
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2011, Article ID 657839, 9 pages
doi:10.1155/2011/657839

Research Article
Exact Solution of Impulse Response to a Class of
Fractional Oscillators and Its Stability

Ming Li,1 S. C. Lim,2 and Shengyong Chen3

1 School of Information Science and Technology, East China Normal University, no. 500,
Dong-Chuan Road, Shanghai 200241, China

2 28 Farrer Road, #05-01, Sutton Place, Singapore 268831
3 College of Computer Science, Zhejiang University of Technology, Hangzhou 310023, China

Correspondence should be addressed to Ming Li, ming lihk@yahoo.com

Received 18 August 2010; Accepted 15 September 2010

Academic Editor: Cristian Toma

Copyright q 2011 Ming Li et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

Oscillator of single-degree-freedom is a typical model in system analysis. Oscillations resulted
from differential equations with fractional order attract the interests of researchers since such a
type of oscillations may appear dramatic behaviors in system responses. However, a solution to
the impulse response of a class of fractional oscillators studied in this paper remains unknown
in the field. In this paper, we propose the solution in the closed form to the impulse response
of the class of fractional oscillators. Based on it, we reveal the stability behavior of this class of
fractional oscillators as follows. A fractional oscillator in this class may be strictly stable, nonstable,
or marginally stable, depending on the ranges of its fractional order.

1. Introduction

Fractional systems gain increasing attention in applied sciences, ranging from mechanical
engineering to electrical engineering, see, for example, [1–11]. Recall that stability is an
essential property of systems, see for example [12], for the stability of conventional systems
of integer order and [13–15] for fractional systems.

One of the typical models used in system analysis is the oscillator of single-degree-
freedom [16]. It is given by

m
d2Y(t)
dt2

+ c
dY(t)
dt

+ kY(t) = e(t), (1.1)
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where m > 0 is the mass, c the damping constant, k > 0 the stiffness and e(t) the forcing
function. Let 2b = c/m ≥ 0 and ω0 =

√
k/m. Then, we rewrite the above by

d2Y(t)
dt2

+ 2b
dY(t)
dt

+ω2
0Y(t) = e(t). (1.2)

The parameter b is called damping coefficient and ω0 is inherent frequency.
Let g(t) be the impulse response to the above equation. It is the solution to (1.2) for

e(t) = δ(t) (the Dirac delta function) with zero initial conditions and is given by

g(t) =
1
ω
e−bt sin(ωt), (1.3)

where ω =
√
ω2

0 − b2 is angular frequency. Equation (1.3) implies a damped oscillation.
In the case of b = 0, that is, the zero damping, (1.2) reduces to

(
d2

dt2
+ω2

0

)

Y(t) = e(t), ω0 > 0. (1.4)

The impulse response to the above system is

g(t) =
1
ω0

sin(ω0t), (1.5)

which corresponds to a free oscillation.
Recently, research on fractional oscillators has attracted considerable interests, see for

example, [17–22]. In the stability analysis of fractional oscillators, the authors in [17–19]
studied a class of fractional oscillators expressed by

d2−ε

dt2−ε
+ω2

0x(t) = e(t), 0 < ε < 1. (1.6)

They concluded that the above oscillator may be strictly stable as if it is a damped oscillator.
In this paper, we focus on another class of fractional oscillators that were first introduced by
Lim and Muniandy [23]. It satisfies

(
d2

dt2
+ω2

0

)β

x(t) = e(t), β > 0. (1.7)

The solutions to (1.7) for e(t) being a white noise in time domain and frequency domain are
obtained in [21], which are further extended to the oscillator with two fractional indexes in
[22, 24, 25]. However, its stability remains an unsolved issue. This paper shows that this type
of fractional oscillator is strictly stable when 0 < β < 1, nonstable when β > 1, and marginally
stable for β = 1.
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The remainder of the paper is organized as follows. In Section 2, the impulse response
of the fractional system (1.7) in the closed form is proposed. Stability analysis is given in
Section 3. Discussions and conclusions are in Section 4.

2. Impulse Response

For t > 0 and v > 0, denote by Dv
t the fractional derivative of Caputo type [26] defined by

Dν
t f(t) =

1
Γ(n − ν)

∫ t

0

f (n)(u)du

(t − u)ν−n+1
, n − 1 ≤ α ≤ n, (2.1)

where Γ is the Gamma function. For simplicity, we write 0D
v
t by Dv below. One can regard

(D2 +ω2
0)
β as a shifted fractional derivative of D2ν . By taking the binomial expansion, one

gets

(
D2 +ω2

0

)β
=
∞∑

n=0

(
β
)
nω

2n
0 D

2(β−n), (2.2)

where (β)m is the Pochhammer symbol, that is,

(
β
)
m =

β!
(
β −m

)
!

(2.3)

The fractional oscillator satisfying (D2 +ω2
0)
β
x(t) = e(t), β > 0 has the impulse response

function h(t), which is the solution to (D2 +ω2
0)
β
h(t) = δ(t). Denote the Laplace transform of

h(t) by H(s). Then, we have

H(s) = L[h(t)] =
1

(
s2 +ω2

0

)β =
1

ω
2β
0

(
1 + s2/ω2

0

)β , (2.4)

where L is the operator of the Laplace transform. Expanding the right side of the above using
the binomial series yields

1

ω
2β
0

(
1 + s2/ω2

0

)β =
1

ω
2β
0

∞∑

m=0

(
β
)
m

m!
(−1)msm,

∣∣∣
∣
s

ω0

∣∣∣
∣ < 1. (2.5)

Therefore, the impulse response to (1.7) is given by

h(t) =
1

ω
2β
0

L−1

[
∞∑

m=0

(
β
)
m

m!
(−1)msm

]

=
1

ω
2β
0

∞∑

m=0

(
β
)
m

m!
(−1)mδ(m)(t), t ≥ 0, (2.6)

where L−1 is the operator of the inverse Laplace transform.
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Another form of h(t), which may be more convenient for the stability analysis, is
expressed below. Considering the Laplace transform pair given in [27], we have

L−1

⎡

⎣ 1
(
s2 +ω2

0

)β

⎤

⎦ =
√
π

Γ
(
β
)
(2ω0)β−1/2

tβ−1/2Jβ−1/2(ω0t), (2.7)

where Jβ−1/2(ω0t) is the Bessel function of the first kind of order β − 1/2. Therefore, we have
the impulse response given by

h(t) � h
(
t; β
)
=

√
π

Γ
(
β
)
(2ω0)β−1/2

tβ−1/2Jβ−1/2(ω0t), β > 0, t ≥ 0. (2.8)

3. Stability Analysis

The above discussion allows us to obtain the following results concerning the stability of the
fractional oscillator under consideration. Before we discuss these stability properties, we first
recall the criteria of stability based on the principle of bounded-input and bounded-output
(BIBO). A system is said to be stable if

∫∞

0
|h(t)|dt = constant, (3.1)

which implies limt→∞ h(t) = 0 and poles of L[h(t)] are located on the left-hand portion of the
s-plane. A system is said to be nonstable if h(t) is increasing, and accordingly poles of L[h(t)]
are located on the right-hand portion of the s-plane. One says that a system is neutral if poles
of L[h(t)] are on the complex jω-axis [28, 29].

Note that [27]

Jv(t) =
(t/2)v

Γ(v + 1/2)Γ(1/2)

∫1

−1

(
1 − u2

)v−1/2
cos(tu)du, Rev > −1/2. (3.2)

Thus, according to (3.2) for v = 1/2 and considering (2.8) for β = 1, h(t; β) in (2.8) reduces to
the simple case with impulse response corresponds to the free oscillator. That is,

h
(
t; β
)∣∣
β=1 =

sinω0t

ω0
. (3.3)

This leads to the following remark.

Remark 3.1. h(t; β) reduces to the impulse response to the ordinary oscillator for β = 1.
Figure 1 indicates the plot of h(t; 1) for ω0 = 1. The ordinary oscillator is neutral.
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Figure 1: Plot of the impulse response of the ordinary oscillator.

One notes that h(t; β) is unbounded if β > 1. As a matter of fact, from (3.2), we have

−(t/2)v

Γ(v + 1/2)Γ(1/2)

∫1

−1

(
1 − u2

)v−1/2
du ≤ Jv(t) ≤

(t/2)v

Γ(v + 1/2)Γ(1/2)

∫1

−1

(
1 − u2

)v−1/2
du. (3.4)

Since β > 1 implies v > 1/2, one immediately sees that both the right side and the left one on
the above expression are, respectively, unbounded as t → ∞. Figure 2 shows the oscillations
for various values of β for w0 = 1. Thus, we have the following remark.

Remark 3.2. For β > 1, the fractional oscillator (1.7) is non stable.

The other interesting thing is that the h(t; β) becomes an oscillation with decreasing
amplitude if 0 < β < 1. In fact,

Jv(t) =
∞∑

m=0

(−1)m

m!Γ(m + v + 1)

(
t

2

)2m+v

. (3.5)

Thus,

Jv(t) ∼
1√
t

for t −→ ∞. (3.6)

Consequently, we have

lim
t→∞

h
(
t; β
)
= lim

t→∞

√
π

Γ
(
β
)
(2ω0)β−1/2

tβ−1/2Jβ−1/2(ω0t) = 0, 0 < β < 1, (3.7)

which implies that the poles of L[h(t; β)] for 0 < β < 1 are located on the left of the s-plane.
Therefore, the following remark is an obvious consequence. Figure 3 gives plots of h(t; β) for
several values of β for ω0 = 1.

Remark 3.3. The system (1.7) is strictly stable for 0 < β < 1.

The stability of the fractional oscillators expressed by (1.7) is summarized in Table 1.
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Figure 2: Increasing oscillations. (a) β = 1.2. (b) β = 1.4. (c) β = 1.6. (d) β = 1.8. (e) β = 1.2.
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Figure 3: Oscillations. (a) β = 0.3 (b) β = 0.5 (c) β = 0.7 (d) β = 0.9.



Mathematical Problems in Engineering 7

Table 1: Stability performances of (1.7).

Value of β Type of stability
0 < β < 1 Strictly stable
β > 1 Non stable
β = 1 Neutral

4. Discussions And Conclusions

As previously noted in [25], a fractal time series can be considered as a solution to a fractional
differential equation driven by a white noise. Thus, there may be research niche for other
series, for example, those discussed in [30–43]. In this paper, we have presented two forms,
that is, (2.6) and (2.8), of the impulse response to the fractional system expressed by (1.7).
Such a type of fractional oscillators has dramatic performances in its stability. We have
revealed that the system with (1.7) contains three subclasses of oscillators. Ordinary free
oscillators are a special case of (1.7) for β = 1. It corresponds to fractional oscillators of strictly
stable for 0 < β < 1 and non stable if β > 1. Note that there is no damping term in the discussed
oscillators in form. However, in the case of 0 < β < 1, they are strictly stable, as though they
were ordinary oscillators equipped with a certain damping. On the other side, for β > 1, they
are non stable.
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