
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2011, Article ID 675075, 18 pages
doi:10.1155/2011/675075

Research Article
Solution of Fractional Order System of
Bagley-Torvik Equation Using Evolutionary
Computational Intelligence

Muhammad Asif Zahoor Raja,1 Junaid Ali Khan,1
and Ijaz Mansoor Qureshi2

1 Department of Electronics Engineering, Faculty of Engineering and Technology,
International Islamic University, Sector H-10, Islamabad 44000, Pakistan

2 Department of Electronics Engineering, Air University, Sector E-9, Islamabad 44000, Pakistan

Correspondence should be addressed to Muhammad Asif Zahoor Raja, asif.phdee10@iiu.edu.pk

Received 10 June 2010; Revised 12 January 2011; Accepted 23 January 2011

Academic Editor: Jyh Horng Chou

Copyright q 2011 Muhammad Asif Zahoor Raja et al. This is an open access article distributed
under the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

A stochastic technique has been developed for the solution of fractional order system represented
by Bagley-Torvik equation. The mathematical model of the equation was developed with
the help of feed-forward artificial neural networks. The training of the networks was made
with evolutionary computational intelligence based on genetic algorithm hybrid with pattern
search technique. Designed scheme was successfully applied to different forms of the equation.
Results are compared with standard approximate analytic, stochastic numerical solvers and exact
solutions.

1. Introduction

The Bagley-Torvik equation is originally formulated in the studies on behavior of real
material by use of fractional calculus [1, 2]. It has raised its importance since then in many
engineering and applied sciences applications. In particular, the equation with 1/2-order
derivative or 3/2-order derivative can model the frequency-dependent damping materials
quite satisfactorily. It can also describe motion of real physical systems, the modeling of the
motion of a rigid plate immersed in a Newtonian fluid and a gas in a fluid, respectively
[3, 4]. Fractional dynamic systems have found many applications in various problems such
as viscoelasticity, heat conduction, electrode-electrolyte polarization, electromagnetic waves,
diffusion wave, control theory, and signal processing [1–10].



2 Mathematical Problems in Engineering

The generic form of Bagley-Torvik equation can be written as

A
d2y(t)
dt2

+ B
d3/2y(t)
dt3/2

+ C
[
y(t)
]n = f(t), 0 < t ≤ T (1.1)

with initial conditions given as

dk

dtk
y(0) = ck, k = 0, 1 (1.2)

whereas boundary condition at t = t0, for 0 < t0 ≤ T , is written as

dk

dtk
y(t0) = bk, k = 0, 1, (1.3)

where n is the nonlinear operator of the equations, y(t) is the solution of the equation, A, B,
and C are constant coefficients, T is the constant representing the span of inputs within the
close interval [0, T], and ck, bk are the constants.

The general response expression (1.1) contains parameters that can be varied to obtain
various responses. In the case of n = 1, A = M, the mass of thin rigid plate, C = K, the
stiffness of the spring, B = 2S√μρ, where S is area of plate immersed in Newtonian fluid, μ is
viscosity, and ρ is the fluid density, then (1.1) represents the motion of a large thin plate in a
Newtonian fluid [3]. Similarly, linearly damped fractional oscillator with the damping term
has a fractional derivative of order ν = 1.5, and it can be represented by Bagley-Torvik [3, 11].

The problem to develop the numerical solvers to find the solution of Bagley-Torvik
fractional differential equation has attracted much attention and has been studied by many
authors. In this regard an approximate analytical solution of the equation was derived
using Adomian decomposition method [12, 13], He’s variational iteration method [14],
Taylor collocation method [15]. Diethelm transformed the equation into first-order coupled
fractional differential equation and solved the problem with Adams predictor and corrector
approach [16]. Podlubny used successive approximation method to solve the equation and
recently applied the Matrix Approach to Discretization of Fractional Derivatives for the same
problem [3, 17]. However, there has been no advancement to apply the stochastic numerical
solvers to find the solution of the equation.

In this paper, investigation and analysis are carried out for successful modeling of the
equation using feed-forward artificial neural networks (ANNs). The linear combination of
these networks is defined by an unsupervised error. This error is minimized with the help
of appropriate unknown parameter, that is, weights. The training of weights is conducted
with stochastic optimization techniques based on genetic algorithm hybridized with pattern
search technique. It is well known that these techniques are reliable, successful, and efficient
to avoid the possibility to get stuck in local minima or diverge to unstable situations and also
maintain the diversity throughout [18, 19].
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2. Basic Definition

In this section, some definitions and relations are given, which will be used in the
proceeding sections. The definitions of fractional integral and derivative have been provided
in the fractional calculus literature in a variety of ways, including Riemann-Liouville,
Caputo, Erdélyi-Kober, Hadamard, Grünwald-Letnikov, and Riesz type. Equivalence of these
definitions on some function has also been established [20–22]. However, in this paper,
Riemann-Liouville definition for fractional derivative is used with lower terminal at 0.

Definition 2.1 (Riemann-Liouville fractional order derivatives). The Riemann-Liouville deriv-
ative of RLDν of fractional order ν is normally provided in the literature as [3, 22]

RLDν f(t) =
1

Γ(m − ν)
dm

dtm

∫ t

0

f(τ)

(t − τ)1+ν−mdτ (m − 1 < ν ≤ m), (2.1)

where ν ∈ R,m ∈N, f is the continuous function, and Γ(x) is the gamma function defined by

Γ(x) =
∫∞

0
e−ttx−1dt, (R(x) > 0). (2.2)

Definition 2.2 (Mittag-Leffler function). The Mittag-Leffler function (MLF) is one of the main
functions that has widespread use in the field of fractional calculus. Specially, its importance
is realized in providing the analytic solution for differential equation of fractional order.

The definition of classical MLF function in two parameters α and β is given as [3, 23]

Eα,β(t) =
∞∑

k=0

tk

Γ
(
αk + β

)
(
α > 0, β > 0

)
. (2.3)

It reduces to standard MLF function of one parameter by taking β = 1.

3. Mathematical Modeling

In this section mathematical modeling of Bagley-Torvik equations with feed-forward artificial
neural network is presented.

The solution y of the fractional differential equation along with its ν arbitrary order
derivative dνy/dtν can be approximated by the following continuous mapping as in neural
network methodology [24–26]:

ŷ(t) =
m∑

i=1
αig
(
wit + βi

)
,

dνŷ

dtν
=

m∑

i=1
αi
dν

dtν
g
(
wit + βi

)
,

(3.1)

where αi, wi, and βi are bounded real-valued adaptive parameters, m is the number of
neurons, and f is the activation function taken as exponential function instead of normally
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(0, T)
d3/2/dt3/2[exp(wit + βi)]

1
βi

wi
t

+ +

αi
d3/2/dt3/2ŷ(t)
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[ŷ

]n
=
f
(t
)

Figure 1: FDE-NN architecture of Bagley-Torvik equation.

taken log-sigmoid due to nonavailability of its fractional derivative. Fractional differential
equation neural networks (FDE-NNs) for expression (1.1) can be formulated as

ŷ(t) =
m∑

i=1

αie
wit+βi , (3.2)

d2

dt2
ŷ(t) =

m∑

i=1

αiwi
2ewit+βi , (3.3)

d3/2

dx3/2
ŷ(t) =

m∑

i=1

αie
βi t−3/2E1,−1/2(wit). (3.4)

The mathematical model for (1.1) can be the linear combinations of the networks
represented above. The FDE-NN architecture formulated for Bagley-Torvik equation can be
seen in Figure 1. It is clear that the solution y can be approximated with ŷ subject to finding
appropriate unknown weights.

4. Evolutionary Computational Intelligence

Evolutionary computational intelligence uses natural evolution as an optimization mecha-
nism for solving various problems. The main objective of the scheme is to find a good solution
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Figure 2: Generic flow diagram of evolutionary computation algorithm.

to a problem in a large search space of candidate solutions. In this section, the methodology
for learning of the unknown weights of networks is given. Our intent is to use evolutionary
computation based on Genetic Algorithm (GA) hybrid with Pattern Search technique (PS) to
solve such problem. The main advantages of the GA algorithm are robustness in controlling
parameters, not to get stuck in local minima, avoid divergence and efficient compared to
other mathematical algorithms and heuristic optimization techniques [18, 19].

Pattern search algorithm is a kind of aggressive optimization method, belonging to
class of direct search method [27, 28]. It can find the optimum values using stochastic
searching technology based on scaled and translated integer lattice. Pattern search algorithm
has a strong ability to find the local optimistic results [29, 30].

So, after the detailed study of the literature about evolutionary computation
techniques [31, 32], GAs hybrid with PS algorithm are used by seeing its strengths and
applicability. The general flowchart showing the process of evolutionary algorithm is given
in Figure 2.

Randomly generated initial population consists of finite set of chromosomes or
individual, and each chromosome consists of as many numbers of genes as the number of
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unknown parameters, that is, weights in the neural networks representing the equation.
The fitness of the individual is calculated based on an unsupervised error defined by
linear combination of the differential equation neural networks. The fitness function to be
minimized is defined as the mean of sum of square errors

ej = e
j

1 + e
j

2 j = 1, 2, . . . , (4.1)

where j is the generation index and e
j

1 is given as

e
j

1 =
1
s

s∑

i=1

(

A
d2ŷ(ti)
dt2

+ B
d3/2ŷ(ti)
dt3/2

+ C
[
ŷ(ti)

]n − f(ti)
)∣∣∣∣∣

j

, (4.2)

where s is the total number of steps, each step is randomly taken between (0, T). The greater
the value of s the more will be the accuracy, but increase, in computational complexity of the
algorithm.

Similarly, ej2, linked with initial and boundary conditions is finally written as

e
j

2 =
1
2

1∑

k=0

⎡

⎣

(
dk

dtk
ŷ(0) − ck

)2

+

(
dk

dtk
ŷ(t0) − bk

)2⎤

⎦

∣∣∣∣∣∣
j

. (4.3)

It is quite evident that the weights for which fitness function, ej , approaches zero, the solution
y(t) of the equation is well approximate by ŷ(t) given in (3.2).

Evolutionary algorithm is given in the following steps.

Step 1 (initialized population). Randomly generate bounded real values to form initial
population with N number of the chromosomes or individuals. Create M subpopulation
each with N/M individuals. Each individual consists of as many number of genes as the
number of unknown parameter in neural network. The better search space of algorithm is
subjected to enough spread of initial population.

Step 2 (initialization). Following parameter values are initialized for algorithm execution. Set
the number of variable equivalent to element in the individual. Set the number of generations
and the fitness limit. Set the elite count “2” and value of crossover fraction as 0.80 for
reproduction. Set migration in both forward and backward direction. Start generation count,
and so forth.

Step 3 (fitness evaluation). Calculate the fitness for each individual using the expressions
(4.1) to (4.3).

Step 4 (ranking). Rank each individual of the populations on the basis of minimum fitness
values.

Step 5 (termination criteria). Terminate the algorithm if either predefined fitness value, that
is, MSE 10−4 is achieved or number of generation is complete. If termination criterion fulfilled,
then go to Step 8, else continue.
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Step 6 (reproduction). Create the next generation using. Crossover: Call for scattered
function, Mutation: Call for Adaptive Feasible function, Selection: Call for Stochastic Uniform
function, and Elitism. Repeat the procedure from Step 3 to Step 6 until total number of
generation are complete.

Step 7. Store the global best individual of this run. Repeat the Steps 2 to 6 to have sufficient
numbers of global best individual for better statistical analysis.

Step 8 (refinement). Pattern search algorithm is used for further fine-tuning by taking the
best individual of GAs as start point of the algorithm. MATLAB Genetic algorithm and direct
search tool box are used for pattern search algorithm. Store the refined global best individual
for statistical analysis later.

5. Simulation and Results

In this section, the simulation results are presented for three different fractional order
systems represented by Bagley-Torvik equation. In order to prove the applicability of the
designed scheme for such systems, we have considered the equation in example I for which
exact solution is available. Moreover, the statistical analysis of results is also carried out to
verify and validate reliability of the algorithm. In example II, we have tested the proposed
methodology on Bagley-Torvik equation for which PMA technique fails to determine the
results due to nonhomogeneous initial conditions. In example III, the strength and weakness
of our scheme are analyzed by taking such equation for which the exact solution is not known;
however, its numerical solution is available.

5.1. Example I

Consider the Bagley-Torvik equation [14, 33]

d2y(t)
dt2

+
d3/2y(t)
dt3/2

+ y(t) = 2 + 4
√
t/π + t2, 0 < t ≤ 1, (5.1)

subjected to the initial condition and boundary condition as

y(0) =
d

dt
y(0) = 0, y(1) = 1,

d

dt
y(1) = 2. (5.2)

The exact solution of the equation is given as

y(t) = t2. (5.3)

Mathematical modeling of the above equation is done with Fractional differential
equation neural network (FDE-NN) represented by (3.2) to (3.4) by taking 10 number of
neurons resulting in 30 number of unknown parameters or weights. These weights are
restricted to real numbers between −10 to 10. The initial population consists of a set of 200
individuals, which is divided into 10 subpopulations each with 20 numbers of individuals.
Each individual consists of 30 genes, which is equivalent to number of unknown parameters
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Table 1: Parameters setting for algorithms.

GA PS
Parameters Setting Parameters Setting
Population Creation Constrain dependant Poll method GPS Positive basis 2N
Scaling faction Rank Polling order Consecutive
Selection function Stochastic Uniform Mesh Accelerator Off
Crossover fraction 0.75 Mesh Rotae/Scale On
Crossover fuction Scattered Mesh expansion factor 2.0
Mutation Adaptive feasible Mesh Contraction factor 0.5l
Elite count 2 Cache Tolerance EPS
Initial Penalty 10 Initial Penalty 10
Penalty factor 100 Penalty factor 100
Migration fraction 0.2 Max Iteration 3000
Migration interval 20 Max. function evolutions 60000

of FDE-NN. Input of the training set is taken from t ∈ (0, 1). Therefore the fitness function is
formulated as

ej =
1
2

2∑

i=1

[
d2ŷ(ti)

dt2i
+
d3/2ŷ(ti)

dt3/2
i

+ ŷ(ti) − 2 − 4
√
ti
π
− t2i

]2

+
1
4

{[
ŷ(0)

]2 +
[
ŷ(1) − 1

]2 +
[
ŷ′(0)

]2 +
[
ŷ′(1) − 2

]2}

∣∣∣∣∣∣∣∣∣
j

j = 1, 2, 3, . . . , (5.4)

where j is the number of generations, ŷ, d2ŷ/dt2, and d3/2ŷ/dt3/2 are networks provided
in (3.2), (3.3), and (3.4), respectively. The scheme runs iteratively in order to compute the
minimum of fitness function, ej , with a termination criteria as 3000 number of generations
executed or value of the fitness function ej ≤ 10−4 whichever comes earlier. The best
individual found by global search technique is passed to a rapid local search method as
a start point for further refinements of the results. The parameter settings used in genetic
algorithm (GA) and Pattern Search algorithm (PS) are provided in Table 1. One of the best
sets of weights of FDE-NN learned stochastically by PS, GA, and Genetic algorithm hybrid
with PS (GA-PS) algorithms is provided in Table 2. Using these weights in (3.2) one can find
the solution to this problem for any input time t between 0 and 1. The solutions obtained from
the chromosomes given in Table 2 are presented in Table 3.

The results of other numerical solvers like Podlubny matrix approach (PMA) [3, 17]
and reported results of He’s variational iteration method (VIM) [14] for inputs between 0
and 1 with a step of 0.1 are also provided in Table 2. In order to determine the results by PMA
technique, the library functions provided by Podlubny at MATLAB central file exchange are
used [34]. Following parameter setting is employed for PMA technique as follows:

(i) the value of fractional order derivative ν = 1.5;

(ii) set the value for constant coefficients, A = B = C = 1;

(iii) the discretization step is taken as h = 0.01;

(iv) total number of time steps = 100.
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Table 2: FDE-NN weights trained by different solvers for example I.

i wi αi βi
PS GA GA-PS PS GA GA-PS PS GA GA-PS

1 0.227249 0.014313 0.076813 0.731960 −1.16770 −1.16770 0.769316 0.046808 0.042905
2 0.031563 −0.15713 −0.15713 0.708549 0.554705 0.304705 0.871064 −0.73877 −0.73877
3 0.121262 −0.29925 3.669499 −7.73928 −0.16469 −0.16469 0.504503 −0.12463 −8.12463
4 2.583099 0.000465 0.000465 −4.61892 −0.74905 −0.74905 −4.77791 0.050833 0.050833
5 0.564499 1.169105 1.169105 0.941493 −0.14210 −0.14210 0.702424 −0.00566 −0.00566
6 0.659389 −1.30293 −1.30293 0.964177 0.334789 0.209789 0.748012 0.248267 0.248252
7 0.434814 −0.40253 −0.90253 0.988058 0.284607 0.284607 0.199868 0.648494 0.648494
8 −0.78165 0.906189 −5.09381 0.711952 −0.07749 3.922500 0.918857 0.372823 −7.62717
9 −0.19301 0.348033 −4.64415 0.595146 0.076874 0.014374 1.270213 −1.37687 −9.37687
10 0.192005 0.975022 0.943742 0.223502 0.271679 0.271679 0.873072 1.502332 1.502332

It can be seen that the result obtained by our scheme is in good agreement with the
state of art numerical solvers.

Moreover, the behavior of the derivative of the solution is also analyzed with the same
individual as given in Table 2. The results for derivative of the solutions are provided for
inputs between 0 and 1 with a step of 0.1 by PS, GA, and GA-PS algorithms in Table 4. It is
quite evident that the accuracy level lies in the range of 10−2 to 10−3.

Before moving toward the statistical analysis of our designed scheme, it is necessary
to mention that entire surrogate model of the algorithm is based on Mittag-Leffler function.
Its generic form is given in expression (2.3). However, the difficulty faced in calculation of
MLF function is due to its complex nature. This issue is tackled in our simulation by use of
MATLAB code provided by Podlubny at MATLAB central file exchanges to determine the
value of MLF function for desired inputs [35].

Training of the weights for neural networks of the equation is highly stochastic nature.
It is necessary to have statistical analysis of the results obtained by FDE-NN algorithms. 125
total independents runs are executed for each stochastic optimizer. These optimizers are PS,
GA, and GA hybrid with PS (GA-PS). The values of the absolute error are provided in Table 5
for input at 0 and 1. Mean and Standard deviation (STD) were also calculated for the best 100
runs. The value of unsupervised error, ej , of the equation in ascending order is plotted against
each independent run of the algorithm in Figure 3. Moreover, the values of the absolute error
for the solution as well as its derivative at 0 and 1 are plotted in Figure 4. It can be seen from
Figures 3 and 4 and Table 5 that the best results are obtained by the use of GA-PS algorithm.

5.2. Example II

Another fractional order system of Bagley-Torvik equation is taken to investigate the strength
and weaknesses of the proposed stochastic algorithm. Consider the Bagley-Torvik equation
[13, 15]

A
d2y(t)
dt2

+ B
d3/2y(t)
dt3/2

+ Cy(t) = C(t + 1), 0 < t ≤ 1 (5.5)
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Table 3: Comparison of results for the solution of example I.

T y(t) ŷ(t) |y(t) − ŷ(t)|
PS GA GA-PS PMA VIM GA-PS PMA VIM

0.0 0.00 2.73e-02 0.06730 0.03346 0.00000 0.00000 3.34e-2 0.00000 0.00000

0.1 0.01 0.012392 0.08925 0.04437 9.29e-3 0.01005 3.43e-2 7.04e-4 5.48e-5

0.2 0.04 0.049646 0.12802 0.07338 0.03892 0.04063 3.33e-2 1.07e-3 6.31e-4

0.3 0.09 0.111143 0.18375 0.12044 0.08873 0.09266 3.04e-2 1.26e-3 2.66e-3

0.4 0.16 0.196074 0.25676 0.18573 0.15867 0.16748 2.57e-2 1.32e-3 7.48e-3

0.5 0.25 0.303374 0.34756 0.26961 0.24871 0.26679 1.96e-2 1.28e-3 1.67e-2

0.6 0.36 0.431620 0.45684 0.37262 0.35883 0.39277 1.26e-2 1.16e-3 3.22e-2

0.7 0.49 0.578880 0.58548 0.49549 0.48903 0.54806 5.49e-3 9.67e-4 5.80e-2

0.8 0.64 0.742531 0.73455 0.63911 0.63928 0.73588 8.80e-4 7.14e-4 9.58e-2

0.9 0.81 0.919015 0.90530 0.80457 0.80958 0.96007 5.42e-3 4.12e-4 1.50e-1

1.0 1.00 1.103535 1.09922 0.99308 0.99993 1.22519 6.91e-3 6.83e-5 2.25e-1
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Figure 3: Comparison of different stochastic numerical solvers.

with initial condition as y(0) = y′(0) = 1. It has the exact solution given as

y(t) = t + 1. (5.6)

This problem can be made simpler by use of following substitution:

Y (t) = y(t) − 1 − t. (5.7)
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Table 4: Comparison of results for derivative of the solution of example I.

T ŷ′(t) ŷ′(t) |y′(t) − ŷ′(t)|
PS GA GA-PS PS GA GA-PS

0.0 0.00 0.00267 0.13526 0.017687 2.67e-3 1.80e-2 1.76e-2
0.1 0.20 0.24906 0.30350 0.199858 4.90e-2 9.07e-2 1.41e-4
0.2 0.40 0.49494 0.47211 0.380284 9.49e-2 1.20e-2 1.97e-2
0.3 0.60 0.73366 0.64301 0.561324 0.13366 1.34e-2 3.86e-2
0.4 0.80 0.96318 0.81805 0.745050 0.16318 3.14e-2 5.49e-2
0.5 1.00 1.18047 0.99909 0.933359 0.18047 2.07e-2 6.66e-2
0.6 1.12 1.38125 1.18798 1.128047 0.18125 6.03e-2 7.19e-2
0.7 1.40 1.55960 1.38659 1.330850 0.15960 1.80e-2 6.91e-2
0.8 1.60 1.70751 1.59685 1.543479 0.10751 9.07e-4 5.65e-2
0.9 1.80 1.81424 1.82073 1.767629 0.01424 1.20e-2 3.23e-2
1.0 2.00 1.86549 2.06033 2.004987 0.13450 1.34e-2 4.98e-3
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Figure 4: Comparison of FDE-NN for different stochastic numerical solvers, (a) and (b) are for the value
of |y(t) − ŷ(t)| at t = 0 and t = 1 respectively, while (c) and (d) are for the value of |ý(t) − ŷ′(t)| at t = 0 and
t = 1, respectively.
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Table 5: Statistical analysis based on the value of absolute unsupervised error for example I.

T 0 1
FDE-NN PS GA GA-PS PS GA GA-PS

Best |y(t) − ŷ(t)| 2.36e-2 4.87e-2 3.11e-3 2.35e-3 4.61e-4 1.06e-4
|ý(t) − ŷ′(t)| 2.91e-2 6.13e-6 8.31e-4 9.59e-3 1.48e-3 2.62e-2

Worst |y(t) − ŷ(t)| 1.00232 0.18695 0.17193 0.82603 7.19e-2 6.87e-2
|ý(t) − ŷ′(t)| 0.65725 6.63e-2 5.82e-2 1.00357 0.12491 0.11201

Mean |y(t) − ŷ(t)| 0.32789 0.14635 0.12111 0.24834 3.36e-2 3.31e-2
|ý(t) − ŷ′(t)| 0.27233 2.99e-2 2.90e-2 0.40912 7.54e-2 6.17e-2

STD |y(t) − ŷ(t)| 0.24679 3.25e-2 4.14e-2 0.20391 2.12e-2 2.00e-2
|ý(t) − ŷ′(t)| 0.19051 1.78e-2 1.70e-2 0.28778 3.35e-2 3.37e-2

Table 6: The weights trained for neural network modeling for example II.

I
wi αi βi

PS GA GA-PS PS GA GA-PS PS GA GA-PS
1 −7.5259 0.45094 0.45094 0.46874 −0.6587 −0.6587 0.769316 −1.1923 0.48045
2 −7.7316 −0.0968 −0.0968 0.90230 −0.5674 −0.5674 0.871064 0.67735 0.84448
3 −5.9519 −0.3544 −0.3544 −6.6940 0.51534 0.51534 0.504503 −0.7461 0.13803
4 −1.5897 1.75859 1.75884 0.43284 −0.1467 −0.1467 −4.77791 0.33795 0.57994
5 0.20093 −0.8300 −4.5800 0.13829 0.14195 0.14171 0.702424 −1.7544 0.66264
6 0.72030 0.05750 0.05750 0.37976 0.49843 0.49062 0.748012 −0.8822 0.68844
7 −5.4554 1.10507 1.10702 0.37135 1.51126 1.50930 0.199868 −0.1709 0.00385
8 −7.4683 1.55824 1.55824 6.05083 −0.7505 −0.7505 0.918857 −1.0854 −5.9491
9 −7.8736 0.24057 0.24057 0.95588 0.22079 0.22079 1.270213 1.82921 0.83593
10 −6.9500 −0.1263 −0.1263 0.59958 −0.2013 −0.2013 0.873072 0.47301 0.63207

Equation (5.5) will be

A
d2Y (t)
dt2

+ B
d3/2Y (t)
dt3/2

+ CY (t) = 0, Y (0) = Y ′(0) = 0. (5.8)

This problem is solved on the same methodology adopted for previous example. However,
the problem-specific fitness function for (5.5) by taking the values of constant coefficient as
unity can be formulated as

ej =
1
5

5∑

i=1

[
d2ŷ(ti)

dti
2

+
d3/2ŷ(ti)

dti
3/2

+ ŷ(ti) − (ti + 1)

]2

+
1
2

[
ŷ(0) +

d

dt
ŷ(0)

]2
∣∣∣∣∣∣
j

, j = 1, 2, 3, . . . ,

(5.9)

where j is the generations index, ŷ, d2ŷ/dt2, and d3/2ŷ/dt3/2 are FDE-NN networks provided
in (3.2), (3.3), and (3.4), respectively. The one of unknown set of weights of FDE-NN networks
trained stochastically by using PS, GA, and GA-SA is given in Table 6. These weights are used
in expression (3.2) for finding the solution of the equations for some inputs between 0 and 1.
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Table 7: Comparison of results for example II.

T y(t) ŷ(t) |y(t) − ŷ(t)|
PS GA GA-PS PS GA GA-PS

0.0 1.00 0.691604 1.024862 1.016007 0.30839 2.30e-2 1.60e-2
0.1 1.10 0.623749 1.121206 1.104733 0.47625 2.69e-2 4.73e-3
0.2 1.20 0.859697 1.220821 1.199804 0.34030 3.13e-2 1.95e-4
0.3 1.30 1.122266 1.323041 1.299333 0.17773 3.45e-2 6.66e-4
0.4 1.40 1.337736 1.426952 1.401629 6.22e-2 3.45e-2 1.62e-3
0.5 1.50 1.501839 1.531330 1.504972 1.83e-3 2.87e-2 4.97e-3
0.6 1.60 1.628907 1.634569 1.607429 2.89e-2 1.36e-2 7.42e-3
0.7 1.70 1.734458 1.734591 1.706705 3.44e-2 1.49e-2 6.70e-3
0.8 1.80 1.830520 1.828738 1.799987 3.05e-2 2.30e-2 1.27e-5
0.9 1.90 1.925308 1.913640 1.883785 2.53e-2 2.69e-2 1.62e-2
1.0 2.00 2.024099 1.985057 1.953762 2.40e-2 3.13e-2 4.62e-2
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Figure 5: Comparison of the results (a) is for interval (0, 1) and (b) is for interval (0, 4).

The results are summarized in Table 7. It can be inferred from the table that the best results are
obtained by FDE-NN networks trained by GA-PS algorithm. The average accuracy achieved
in the given scheme lies in the range of 10−3 to 10−4.

The results computed for the algorithm are also plotted graphically in Figure 5. In
Figure 5(a), the comparison of the results is given from exact solution on interval (0, 1) with
step of 0.1. Moreover, the results are also plotted for larger interval (0, 4) in Figure 5(b) by
using same weights, and it can be seen that error is starting to grow for inputs larger than 1
and it is tending to for inputs greater than 2. One can increase the accuracy slightly on large
intervals by taking large number of neurons in FDE-NN networks or by training of networks
for large input span or increasing the number of steps. However, it is worth mentioning that
in these cases computational complexity will increase exponentially [36, 37].
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5.3. Example III

In this example the fractional order system based on Bagley-Torvik equation is taken for
which the exact solution is not available. However, its numerical solutions are obtained by
different state of art solvers. The designed scheme is applied for such problem in order to
analyze further the applicability, reliability, effectiveness, and efficiency.

Consider the fractional order system [3, 17]

d2y(t)
dt2

+
1
2
d3/2y(t)
dt3/2

+
1
2
y(t) = f(t), 0 < t, (5.10)

where, the forcing function and the initial conditions are given as

f(t) =

⎧
⎨

⎩

8, (0 ≤ t ≤ 1),

0, (t > 1),

y(0) = y′(0) = 0.

(5.11)

The example is also solved on the same manner as the previous one. However, the objective
function used in this case can be given as

ej =
1

10

10∑

i=1

[
d2ŷ(ti)

dti
2

+
1
2
d3/2ŷ(ti)

dti
3/2

+
1
2
ŷ(ti) − 8

]2

+
1
2

[
ŷ(0) +

d

dt
ŷ(0)

]2
∣∣∣∣∣∣
j

, j = 1, 2, 3, . . . .

(5.12)

The aim of our algorithm is to tune weights for which the value of fitness function as given
in (5.12) is at its minimum. One such set of unknown weights of FDE-NN networks trained
stochastically using PS, GA, and GA-SA is given in Figures 6(a), 6(b), and 6(c), respectively.
The results obtained based on these weights are summarized in Table 8. It also includes the
results of PMA algorithm provided with same set of parameters as taken in example I. It
can be inferred from the results of the given scheme that it can perform comparable to the
specialized state of art numerical solvers.

5.4. Some Further Discussion

In this section, some necessary further discussion is added to elaborate the results. The
advantages and limitation of the proposed method is also presented, so that one should know
about its effectiveness and reliability.

In the design scheme, the number of steps s is taken as 2, 5, and 10, respectively, for
corresponding (5.4), (5.9), and (5.12) in the interval (0, 1) randomly. It means that the mesh
size used in our scheme is 0.5, 0.2, and 0.1 for examples I, II, and III, respectively. On the
other hand in PMA technique the results were obtained with number of step equals to 100,
using mesh size h = 0.01 in the interval (0, 1). It is well known that, for the numerical method,
decreasing the mesh size increases the accuracy of algorithm, but at the cost of extensive
computational budget. It can be inferred from Tables 3 and 8 that the results of our scheme
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Figure 6: The weights trained for FDE-NN networks for example III, (a) is for PS, (b) is for GA, and (c) is
for GA-PS algorithms.

are close to PMA method with less number of steps. Another advantage of our algorithm
is that once weights are obtained by the training of FDE-NN networks, the solution of the
equation can be obtained for any continuous input time within the interval (0, 1), whereas
PMA approach results are available only on predefined discrete grid of inputs within the
interval (0, 1). Therefore, if one desired the result on any new inputs timing, the whole
cumbersome iterative procedure has to run.

It can be seen from the result given in Table 3 that on average the value of absolute
error for GA-PS lies in the range 10−2 to 10−3, whereas reported results of VIM [14] have
good approximation for the exact solution in closed vicinity of initial guess while the value of
absolute error is going to rise with increase of time, for example, at t = 1, it is 0.225. However,
the results by PMA method are better than those of GA-PS algorithm, but it has limitation as
discussed earlier.

Moreover, it is a bit tricky to decide the appropriate number for steps in optimization
of weights by our scheme. The decision of the input span interval and step is made
on compromise between the computation complexity and accuracy of the algorithm.
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Table 8: Comparison of results for the solution of the equation in example III.

T PMA ŷ(t)
PS GA GA-PS

0.0 0.000000 0.016428 0.001534 0.001437
0.1 0.032734 0.101048 0.037205 0.036102
0.2 0.133300 0.276368 0.132477 0.132843
0.3 0.296654 0.327819 0.299232 0.292562
0.4 0.519024 0.442389 0.512509 0.520411
0.5 0.797107 0.682939 0.799598 0.801290
0.6 1.127822 0.123648 1.128962 1.126923
0.7 1.508199 0.160237 1.502085 1.504872
0.8 1.935317 2.009871 1.945076 1.928239
0.9 2.406276 2.536479 2.360927 2.382738
1.0 2.918175 2.978356 2.908120 2.910234

Table 9: Computational complexity of the algorithms.

Span (0,T) No. of steps FDE-NN Counts for MLF (Million) Total time Time (MLF)
(0, 1) 02 GA 12.0000 462s 371s
(0, 1) 02 PS 0.06000 7.66s 4.55s
(0, 1) 05 GA 30.0000 1149s 920s
(0, 1) 05 PS 0.15000 15.4s 9.34s
(0, 1) 10 GA 60.0000 2297s 1852s
(0, 1) 10 PS 0.30000 31,7s 18.6s
(0, 1) 20 GA 120.000 4593s 3695s
(0, 1) 20 PS 0.60000 60.8s 37.5s

The time taken for the computation is measured in order to solve Bagley-Torvik equation
with FDE-NN networks optimized with GA algorithm (200 individuals, 3000 generations)
and PS technique (3000 generation). Optimization of weights with the help of fitness function
provided in (5.12) the algorithm required executing MLF function 20000 times for single
generation, whereas the single generation using fitness functions in (5.4) and (5.9) required
10000 and 4000 time execution of MLF function, respectively. The average total time taken by
the algorithm for its single run and time taken exclusively by MLF function is provided in
Table 9. It can be seen from Table 9 that about 80% of execution time is spent on calculation of
MLF function only. The time analysis provided in this paper is carried out using Dell Latitude
D630 laptop with Intel(R) Core(TM) 2 Duo CPU T9300, 2.50 GHz, and MATLAB version
R2008b.

6. Conclusions

On the basis of the simulations and analysis, it can be concluded that fractional order system
of Bagley-Torvik equation can be solved by designed heuristic computational intelligence
algorithm. The fractional differential equation neural networks of the equation trained by
GA-PS algorithm is the best stochastic optimizer compared to PS, GA algorithms. On the
basis of the statistical analysis it can be inferred that our proposed computing approaches
are reliable, effective, and easily applicable to such complex fractional order systems.
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In our future work, we intend to use other biologically inspired computational intelligence
algorithms to solve these fractional order systems.
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