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This paper suggests an upside-down tree-based orthogonal matching pursuit (UDT-OMP)
compressive sampling signal reconstruction method in wavelet domain. An upside-down tree
for the wavelet coefficients of signal is constructed, and an improved version of orthogonal
matching pursuit is presented. The proposed algorithm reconstructs compressive sampling signal
by exploiting the upside-down tree structure of the wavelet coefficients of signal besides its
sparsity in wavelet basis. Compared with conventional greedy pursuit algorithms: orthogonal
matching pursuit (OMP) and tree-based orthogonal matching pursuit (TOMP), signal-to-noise
ratio (SNR) using UDT-OMP is significantly improved.

1. Introduction

Compressive sampling (CS) [1, 2], as a new emerging signal processing theory, which has
received considerable attention in signal processing. CS exploits the sparse structure in signal,
and it enables signal reconstruction from a small number of random samples. A variety of
signal recovery algorithms have been proposed to reconstruct the sparse signal. Generally,
there are two classes of methods: convex optimization and greedy pursuit algorithms.
Although the convex optimization method, such as basis pursuit (BP) [3], is powerful
for sparse signal reconstruction, it may be computationally burdensome. Considering the
computational complexity and difficulty of realization, greedy pursuit algorithms, especially
matching pursuit (MP) [4] and orthogonal matching pursuit (OMP) [5], are attractive for
engineering problems.

MP algorithm is computationally efficient and often features good performance;
however, when the basis Ψ is not given by an orthogonal basis, MP algorithm cannot find
the best approximation for original signal [6]. As an alternative, OMP orthogonalizes each
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selected column vector associated with maximum projection in basis Ψ, and OMP does not
suffer the aforementioned flaw. In CS field, although there are many works about theory
analysis and practice implementation of OMP, these recovery algorithms are generic in the
sense that they do not exploit any particular structure in the signal besides its sparsity in some
basis. However, for some signals there is additional a priori information that we can exploit
for improving recovery performance. For example, the piecewise smooth signals, which are
widely used in practice, are not only sparse in wavelet domain, but also form a connected
subtree.

In this paper, we present an improved OMP signal recovery algorithm by employing
an upside-down tree structure of signal in wavelet domain (we refer to this tree-based
algorithm as UDT-OMP). Proposed algorithm is evaluated by signal-to-noise ratio (SNR) as a
measure of quality of reconstructed signal. We have compared the performance of UDT-OMP
with OMP and tree-based orthogonal matching pursuit (TOMP) with SNR as a function of
number of measurements.

2. Compressive Sampling (CS) Background

CS is a novel sampling paradigm that goes against the common wisdom in data acquisition.
CS states that a sparse or compressible signal can be recovered from a small salient set of
random projections. To make it possible, there are two fundamental premises [7]: sparsity,
which pertains to the signals of interest, and incoherence, which pertains to the sensing
modality. Sparsity expresses the idea that the “information rate [8]” of a high-dimensional
signal may be much lower than the maximum frequency presented in the signal. Consider
an N-dimensional signal x, which can be sparsely represented in an appropriate basis Ψ,
and the transfer coefficients of x are given by αi = < x, ψi > (i = 1, 2, . . . ,N). There are no
more than K nonzero entries in α = [α1, α2, . . . , αN]T (K � N), and the signal x is called K-
sparse signal. Just the opposite, incoherence means that the measurement matrixΦ has dense
representation in the basis Ψ, and Φ is independent of Ψ.

CS also extends to that so-called compressible signals that are not exactly sparse but
can be closely approximated as such (i.e., wavelet coefficients of signal and image). Sparse
signals have coefficients α that, when sorted, decay according to a power law: |αi| < C · i−1/p
for some positive constant C and p � 1; the smaller the decay exponent p, the faster the
decay and the better the recovery performance we can expect from CS. In practice, most
of man-made and natural signals are sparse or compressible in the sense that they have
concise representations when expressed in an appropriate basis, such as Fourier basis and
wavelet basis. For a K-sparse signal x, we can find its M (M = O(K log(N/K)) [9]) linear
measurements y = Φx(x = Ψα), and Φ is the measurement matrix of sizeM ×N (M < N),
and signal x can be reconstructed by solving the following inverse problem:

min ‖α‖0 s.t. y = Φx = ΦΨα, (2.1)

where the l0 norm used here simply counts the number of nonzero entries in α.
Since M < N, (2.1) is an ill-posed problem, and there are many possible solutions of

(2.1). The original signal x can be reconstructed from y by exploring its sparse expression,
that is, among all possible α̃ that satisfy y = ΦΨα̃, seek the sparsest. It is known to be NP-
hard to solve problem (2.1) and different suboptimal strategies are adopted in practice such
as BP and OMP.
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3. Orthogonal Matching Pursuit (OMP) Algorithm

MP approximation is improved by orthogonalizing the directions of projection with a
Gram-Schmidt procedure; it is known as orthogonal matching pursuit (OMP). This
orthogonalization was introduced in [6], and it was intensively studied in [5]. The improved
precision of this orthogonalization is penalized by the higher computation of the Gram-
Schmidt. In CS, OMP selects column vectors from dictionary D (= ΦΨ) that minimizes the
difference, also called the residual rk, between measurement y and approximation. Specially,
starting with r0 = y, the OMP algorithm searches for the kth atom with maximum projection
as

λk = argmax
i

|〈rk−1,di〉|, (3.1)

and it updates the residual as

rk = y − Pspan{dλ1 ,dλ2 ,...,dλk }y. (3.2)

Here, di is the ith column vector of D, and PV denotes the orthogonal projection onto the
subspace V , and PV = V (V T ∗ V ) − 1 ∗ V T . OMP algorithm in parallel applies the Gram-
Schmidt orthogonalization upon chosen atoms for efficient computation of projections. It can
be formulated as a subset selection problemwhere a minimum subset of columns ofDmatrix is
chosen to approximate the observation vector y in the least square sense. The OMP algorithm
successively chooses an additional column of D matrix to reduce the approximation error.
Equivalent, the OMPmethod begins with a tentative solution ofαwith a single nonzero entry,
and gradually adds nonzero entries one by one until the approximation error of ymeets a pre-
determined criterion. The accuracy of approximation increases with the number of iterations;
however, the iterative number must not be bigger than the number of randommeasurements
and we cannot expect to recover signal from higher dimensions than that of measurements.

4. UDT-OMP Algorithm

4.1. Tree Structure in Wavelet Domain

In CS, both BP and OMP reconstruct signal based on sparsity without considering any other
particular structure that may exist in the signal. The wavelet transform of a piecewise smooth
signal (many punctured real-world phenomena give rise to such signal), an important
subclass of sparse signals, yields a sparse, structured representation of signals in this class:
the significant coefficients tend to form a connected subtree of the wavelet coefficient tree.
Figure 1 shows an example of wavelet representation of such signal. Only a few wavelet
coefficients are significant, which form sparse subtrees when represented in multiscale
wavelet transform. The number of such subtrees equals to that of the discontinuities in
signals.

In this work, we only focus on 1D signals, and similar arguments apply for 2D and
multidimensional signals. Consider a signal x of length N = 2J , given a bandpass wavelet
function ψ(t) and a lowpass scaling function φ(t), the discrete wavelet transform (DWT)
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coefficients α of size N in terms of shifted versions of φ(t) and shifted and dilated versions
of ψ(t). The wavelet representation of x is given [10]

x =
NJ−1
∑

i=0

vJ,iφJ,i +
J
∑

j=1

NJ−1
∑

i=0

wj,iψj,i, (4.1)

where J denotes the scale of analysis and scale J indicates the coarsest scale or lowest
resolution of analysis. Nj = N/2j is the number of coefficients at scale j ∈ {1, . . . , J}, and
i is the position, 0 ≤ i ≤ 2j − 1. In terms of matrix notation, x has the representation x = Ψα,
whereΨ is a matrix containing the scaling and wavelet functions as columns and the scaling
and wavelet coefficients are as follows:

α =
[

vJ,i w0,0 w1,0 w2,0 . . .
]T
. (4.2)

According to the statistical analysis in wavelet domain, wavelet coefficients have the
following two properties [11].

Compression. The wavelet transforms of real-world signals decay exponentially as
the scale become finer, and they tend to be sparse (as depicted in Figure 1(b)).

Tree structure. Those significant wavelet coefficients propagate across scale in wavel-
et tree, and they are well organized in a tree structure (as depicted in Figure 1(c)).

This tree structurewas exploited by previous CS reconstruction algorithms known as iterative
reweighted l1-norm minimization with the wavelet Hidden Markov tree model (HMT-
IRWL1) [12] and TOMP [13]. HMT-IRWL1 integrates the HMT model to enforce the wavelet
coefficient structure during IRWL1, which updates the weight values with state probability
of HMT model and highly depends upon accuracy of model. If accurate Markov model is
available, then the HMT-IRWL1 could be powerful to recover the sparse signal. Although,
in practice CS applications, only a small set of random measurements are available, one
cannot get an accurate Markov model from these measurements. TOMP evaluates the sums
of projections along each wavelet coefficients connected by a subtree, which is an improved
OMP recovery algorithm. Both HMT-IRWL1 and TOMP are based on upright subtree, and
one father node connects with two children nodes, as depicted in Figure 1(d).

4.2. UDT-OMP Algorithm

In previous tree-based CS reconstruction algorithms, trees are assumed to be upright,
which means that those significant coefficients propagate from coarser scale to finer scale.
Examining the tree structure in Figure 1(c), we noticed that not only do they organize in
subtrees, but also those subtrees are upside down. From finer scale to coarser scale, wavelet
coefficients become larger, and there are more significant coefficients in coarser scales. In this
paper, we motivate an improved version OMP by employing weighting an upside-down tree
(UDT-OMP).

The input of UDT-OMP is a dictionaryDwith size ofM×N (M �N), a measurement
vector y with length of M, upward extending coefficient l, weighting value c, and iterative
number K. UDT-OMP returns a reconstruction sparse vector α̃ of lengthN that is subject to
y = ΦΨα.
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Figure 1: Example of sparse representations in the wavelet domain: (a) piecewise smooth signal;
(b) wavelet transform of piecewise smooth signal, only few coefficients are significant and they are
compressible or near sparse; (c) the significant coefficients are well organized in tree structure across
the scales; (d) binary tree for piecewise smooth signal, the significant wavelet coefficients arise from the
discontinuities in the signal (the black circles denote the large wavelet coefficients).

UDT-OMP evaluates the projection of each single column vector and searches for the
maximum projection. According to the columns associated with the maximum projections,
UDT-OMP constructs an upside-down subtree upward coarser scale with depth of l, which
will be weighted in the next iteration of searching for the maximum projection.

In (4.2), we noticed that the wavelet transform of signal α can be divided into two
parts: scaling coefficients and wavelet coefficients [13]

α =

(

v

w

)

, (4.3)

where v contains all the scaling coefficients and w contains all the wavelet coefficients
of signal x. Since the scaling coefficients are significant, we aim to recover all the scaling
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coefficients v and those significant wavelet coefficients in w. In particular, we recover v and
w separately and revise (2.1) as follows:

min ‖w‖1 s.t. y = Φx = ΦΨ

(

v

w

)

. (4.4)

UDT-OMP algorithm consists of two steps. We first limit our search space in the
columns associated with the scaling coefficients and then in the columns associated with the
wavelet coefficients. LetΛk be the selected set of columns in dictionaryD from the beginning
k iterations. Let Uk be the Gram-Schmidt version of Λk. According to (3.1) and (3.2), OMP
aims to search for the columns with the maximum projections, which associate with the
significant coefficients. Firstly, we set the selected sets Λ0 and U0 to be empty. In step 1, we
select all columns of D corresponding to the scaling coefficients since these coefficients are
significant. According to the construction of wavelet basis Ψ, the wavelet transform level J
(also called the scale of analysis) is deterministic and so as the positions of scaling coefficients
(as depicted in (4.2)):

Λ0 = D
{

all columns associated with the scaling coefficients
}

. (4.5)

All vectors in Λ0 are sequentially orthogonalized using Gram-Schmidt and stored in
U0. At end of step 1, the residual is updated by

r0 = y − Pspan{Λ0}y. (4.6)

In step 2, we focus on recovering the wavelet coefficients which have sparse tree structure.
Step 2 is the repetition of iterations. Let {Sk}Kk=0 be the candidate set of vectors, which will be
weighted in the next searching of maximum projection. We initialize all the elements of S0 as
1.

In the first iteration, we initialize the counter k = 1. Then UDT-OMP investigates the
weighted projections of the current residual on all the column vectors of D

θki = Sk−1(i) · |〈rk−1,di〉|,

λk = arg max
1≤i≤N

{

θki
}

.
(4.7)

According to the maximum projection position i, we construct the kth upside-down
subtree Tk with depth of l (l is an integer, l should be greater than 1 and not greater than the
level of wavelet transform). At each finer scale, every four consecutive nodes connect two
nodes of nearest coarser scale, which forms an upside-down subtree. For example, if w3,2 (as
depicted in Figure 1(d)) is current maximum projection,w2,0 andw2,1 (both connect with four
consecutive nodes w3,0, w3,1, w3,2, and w3,3) would be children nodes in the nearest coarser
scale, and w1,0 and w1,1 are children nodes in the next coarser scale:

Sk(i) = {c : i ∈ Tk}. (4.8)
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Inputs: CS matrixD, measurement y, upward extending coefficient l, weighting value c, and
iterative number K, wavelet transform level J, S0 = {1}
Outputs: approximated signal x̃
Initialize: α0 = {0}, r0 = {0}, k = 0, Λ0 = {1,2,. . .,NJ (= N/2J)}
r0 = y − Pspan{Λ0}y
While halting criterion false do

(1) k = k +1
(2) θki = Sk−1(i) · |〈rk−1,di〉|
(3) λk = arg max

1≤i≤N
{θki }

(4) construct upside-down tree Tk
Sk(i) = {c : i ∈ Tk}

(5) Λk = Λk−1 ∪ λk
(6) Uk = PGS(Λk)
(7) rk = y − Pspan{Λk}y

end while
α̃ = Uky
return x̃ = ΦΨα̃

Algorithm 1: Upside-down tree orthogonal matching pursuit.

Since we want to enforce the selected columns, the weighting value c should be greater than
1. We add the newly chosen node into our selected set Λk:

Λk = Λk−1 ∪ λk,
Uk = PGS(Λk),

(4.9)

where PGS(·) denotes orthogonalization using Gram-Schmidt. The residual is updated as
follows:

rk = y − Pspan{Λk}y. (4.10)

After K iterations of (4.7)–(4.10), the significant coefficients are determined by the columns
in Λk, and they are represented as follows:

α̃ = Uky, (4.11)

and the approximation of the original signal is

x̃ = Ψα̃. (4.12)

The pseudocodes of UDT-OMP are described as in Algorithm 1.
For simplicity, sparsity levelK (assumed known) can be used as halting criterion here. IfK is
unknown, we can modify the iteration in the above by letting k run from 1 toM but adding
a threshold ε for |rk|1 below which the iteration is terminated.
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Figure 2: An example piecewise smooth signal of length 1024 and its reconstructions from 300 random
measurements using OMP, TOMP, UDT-OMP. (a) Original signal. (b) OMP reconstructed signal, SNR
= 27.63 dB. (c) TOMP reconstructed signal, SNR = 34.57 dB. (d) UDT-OMP reconstructed signal, SNR =
39.62 dB.

5. Experiment Result

To demonstrate the advantage of upside-down tree structure, we evaluated UDT-OMP
algorithm by comparing the performance of OMP, TOMP, and UDT-OMP. We used piecewise
smooth signal of lengthN = 1024. 4-level Daubechies 8 wavelets were applied to sparsify the
test signal, upward extending coefficient was set l = 2, and weighting value c = e (natural
number). Samples were obtained using a measurement matrix with i.i.d. Gaussian entries.

In the first experiment, we reconstructed the signal from 300 randommeasurements by
OMP, TOMP, andUDT-OMP, respectively. Figure 2 depicts the reconstructions, the SNR of the
OMP reconstructed signal is 27.63 dB, the SNR of the TOMP reconstructed signal is 34.57 dB,
and the UDT-OMP reconstruction achieves SNR of 39.62 dB. In this experiment, UDT-OMP
gains more than about 12 dB and 5dB over OMP and TOMP, respectively. From experimental
result, the advantage of the UDT-OMP method is clearly demonstrated.

In the second experiment, we reconstructed the test signal from different numbers
of measurements using OMP, TOMP, and UDT-OMP. Numbers of measurements over the
range of 100 to 400 in increment of 30 are tested. 100 trials are repeated for each specific
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Figure 3: Comparison between the performance of OMP, TOMP, and UDT-OMP.

number, and the averaged reconstruction SNR is plotted in Figure 3. Through exploring the
upside-down sparse tree structure, the UDT-OMP method outperforms OMP and TOMP in
piecewise smooth signal reconstruction.

6. Conclusions

This paper introduced an upside-down tree structure weighting scheme for OMP algorithm
inwavelet domain CS signal reconstruction. The UDT-OMPweights the nodes that connect in
the subtree with significant values. Different from tree structure presented in the previous CS
recovery algorithms, UDT-OMP constructs the tree using upside-down structure rather than
upright structure. UDT-OMPweights the projections that should have larger coefficients. The
experimental results show that our method outperforms OMP and TOMP, and it can achieve
more accurate approximation in piecewise smooth signal reconstruction. In this paper, we
only considered the constant weight value. We can also adopt different weight values at
different scales.
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