discrete-time form

Δŵj ≡ tsγweTPBGÔ4j = ρweTPχ

⎛⎝O
(3)
j +O

(3)
j

2

⎞⎠,

Δm̂ij ≡ tsρmeTPBGOCijŵj = ρmeTPχ

⎡⎣ŵj

⎛⎝∂O
(3)
j

∂m̂ij
+
∂O

(3)
j

∂m̂ij

⎞⎠⎤⎦,

Δσ̂Rij ≡ tsρReTPBGORijŵj = ρReTPχ

⎡⎣ŵj

⎛⎝∂O
(3)
j

∂σij
+
∂O

(3)
j

∂σij

⎞⎠⎤⎦,

Δσ̂Lij ≡ tsρLeTPBGOLij ŵj = ρLeTPχ

⎡⎣ŵj

⎛⎝∂O
(3)
j

∂σ̂ij

+
∂O

(3)
j

∂σ̂ij

⎞⎠⎤⎦,

(3.24)
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where ts denotes the sampling time, χ = [0 · · · 0 1]T ∈ �
n×1 and ρi = tsγiG(x), i =

w,m,R, L, can be viewed as the learning rate of parameters for the type-2 FNN system. Let
ρi = ηi, i = w,m,R, L and compare each equation between (3.23) and (3.24), we then have

ηiYue = ρieTPχ, i = w,m,R, L. (3.25)

Thus, the system sensitivity can be replaced as

Yu =
eTPχ
e

. (3.26)

Therefore, the optimal learning rate that focuses on Yu is chosen as

η+(k) =
1∥∥Yu

(
∂ŷ(k)/∂W

)∥∥2 . (3.27)

Details about the derivation of the optimal learning rate are introduced in the appendix.

4. Simulation Results: Tracking Control of
Duffing Forced Oscillator System

Tracking control of Duffing forced oscillator system [26, 27] is considered to illustrate the
effectiveness of our approach. Consider the following Duffing forced oscillator

ÿ(t) + c2ẏ(t) + c1y(t) + y3(t) = c3 cos(c4t) + u(t), (4.1)

where C = [c1 c2 c3 c4] are constant coefficients. Let x1 = y(t) and x2 = ẏ(t), system (4.1)
can then be rewritten as[

ẋ1

ẋ2

]
=

[
0 1

0 0

][
x1

x2

]
+

[
0

1

]
(F +Gu +D), y =

[
1 0

][x1

x2

]
, (4.2)

where F = −c1x1 − c2x2 − (x1)3 + c3 cos(c4t), G = 1, andD denotes the external disturbance. A
square-wave is assumed with amplitude ± 0.5 and period 2π . Here, we set C = [1 0 12 1].
The sampling time is chosen as 0.01 second, and the initial state value, x(0) = [3 3]T .
The simulation results of Duffing forced oscillator are shown in Figure 5. The oscillation
phenomenon is found. Our control objective is to use the adaptive type-2 FNN control scheme
such that the output to track the desired trajectory. Herein, the following four cases are
considered to have comparisons.

Case 1: type-2 FNNC with uncertain variance using η+ (optimal learning rate) and ηfixed.

Case 2: type-2 FNNC with uncertain mean using η+ (optimal learning rate) and ηfixed.

Case 3: type-1 and type-2 FNNC with uncertain variance using the optimal learning rate
η+.

Case 4: type-1 and type-2 FNNC with uncertain mean using the optimal learning rate η+.
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Figure 5: The phase-plant trajectory of Duffing forced oscillator without controlled.

Case 1. Type-2 FNNC with uncertain variance using η+ (optimal learning rate) and ηfixed; to
compare the simulation results with different learning rates, we construct the controller using
type-2 FNN system with uncertain variance. First, the parameters are chosen as

K =
[
4 4

]T
, Q =

[
20 4

4 3

]
, P =

[
10 2.5

2.5 1

]
. (4.3)

The number of rules of type-2 FNN with uncertain variance is set to be eight, and the initial
values of the coefficients are chosen as

x(0) =
[
3 3

]T
, mi =

[
−5
2

−25
14

−15
14

5
14

5
14

15
14

25
14

5
2

]
,

σij =
10
7
, σij =

15
7
, σij =

5
7
, wj = 0, δ(0) = 0.01, ηδ = 0.01.

(4.4)

The fixed learning rate ρi, i = w,m,R, L is redefined as

ηfixed =

⎧⎨⎩ηms ≡ ρi = 0.1, i = m,R, L,

ηw ≡ ρw = 1.
(4.5)

Note that the optimal learning rate will be invalid when the initial weight is wj = 0.
According to the literature in [7], the learning rate is usually chosen as 10−3 ≤ η ≤ 10. Thus, we
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Figure 6: Comparison results of Case 1 for example, (a) phase plant trajectory (x1, x2); (b) state x1 and its
reference trajectory yd; (c) state x2 and its reference trajectory ẏd.

have the optimal learning rate. Hence, the optimal learning rate η+ of type-2 FNN is defined
as

η+ =
[
η+
wj

η+
mij

η+
σij

η+
σij

]
≡
[
min

(
5,

∂Ec

∂wj

)
min

(
1,

∂Ec

∂mij

)
min

(
1,

∂Ec

∂σij

)
min

(
1,

∂Ec

∂σij

)]. (4.6)

The simulation results are shown in Figure 6.
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Case 2. Type-2 FNNC with uncertain mean using η+ (optimal learning rate) and ηfixed; in this
case, type-2 FNN system with uncertain mean is considered. First, the parameters, K, Q, P,
are chosen as (4.3). The rule number of type-2 FNN with uncertain mean is set to be eight,
and the initial values of the coefficients is chosen as

x(0) =
[
3 3

]T
, mi =

[
−8 −40

7
−24
7

−8
7

8
7

24
7

40
7

8
]
,

σij =
16
7
, wj = wj = 0, δ(0) = 0.01, ηδ = 0.01.

(4.7)

The fixed learning rate ρi, i = w,m,R, L is re-defined as

ηfixed =

⎧⎨⎩ηms ≡ ρi = 1, i = m,R, L,

ηw ≡ ρw = 5.
(4.8)

As the above discussion, the optimal learning rate η+ of type-2 FNN with uncertain mean is

η+ =
[
η+
wj

η+
wj

η+
mij

η+
mij

η+
σij

]
≡
[
min

(
5,

∂Ec

∂wj

)
min

(
5,

∂Ec

∂wj

)
min

(
1,

∂Ec

∂mij

)
min

(
1,

∂Ec

∂mij

)
min

(
1,

∂Ec

∂σij

)]
.

(4.9)

Simulation results of Case 2 are shown in Figure 7.
From Figures 6 and 7, we observe that the proposed robust adaptive controller with

appropriate design parameters can achieve tracking control and good performance. The
oscillation with large magnitude phenomenon (state x2) was found in Figures 6(c) and 7(c)
if the learning rates of type-2 FNNC are fixed. On the other hand, the optimal learning has
better transient and steady performance compared with the simulation results using fixed
learning rates.

Case 3. Type-1 and type-2 FNNCwith uncertain variance using η+; to compare the simulation
results with different controllers, we construct the controllers using type-2 FNN and type-1
FNN systems. First, the parameters,K, Q, P, are chosen as (4.3). The number of rules for both
FNN systems are set to be eight, and the initial values of the coefficients are chosen as in Case
1. The optimal learning rate η+ of type-1 FNN is defined as

η+ =
[
η+
wj

η+
mij

η+
σij

]
≡
[
min

(
5,

∂Ec

∂wj

)
min

(
1,

∂Ec

∂mij

)
min

(
1,

∂Ec

∂σij

)]
. (4.10)

The simulation results and comparison are shown in Figure 8.

Case 4. Type-1 and type-2 FNNC with uncertain mean using the optimal learning rate η+;
to compare the simulation result with different controllers, we construct the controllers using
type-1 FNN and type-2 FNNwith uncertainmean. Firstly, the parameters,K, Q, P, are chosen
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Figure 7: Comparison results of Case 2 for example, (a) phase plant trajectory (x1, x2); (b) state x1 and its
reference trajectory yd; (c) state x2 and its reference trajectory ẏd.

as (4.3).The rule number of both FNN systems are set to be eight, and the initial values of the
coefficients are chosen as

x(0) =
[
3 3

]T
, mi =

[
−8 −40

7
−24
7

−8
7

8
7

24
7

40
7

8
]
,

σij =
32
7
, wj = wj = 0, δ(0) = 0.01, ηδ = 0.01.

(4.11)

The optimal learning rate η+ of type-1 FNN is defined as (4.10). Simulation results of Case 4
are shown in Figure 9.
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Figure 8: Comparison results of Case 3: (a) phase plant trajectory (x1, x2); (b) state x1 and its reference
trajectory yd; (c) state x2 and its reference trajectory ẏd.

From Figures 8 and 9, we also find type-2 FNNCs have small convergent time, tracking
error, and transient response. Besides, the type-1 FNNC has undershoot phenomenon and
oscillation results in Figures 8(b), 8(c), and 9(c).

In addition, comparison results in parameters number are shown in Table 1. Rule num-
bers 2, 4, 6, 8 are chosen to obtain the comparison. The type-1 FNNCwith 2 rules has unstable
result and type-2 FNNC achieves the tracking problem. In addition, it can be observed that
the tracking performance can be improved by increasing the adjustable parameters number
for both type-2 and type-1 FNNCs. Besides, type-2 FNNChas smaller rules number to achieve
desired specified tracking error due to more adjustable parameters. From Figures 6 and 7 and
Table 2, the control performance of type-2 FNNC with uncertain variance is better than the
results of type-2 FNNC with uncertain mean even it has smaller parameters.
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Figure 9: Comparison results of Case 4: (a) phase plant trajectory (x1, x2); (b) state x1 and its reference
trajectory yd; (c) state x2 and its reference trajectory ẏd.

Finally, a comparison results in magnitude of compensator are shown in Table 2.
This shows the chattering magnitude of compensated controller in steady state. Since the
compensator is used to cover the approximation error of type-2 FNNC, the corresponding
control effort is proportional to the approximation error. Therefore, we can conclude that the
control magnitude of compensator is inversely to the rule number.

The control performance of the proposed adaptive control scheme has been
demonstrated in the above simulations. For a type-2 FNN controller within an optimal and
fixed learning rate, we can easily find the difference in control input of the simulations. The
type-2 FNN with an optimal learning rate has better performance. In addition, within type-2
and type-1 FNN controllers, the same phenomenon exists.
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Table 1: comparison results in parameters number and tracking error.

Rule number R
Type-2 FNN with
uncertain mean

Type-2 FNN with
uncertain variance Type-1 FNN

Parameter
no. MSE (e) Parameter

no. MSE (e) Parameter
no. MSE (e)

2 16 0.262 14 0.249 10 Diverge
4 32 0.2417 28 0.235 20 0.258
6 48 0.23 42 0.159 30 0.26
8 64 0.114 56 0.088 40 0.245

Table 2: Comparison results in magnitude of compensated controller.

Rule number R Type-2 FNN with uncertain mean Type-2 FNN with uncertain variance Type-1 FNN
4 24 12 56
6 6 8 18

5. Conclusions

This paper has presented a type-2 FNN system and the corresponding optimal learning
algorithm for its applications. Therefore, the previous results of the type-1 FNN have been
extended to a type-2 one. Then, the adaptive type-2 FNN is employed to achieve the desired
control performance. In the adaptive control input, the type-2 FNN controller is utilized to
mimic an ideal control law with the optimal learning rate derived by the suitable substitute
for system sensitivity, and the compensated controller is designed to recover the residual
part of the approximation error. The closed-loop system stability has been guaranteed by the
adaptive laws derived according to the Lyapunov theory. The optimal learning rate for better
parameter convergence has also been guaranteed by the suitable substitute for system sensi-
tivity. The simulation results have been presented to show the effectiveness of our approach.

Appendix

Proof of Theorem 2.1. Define the Lyapunov candidate function as in (2.10), that is, V (k) =
E(k) = EC, thus we have

ΔV (k) = E(k + 1) − E(k) =
1
2

[
e2(k + 1) − e2(k)

]
=
1
2
·Δe(k)[2e(k) + Δe(k)]. (A.1)

From (2.12) and (A.1)

Δe(k) =
∂e(k)
∂W

ΔW =
∂[R(k) − Y(k)]

∂W

[−η(k)]∂E(k)
∂W

= η(k)Yu
∂ŷ(k)
∂W

∂E(k)
∂W

(A.2)
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then

∂E(k)
∂W

=
∂

∂W

[
1
2
e2(k)

]
= e(k)

∂e(k)
∂W

= −e(k)Yu
∂ŷ(k)
∂W

. (A.3)

Therefore, (A.2) can be rewritten as

Δe(k) = −η(k)
[
Yu

∂ŷ(k)
∂W

]2
e(k). (A.4)

Then, (A.4) can be substituted into (A.1), that is,

ΔV (k) =
1
2

[
−η(k)

(
Yu

∂ŷ(k)
∂W

)2

e(k)

]
·
[
2e(k) − η(k)

(
Yu

∂ŷ(k)
∂W

)2

e(k)

]

=
1
2
η(k)e2(k)

(
Yu

∂ŷ(k)
∂W

)2[(−2 + ηk
)(

Yu
∂ŷ(k)
∂W

)2]
.

(A.5)

If the following inequality holds, then ΔV (k) ≤ 0 will be held.

0 < η(k) < 2
[
Yu

∂ŷ(k)
∂W

]−2
. (A.6)

since

Pmax ≡
[
P1,max P2,max P3,max P4,max P5,max P6,max

]T
=

[
max
ij

∣∣∣∣∣Yu
∂ŷ(k)
∂mij

∣∣∣∣∣ max
ij

∣∣∣∣∣Yu
∂ŷ(k)
∂mij

∣∣∣∣∣ max
ij

∣∣∣∣∣Yu
∂ŷ(k)
∂σij

∣∣∣∣∣
×max

ij

∣∣∣∣∣Yu
∂ŷ(k)
∂σij

∣∣∣∣∣ max
ij

∣∣∣∣∣Yu
∂ŷ(k)
∂wij

∣∣∣∣∣ max
ij

∣∣∣∣∣Yu
∂ŷ(k)
∂wij

∣∣∣∣∣
]
.

(A.7)

Note that we use Gaussian MFs with uncertain variance (as Figure 2(b)) to build the
membership layer, thus mij = mij andwij = wij . Therefore, (A.7) can be simplified as

Pmax ≡
[
Pm P2 P3 Pw

]T
=

[
max
ij

∣∣∣∣∣Yu
∂ŷ(k)
∂mij

∣∣∣∣∣max
ij

∣∣∣∣∣Yu
∂ŷ(k)
∂σij

∣∣∣∣∣max
ij

∣∣∣∣∣Yu
∂ŷ(k)
∂σij

∣∣∣∣∣max
ij

∣∣∣∣∣Yu
∂ŷ(k)
∂wij

∣∣∣∣∣
]T (A.8)
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where
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∂ŷ(k)
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=
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(A.9)

In addition, the error difference can be re-expressed as

e(k + 1) = e(k) + Δe(k) ≈ e(k) − ηW(k)e(k)
(
Yu

∂ŷ

∂W

)2

. (A.10)

Then,

|e(k + 1)| =
∣∣∣∣∣e(k) − ηW(k)e(k)

(
Yu

∂ŷ

∂W

)2
∣∣∣∣∣ ≤ |e(k)|

∣∣∣∣∣1 − ηW

(
Yu

∂ŷ

∂W

)2
∣∣∣∣∣. (A.11)

Thus, the so-called optimal learning rate is obtained as [2–4]

η+
W =

(
Yu

∂ŷ

∂W

)−2
. (A.12)
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The detail of update laws for optimal learning rate by type-2 FNN with uncertain variance
are
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∂ŷ

∂σij

)−2
=
(
Y

opt
u

)−2
⎛⎝ ∂ŷ
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(A.13)

By the same way, we also get the detail of update law for optimal learning rate by type-2 FNN
with uncertain mean being
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(A.14)

This completes the proof.
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