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The group-invariant solutions for nonlinear third-order partial differential equation (PDE) gov-
erning flow in two-dimensional jets (free, wall, and liquid) having finite fluid velocity at orifice
are constructed. The symmetry associated with the conserved vector that was used to derive the
conserved quantity for the jets (free, wall, and liquid) generated the group invariant solution for
the nonlinear third-order PDE for the stream function. The comparison between results for two-
dimensional jet flows having finite and infinite fluid velocity at orifice is presented. The general
form of the group invariant solution for two-dimensional jets is given explicitly.

1. Introduction

The governing equations for two-dimensional jet flows are expressed either as the system
of two PDEs for the velocity components or by a single nonlinear third-order PDE for the
stream function. In [1, 2] the similarity solution and in [3] the group-invariant solution were
constructed for the nonlinear third-order PDE for the stream function for two-dimensional
free jet with infinite fluid velocity at the orifice. The group-invariant solution for system of
equations for the velocity components for the same problemwas constructed byNaz et al. [4].
Glauert [5] derived the similarity solution for radial and two-dimensional wall jets having
infinite fluid velocity at the orifice.

The general form of similarity solution for the flows having finite velocity at the orifice
was suggested byWatson [6], and the similarity solutions for system of equations for velocity
components for the radial and two-dimensional liquid jets were derived. The similarity
solution for radial and two-dimensional wall jets having finite velocity at orifice was studied
by Riley [7], and so our solution has some significance even near axis. The subject of this
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paper is to find the group-invariant solution for the nonlinear third-order PDE for stream
function governing flow in two-dimensional (free, wall, liquid) jets having finite velocity at
the orifice which is not considered yet.

The detailed outline of this paper is as follows: In Section 2 the group-invariant solu-
tion for two-dimensional free jet is derived. The symmetry associated with the conserved
vector which is used to establish the conserved quantity for each jet generates the group-inva-
riant solution for the nonlinear third-order PDE for the stream function. The group-invariant
solution for two-dimensional wall and liquid jets is studied in Sections 3 and 4. In Section 5
the comparison between the results for two-dimensional jets, having finite and infinite fluid
velocity at orifice, is constructed. The general form of group-invariant solution for two-
dimensional free, wall, and liquid jets is given explicitly in Section 6. Finally the conclusions
are summarized in Section 7.

2. Group-invariant Solution for Two-Dimensional Free Jet

The flow in two-dimensional free jet is governed by nonlinear third-order PDE for stream
function

ψyψxy − ψxψyy − νψyyy = 0, (2.1)

for an incompressible fluid. The relation between stream function and velocity components
is

u = ψy, v = −ψx. (2.2)

The Lie point symmetry generator of (2.1) derived by Mason [3] is

X = [(c1 + c3)x + c2]
∂

∂x
+
[
c1y + k(x)

] ∂
∂y

+
[
c3ψ + c4

] ∂
∂ψ

. (2.3)

The boundary conditions and the conserved quantity for two-dimensional free jet in
terms of stream function are (see [1–3])

y = 0: ψx = 0, ψyy = 0, (2.4)

y = ±∞: ψy = 0, ψyy = 0, (2.5)

J = 2ρ
∫∞

0
ψ2
ydy. (2.6)

The conserved vector

T1 = ψ2
y, T2 = −ψxψy − νψyy (2.7)
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gave the conserved quantity (2.6) for two-dimensional free jet (see [8]). The symmetry
associated with the conserved vector which is used to establish the conserved quantity for
each jet generates the group-invariant solution for nonlinear third-order PDE [4, 9].

The symmetries associated with a known conserved vector can be determined by [10]

X[1]
(
T1
)
+ T1Dy

(
ξ2
)
− T2Dy

(
ξ1
)
= 0, (2.8)

X[1]
(
T2
)
+ T2Dx

(
ξ1
)
− T1Dx

(
ξ2
)
= 0. (2.9)

Equations (2.8) and (2.9) yield

T1
[
c3 − 1

2
c1

]
= 0, T2

[
c3 − 1

2
c1

]
= 0, (2.10)

and thus for conserved vector (2.7), c3 = (1/2) c1. The Lie point symmetry generator associat-
ed with conserved vector (2.7) is

X =
[
3
2
c1x + c2

]
∂

∂x
+
[
c1y + k(x)

] ∂
∂y

+
[
1
2
c1ψ + c4

]
∂

∂ψ
. (2.11)

Now, ψ = φ(x, y) is a group-invariant solution of (2.1) if

X
(
ψ − φ(x, y))|ψ=φ = 0, (2.12)

which yields

ψ =
(
x +

2c2
3c1

)1/3

g(ξ) − 2c4
c1
, (2.13)

ξ =
y

(x + 2c2/3c1)
2/3

−K(x), (2.14)

where

K(x) =
2
3c1

∫x k(x)

(x + 2c2/3c1)
5/3

dx. (2.15)

The conserved quantity (2.6) is independent of x provided K(x) = 0 which yields k(x) = 0.
Since the stream function is determined up to an arbitrary constant, c4 can be chosen to be
zero. The insertion of (2.13) into (2.1) results in a nonlinear third-order ordinary differential
equation (ODE) for g(ξ):

3ν
d3g

dξ3
+ g

d2g

dξ2
+
(
dg

dξ

)2

= 0. (2.16)



4 Mathematical Problems in Engineering

Equation (2.16) can be transformed to

f ′′′ + ff ′′ + f ′2 = 0, (2.17)

with

η =
Aξ

3ν
, Af = g, (2.18)

whereA is arbitrary constant, and prime denotes differentiationwith respect to η. The bound-
ary conditions and conserved quantity (2.4)–(2.6), in terms of f(η), take the following form:

f(0) = 0, f ′′(0) = 0, f ′(±∞) = 0, f ′′(±∞) = 0, (2.19)

J =
2A3ρ

3ν

∫∞

0
f ′2dη. (2.20)

The solution of (2.17) subject to (2.19) and condition f(∞) = 1 is (see [2, 11, 12])

f
(
η
)
= tanh

(η
2

)
, (2.21)

and value of A in terms of J is

A =
(
9νJ
2ρ

)1/3

. (2.22)

The final form of group-invariant solution is

ψ =
[
9νJ
2ρ

(
x +

2c2
3c1

)]1/3
f
(
η
)
,

u
(
x, y
)
=

[
3J2

4ρ2ν(x + 2c2/3c1)

]1/3
f ′(η

)
,

η =

[
J

6ρν2(x + 2c2/3c1)
2

]1/3
y,

X =
(
3
2
x +

c2
c1

)
∂

∂x
+ y

∂

∂y
+
1
2
ψ
∂

∂ψ
,

(2.23)

is the symmetry that generated the group-invariant solution. Now

u(x, 0) =

[
3J2

32ρ2ν(x + 2c2/3c1)

]1/3
(2.24)
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is finite at x = 0 and so our solution may have some significance even near the axis. By taking
c2 = 0, the results [1–4] for infinite velocity at orifice can be rediscovered.

3. Group-invariant Solution for Two-Dimensional Wall Jet

The flow in two-dimensional wall jet is also governed by (2.1). The boundary conditions for
the two-dimensional wall jet are [5]

y = 0: ψx = 0, ψy = 0, (3.1)

y = ∞: ψy = 0, (3.2)

and the conserved quantity is

F =
∫∞

0
ψy

(∫∞

y

ψ2
y∗dy∗

)

dy. (3.3)

The conserved vector

T1 = ψψ2
y, T2 = −ψψxψy + ν

2
ψ2
y − νψψyy (3.4)

gave the conserved quantity for two-dimensional wall jet [8], and the symmetry associated
with this conserved vector is

X =
[
4
3
c1x + c2

]
∂

∂x
+
[
c1y + k(x)

] ∂
∂y

+
1
3
c1ψ

∂

∂ψ
. (3.5)

The group-invariant solution of (2.1) for two-dimensional wall jet case is

ψ =
(
x +

3c2
4c1

)1/4

g(ξ), (3.6)

ξ =
y

(x + 3c2/4c1)
3/4

−K(x), (3.7)

where

K(x) =
3
4c1

∫x k(x)

(x + 3c2/4c1)
7/4

dx. (3.8)

The conserved quantity (3.3) is independent of x provided K(x) = 0 which yields k(x) = 0.
The substitution of (3.6) into (2.1) gives rise to a nonlinear third-order ODE for g(ξ):

ν
d3g

dξ3
+
1
4
g
d2g

dξ2
+
1
2

(
dg

dξ

)2

= 0. (3.9)
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Define η = (A/4ν)ξ and g = Af Equation (3.9) transforms to

f ′′′ + ff ′′ + 2f ′2 = 0. (3.10)

Boundary conditions (3.1) and (3.2) and conserved quantity (3.3) take the following form:

f(0) = 0, f ′(0) = 0, f ′(∞) = 0,

F =
A4

4ν

∫∞

0
f ′
(∫∞

η

f ′2dη∗
)

dη
(3.11)

Glauert [5] selected a solution of (3.10) with f(∞) = 1, and after integrating (3.10) twice, the
following equation was obtained:

dh

dη
=

1
3

(
1 − h3

)
, where h2 = f, 0 ≤ h ≤ 1. (3.12)

Equation (3.12) yields

η = log

√
1 + h + h2

1 − h +
√
3tan−1

√
3h

2 + h
. (3.13)

The conserved quantity gave the unknown constant A as

A = (40νF)1/4. (3.14)

Thus we finally obtain

ψ =
[
40Fν

(
x +

3c2
4c1

)]1/4
f
(
η
)
,

u
(
x, y
)
=
[

5F
2ν(x + 3c2/4c1)

]1/2
f ′(η

)
,

η =

[
5F

32ν3(x + 3c2/4c1)
3

]1/4
y,

X =
(
4
3
x +

c2
c1

)
∂

∂x
+ y

∂

∂y
+
1
3
ψ
∂

∂ψ
.

(3.15)

The results obtained here for 3c2/4c1 = l agree with Riley [7], and l can be determined from
[13]. By taking c2 = 0, the results for infinite velocity at orifice obtained by Glauert [5] can be
rediscovered.
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4. Group-Invariant Solution for Two-Dimensional Liquid Jet

The governing equation for two-dimensional liquid jet in terms of stream function is (2.1).
The boundary conditions and conserved quantity for two-dimensional liquid jet are [6]

y = 0: ψx = 0, ψy = 0, (4.1)

y = φ(x): ψyy = 0, (4.2)

M =
∫φ(x)

0
ψydy. (4.3)

The conserved vector

T1 = ψy, T2 = −ψx (4.4)

gave conserved quantity for two-dimensional liquid jet [8].
Equations (2.8) and (2.9) yield the following Lie point symmetry generator associated

with the conserved vector (4.4):

X = [c1x + c2]
∂

∂x
+
[
c1y + k(x)

] ∂
∂y

+ c4
∂

∂ψ
. (4.5)

The group-invariant solution for two-dimensional liquid jet is

ψ = g(ξ) + ln
(
x +

c2
c1

)c4/c1
, ξ =

y

x + c2/c1
−K(x), (4.6)

where

K(x) =
1
c1

∫x k(x)

(x + c2/c1)
2
dx. (4.7)

The conserved quantity is independent of x only ifK(x) = 0 which gives k(x) = 0. The stream
function contains an additive constant so we may choose c4 = 0 without loss of generality.

The substitution of (4.6), with k(x) = 0, c4 = 0, into (2.1) yields a nonlinear third-order
ordinary differential equation for g(ξ):

ν
d3g

dξ3
+
(
dg

dξ

)2

= 0. (4.8)

Equation (4.8) takes the following form:

f ′′′ + 3f ′2 = 0, (4.9)
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where η = A/3νξ and g = Af . Boundary conditions (4.1) and (4.2) are

f(0) = 0, f ′(0) = 0, f ′′(1) = 0, (4.10)

where the free surface is chosen to be η = 1. The conserved quantity (4.3) becomes

M =
∫1

0
Af ′dη. (4.11)

Equation (4.9) yields (see [11, 12, 14])

dt

dη
=
[
2
(
1 − t3

)]1/2
, t = f ′. (4.12)

The final form of solution of (4.9) in parametric form is (see [14])

η =
2

3
√
2

[

2F1

[
1
2
,
2
3
,
3
2
, 1
]
−
(
1 − t3

)1/2 × 2F1

[
1
2
,
2
3
,
3
2
, 1 − t3

]]
, (4.13)

where 2F1 is the hypergeometric function of first kind. We can tabulate the values of η for
given values of parameter t = f ′ from (4.13), and conserved quantity M yields the constant
A.

Thus finally we obtain

ψ
(
x, y
)
=

3
√
3M
π

f
(
η
)
,

u
(
x, y
)
=

9M2

νπ2(x + c2/c1)
f ′(η

)
,

η =
√
3M

νπ(x + c2/c1)
y,

X =
(
x +

c2
c1

)
∂

∂x
+ y

∂

∂y
.

(4.14)

Now u(x, 0) is finite at x = 0. The results obtained here for c2/c1 = l agree with those con-
cluded by Watson [6] by the similarity solution method, and the procedure to obtain l is dis-
cussed there.

5. Comparison between Two-Dimensional Jets with Finite Velocity at
Orifice and Infinite Velocity at Orifice

The comparison between two-dimensional jets with finite fluid velocity at orifice and infinite
velocity at orifice is constructed in Table 1. Table 1 shows that by formally taking c2 = 0,
the stream function ψ, variable η, and symmetry that generates group-invariant solution for
infinite velocity case can be deduced from those of the finite velocity case.
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Table 1: Comparison between two-dimensional jets with finite velocity at orifice and infinite velocity at
orifice.

Finite velocity at orifice Infinite velocity at orifice

2-D free jet ψ =
[
9νJ
2ρ

(
x +

2c2
3c1

)]1/3
f(η) ψ =

[
9νJ
2ρ

x

]1/3
f(η)

u(x, y) =

[
3J2

4ρ2ν(x + 2c2/3c1)

]1/3
f ′(η) u(x, y) =

[
3J2

4ρ2ν(x + 2c2/3c1)

]1/3
f ′(η)

η =

[
J

6ρν2(x + 2c2/3c1)
2

]1/3
y η =

[
J

6ρν2

]1/3 y

x2/3

f ′′′ + ff ′′ + f ′2 = 0
f ′′′ + ff ′′ + f ′2 = 0

X =
(
3
2
x +

c2
c1

)
∂

∂x
+ y

∂

∂y
+
1
2
ψ
∂

∂ψ
X =

3
2
x
∂

∂x
+ y

∂

∂y
+
1
2
ψ
∂

∂ψ

2-D wall jet ψ =
[
40Fν

(
x +

3c2
4c1

)]1/4
f(η)

ψ = [40Fνx]1/4f(η)

η =

[
5F

32ν3(x + 3c2/4c1)
3

]1/4
y η =

[
5F
32ν3

]1/4 y

x3/4

u(x, y) =
[

5F
2ν(x + 3c2/4c1)

]1/2
f ′(η) u(x, y) =

[
5F
2νx

]1/2
f ′(η)

f ′′′ + ff ′′ + 2f ′2 = 0
f ′′′ + ff ′′ + 2f ′2 = 0

X =
(
4
3
x +

c2
c1

)
∂

∂x
+ y

∂

∂y
+
1
3
ψ
∂

∂ψ
X =

4
3
x
∂

∂x
+ y

∂

∂y
+
1
3
ψ
∂

∂ψ

2-D liquid jet ψ(x, y) =
3
√
3M
π

f(η) ψ(x, y) =
3
√
3M
π

f(η)

η =
√
3M

νπ(x + c2/c1)
y η =

√
3M
νπ

y

x

u(x, y) =
9M2

νπ2(x + c2/c1)
f ′(η) u(x, y) =

9M2

νπ2x
f ′(η)

f ′′′ + 3f ′2 = 0
f ′′′ + 3f ′2 = 0

X =
(
x +

c2
c1

)
∂

∂x
+ y

∂

∂y
X = x

∂

∂x
+ y

∂

∂y

6. General Form of Group-invariant Solutions for
Two-Dimensional Jets

The flow in two-dimensional free, wall, and liquid jets is governed by nonlinear third-order
PDE (2.1). The symmetry generator (2.3) associated with the conserved vector that gives con-
served quantity for jet flow gives the following conditions on constant:

c3 =
(
1
α
− 1
)
c1, (6.1)
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where

α =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

2
3

for two-dimensional free jet,

3
4

for two-dimensional wall jet,

1 for two-dimensional liquid jet.

(6.2)

We choose c4 = 0 because the stream function is determined up to an arbitrary constant. The
expression for group-invariant solutions for two-dimensional jet flows is

ψ =
(
x + α

c2
c1

)1−α
g(ξ),

ξ =
y

(x + α(c2/c1))
α −K(x),

(6.3)

where

K(x) =
α

c1

∫x k(x)

(x + α(c2/c1))
α+1

dx. (6.4)

The condition where conserved quantity is independent of x yields k(x) = 0 in each of free,
wall, and liquid jets. Using (6.3)–(6.4), (2.1) yields

ν
d3g

dξ3
+ (1 − α)g d

2g

dξ2
+ (2α − 1)

(
dg

dξ

)2

= 0. (6.5)

Define the transformations

η =

⎧
⎪⎨

⎪⎩

(1 − α)A
ν
ξ for two-dimensional free and wall jets,

A

3ν
ξ for two-dimensional liquid jet,

g = Af, (6.6)

where A is a constant. The final form of a group-invariant solution is

ψ =
(
x + α

c2
c1

)1−α
Af
(
η
)
,

η =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1 − α) Ay

ν(x + α(c2/c1))
α for two-dimensional free and wall jets,

Ay

3ν(x + c2/c1)
for two-dimensional liquid jet.

(6.7)
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For two-dimensional free and wall jets, (6.5) yields

f ′′′ + ff ′′ +
2α − 1
1 − α f ′2 = 0, (6.8)

and for two-dimensional liquid jet, we have

f ′′′ + 3f ′2 = 0. (6.9)

The symmetry

X =
(
x + α

c2
c1

)
∂

∂x
+ αy

∂

∂y
+ (1 − α)ψ ∂

∂ψ
(6.10)

yielded the group-invariant solution.

7. Conclusions

The group-invariant solutions for two-dimensional free, wall, and liquid jets were derived for
finite velocity at orifice. For two-dimensional free jet, a Lie point symmetry was associated
with the conserved vector that generated the conserved quantity for two-dimensional free jet.
This symmetry generated the group-invariant solution for the nonlinear third-order PDE for
stream function subject to certain boundary conditions. The nonlinear third-order PDE was
transformed to the nonlinear third-order ODE. Using certain transformations we deduced
the same nonlinear third-order ODE as was obtained for two-dimensional free jet having
infinite fluid velocity at orifice. The analogue analysis was done for the two-dimensional
wall and liquid jets. A detailed comparison of results for finite and infinite velocity at orifice
was constructed. The general form of group-invariant solution for the two-dimensional jets
was derived.
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