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Design of switching H2/H∞ output-feedback controller for discrete-time LTI systems with state-
multiplicative noise is considered. The closed loop system achieves a minimum bound on the
stochastic H2 performance level, while satisfying the H∞ performance. The proposed controller
is based on a fuzzy supervisor which manages the combination of two separate H2 and H∞
controllers. A convex formulation of the two controllers leads to a structure which benefits from
the advantages of both controllers to ensure a good performance in both the transient phase
(H2 controller) and the steady phase (H∞ controller). The stability analysis uses the Lyapunov
technique, inspired from switching system theory, to prove that the closed loop system with the
proposed controller structure remains globally stable despite the configuration changing.

1. Introduction

Systems with stochastic nature have received much attention in the last decade, mainly in
theH∞ control theory framework. Solutions to various control and estimation problems that
ensure the worst case performance bound in the H∞ sense have been derived, in both, the
continuous-time framework and the discrete-time counterpart. The modeling of parameter
system uncertainties as white-noise processes in a linear setting is encountered in many areas
of applications such as nuclear fission, heat transfer, population models, and immunology.
In control theory, such models are encountered in gain scheduling when the scheduling
parameters are corrupted with measurement noise [1–3]. Following the researches done
in 1960s and 1970s, where the main issues were stability and control of continuous-time
state multiplicative systems in the stochastic H2 framework (see [4] and the references
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therein), researches in the last decade have focused on the H∞ control setting. Thus,
the continuous time stochastic state-multiplicative bounded real lemma (BRL) and the
discrete-time counterpart were obtained. In [5], a discrete-time stochastic estimation for a
guidance-motivated tracking problem was solved, and its results were shown to achieve
better results than those achieved by the Kalman-filter. A parameter dependent approach
for designing static output-feedback controller for linear time-invariant systems with state-
multiplicative noise is introduced in [2], which achieve a minimum bound on either the
stochasticH2 or theH∞ performance level. But previous studies paid less attention to mixed
H2/H∞ control of these systems because of their complexity [6].

Combination of different techniques to obtain the different performances is widely
used today [4, 7, 8]. This method results in hybrid dynamical systems which include
continuous and discrete dynamics and a mechanics (supervisor) managing the interaction
between these dynamics [9].

In an actual engineering control problem, various conflicting requirements such as
disturbance rejection and robustness to changing conditions and plant uncertainties have
to be satisfied. General multiobjective control problems are difficult and remain mostly
open up to now. By multiobjective control, we mean synthesis problems with a mix of
performances. The mixed H2/H∞ control is an important robust control method and has
been studied by many researchers. The mixed H2/H∞ control is concerned with the design
of a controller that minimizes the H2 performance of the system with respect to some
input noises while it guarantees certain worst case performance with respect to other
external disturbances. Compared with the sole H∞ control, the mixed H2/H∞ control is
more attractive in engineering. Since the former is a worst-case design which tends to be
conservative, whereas the later minimizes the average performance with a guaranteedworse-
case performance. For the general multiobjective control problem, the usual approach is to
design one controller and to force all Lyapunov matrices used to test the several design
specifications to be the same. These constraints offer a computationally efficient solution to
the control problems with multiple objectives and are thoroughly investigated through the
previous works [10]. Designing one controller and specifying the closed-loop objectives in
terms of a common Lyapunov function is the core of the Lyapunov-shaping paradigm and
constitutes an important source of conservatism [10, 11].

In order to release these constraints and let several Lyapunov matrices be simultane-
ously considered in the Multiobjective control synthesis problem, the switching approach
is advocated in this paper. Extensive benefits are obtained from this feature in order to
offer a less conservative controller parameterization in the multiobjective control synthesis
problems. While the new switching controllers release the constraints on the Lyapunov
instrumental variable, this is obtained at the expense of designing a controller for each
specification and adding a simple constraint to ensure the stability. The number of free
parameters is significantly increased as compared with the available techniques. Finally,
it can be easily verified that the results obtained with the standard parameterization
are always encompassed by the presented switching formulations. In [12, 13], a new
framework of switching controller structure for Multiobjective control (mixH2/H∞) of
singular perturbation systems has been developed that has a better performance rather
than conventional controller structure. In the present paper, the switching H2 and the H∞
static control problems for discrete-time linear systems are solved that contain stochastic
white-noise parameter uncertainties in the matrices of the state-space model that describe
the system. The simple design methods of [2] are applied to derive the static output-
feedback gains that satisfy the prescribed H2 and H∞ performance criteria, separately.
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A fuzzy supervisor is proposed for hybrid combination of H2 and H∞ controllers to use
their advantages and to ensure the required performances and the stability of the closed loop
system.

The main contribution of the presented work is combining H2 and H∞ controllers
using a supervisor, which manages the gradual transition from one controller to another. This
method is applied to use the advantages of each controller. The gradual transition attenuates
the uncontrollability and instability problems related to the abrupt switch. The control signal
is obtained via a weighted sum of the two signals given by the H2 and the H∞ controllers.
This weighted sum is managed thanks to a fuzzy supervisor, which is adapted to obtain the
desired closed loop system performances by benefiting from the advantage of the H2 in the
approaching phase, minimizing the energy of impulse response and the ability of the H∞
control to eliminate the chattering and to guarantee the system robustness. So, theH2 mainly
acts in the transient phase providing a fast dynamic response and enlarging the stability limits
of the system, while the H∞ control acts mainly in the steady state to reduce chattering and
to maintain the tracking performances. Furthermore, the global stability of the system even
if the system switches from one configuration to another (transient to steady state and vice
versa) is guaranteed.

The structure of the paper is as follows. Section 2 presents the system definition and
the controllers used. In Section 3, the fuzzy supervisor and the proposed control law are
described. Stability analysis is demonstrated in Section 4. The design procedure is explained
in Section 5 and an example is given to illustrate the efficiency of the proposed method,
followed by conclusions in Section 6.

Notation. Throughout the paper, the superscript “T” stands for matrix transposition, Rn

denotes the n dimensional Euclidean space, Rn×m is the set of all n × m real matrices, N is
the set of natural numbers and the notation P > 0, (resp., P ≥ 0) for P ∈ Rn×n means that P
is symmetric and positive definite (resp., semipositive definite). The variables {ζk} and {νk}
are zero-mean real scalar white-noise sequences that satisfy E{νkνj} = δkj , E{ζkζj} = δkj ,
E{ζkνj} = δkj , for all k, j ≥ 0. By L2(Ω, Rn), the space of square-summableRn-valued functions
on the probability space (Ω,F, P) is denoted, where Ω is the sample space, F is a σ algebra of
a subset of Ω called events, and P is the probability measure on F. By (Fk)k∈N , an increasing
family of σ-algebras Fk ⊂ F is denoted which is generated by νj , ζj , j ≤ k − 1. ˜l2(N;Rn) is
the space of non-anticipative stochastic processes {fk} = {fk}k∈[0,∞] ∈ ˜l2(N;Rn) in Rn with
respect to (Fk)k∈[0,∞] satisfying
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∥fk
∥

∥

2
˜l2
= E

{ ∞
∑

0

∥

∥fk
∥

∥

2

}

=
∞
∑

0

E
{

∥

∥fk
∥

∥

2
}

< ∞, (1.1)

where ‖ · ‖ is the standard Euclidean norm. By δij , the Kronecker delta function is denoted.

2. Problem Statement

The following linear system is considered:

xk+1 = (A +Dνk)xk + B1ωk + (B2 +Gζk)uk, x0 = 0,

yk = C2xk +D21nk,
(2.1)
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with the objective vector

zk = C1xk +D12uk, (2.2)

where {xk} ∈ Rn is the system state vector, {ωk} ∈ Rq is the exogenous disturbance signal,
{nk} ∈ Rp is the measurement noise sequence, {uk} ∈ Rl is the control input, {yk} ∈ Rm is
the measured output, and {zk} ∈ Rr ⊂ Rn is the state combination (objective function signal)
to be regulated. The state-multiplicative white-noise sequences are defined in the notation
subsection. The matrices in (2.1) and (2.2) are assumed to be constant matrices of appropriate
dimensions.

In each stage, a constant output-feedback controller

uk = Kyk (2.3)

is sought to achieve a certain performance requirement. The following performance criterion
is treated.

The stochastic H2/H∞ control problem: {ωk}, {nk} are realizations of a unit
variance, stationary, white-noise sequences that are uncorrelated with {νk}, {ζk}. The
exogenous disturbance signal is energy bounded; the following performance index should
be minimized, which is useful to handle stochastic aspects such as measurement noises or
random disturbances:

J2 = E
ω,n

{

‖zk‖2
˜l2

}

, (2.4)

while for a prescribed scalar γ > 0 and for all nonzero {ωk} ∈ Rq, {nk} ∈ Rp, guarantees that
J∞ < 0 where

J∞ = ‖zk‖2
˜l2
− γ2

[

‖ωk‖2
˜l2
+ ‖nk+1‖2

˜l2

]

. (2.5)

That is useful for disturbance rejection, reference tracking, low-energy consumption,
bandwidth limitation, low steady state control error, and robust stability.H∞ norm measures
the system input-output gain for finite energy or finite rms input signals.

Interconnection of (2.1) and (2.2) is denoted by the Redheffer star product to include
yk. The augmented state vector ξk = col{xk, yk} is defined, and the following representation
is obtained to the closed loop system:

ξk+1 = ˜Aξk + ˜Bω̃k + ˜Dξkνk + ˜Gξkζk, ξ0 = 0,

zk = ˜Cξk,
(2.6)
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where

ω̃k =

[

ωk

nk+1

]

, ˜A =

[

A B2K

C2A C2B2K

]

, ˜D =

[

D 0

C2D 0

]

,

˜G =

[

0 GK

0 C2GK

]

, ˜B =

[

B1 0

C2B1 D21

]

, ˜C =
[

C1 D12K
]

.

(2.7)

The Lyapunov functions Vi = ξT ˜Piξ, i = 2,∞ are considered with:

˜Pi =

[

Pi −β−1PiC
T
2

β−1C2P ̂Pi

]

,
̂Pi ∈ Rm×m

Pi ∈ Rn×n , ̂Pi > 0. (2.8)

While the parameter β is an important positive scalar tuning parameter and

˜Qi = ˜Pi
−1

=

⎡

⎣

Qi CT
2
̂Qi

̂QiC2 β̂Qi

⎤

⎦,
Qi ∈ Rn×n

̂Qi ∈ Rm×m . (2.9)

Lemma 2.1 (the stochasticH2 control). Consider systems (2.1), (2.2). The output-feedback control
law (2.3) achieves a prescribedH2-norm bound δ > 0, if there existQ ∈ Rn×n, ̂Q ∈ Rm×m, Y ∈ Rl×m,
and H ∈ R(q+p)×(q+p) that, for some tuning scalar β > 0, the following LMIs are satisfied: [2]
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˜Γ < 0,
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whereH =
[

H11 H12

H21 H22

]

,

˜Γ37 = QDTCT
2 ,

˜Γ23 =
[

C2AQ + C2B2YC2 − ̂QC2

]

+ ̂QC2,

˜Γ13 = AQ + B2YC2, ˜Γ39 = CT
2Y

TGTCT
2 ,

˜Γ47 = ̂QC2D
TCT

2 ,

˜Γ24 =
[

C2ACT
2 + βC2B2Y − β ̂Q

]

+ β ̂Q,

˜Γ45 = βYTDT
12 + ̂QC2C

T
1 ,

˜Γ49 = βYTGTCT
2 ,

˜Γ14 = βB2Y +ACT
2
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1 + CT
2Y

TDT
12.

(2.12)

If a solution to the latter LMIs exists, the gain matrix K that stabilizes the system and achieves the
required performance is given by K2 = Y ̂Q−1.

Lemma 2.2 (the stochastic H∞ problem). Consider the system of (2.1), (2.2). The control law
(2.3) achieves a prescribed H∞-norm bound γ > 0, if there exist, Q ∈ Rn×n, ̂Q ∈ Rm×m, Y ∈ Rl×m

that, for some scalar β > 0, the following LMI is satisfied: [2]

⎡

⎢

⎢
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˜Γ

⎡

⎢

⎢

⎣

B1 0

C2B1 D21

0 0

⎤

⎥
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⎦

∗ −γ2Iq+p

⎤

⎥

⎥

⎥

⎥

⎦

< 0, (2.13)

where ˜Γ is defined in (2.11) and K∞ = Y ̂Q−1.

3. Fuzzy Supervisor

H2 control provides a fast dynamic response, a stable control system, and a simple
implementation. Conversely, this control strategy has some drawbacks that appear in the
steady state. The H∞ techniques are alternatives that can guarantee the robustness and the
global stability. In order to take advantage of both controllers, H2 during the transient time
and H∞ control during the steady state, their control actions are combined by means of a
weighting factor, α ∈ [

0 1
]

, representing the output of a fuzzy logic supervisor that takes
the tracking error e and its time derivatives ė, ë, . . . , en−1 as inputs. The global control scheme
of the proposed approach is illustrated in Figure 1.

The fuzzy system is constructed from a collection of fuzzy rules whose jth component
can be given in the form

If e is H
j

1 And . . .And en−1 is H
j
n Then α = αj , (3.1)

where Hj

i is a fuzzy set and αj is a singleton.
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Figure 1: The control scheme of the proposed method.

It is easy to see that it can be considered as a fuzzy rule of a Takagi-Sugeno fuzzy
system. The fuzzy implication uses the product operation rule. The connective AND is
implemented by means of the minimum operation, whereas fuzzy rules are combined by
algebraic addition. Defuzzification is performed using the centroid method, which generates
the gravity centre of the membership function of the output set. Since the membership
functions that define the linguistic terms of the output variable are singletons, the output
of the fuzzy system is given by

α =

∑m
i=1 αi

∏n
j=1μ

j

i
∑m

i=1
∏n

j=1μ
j

i

, (3.2)

where μj

i is the degree of membership of Hj

i andm is the number of fuzzy rules used.
The objective of this fuzzy supervisor is to determine the weighting factor, α, which

gives the participation rate of each control signal. Indeed, when the norm of the tracking error
e and its time derivatives ė, ë, . . . , en−1 are small, the plant is governed by the H∞ controller
(α = 1). Conversely, if the error and its derivatives are large, the plant is governed by the H2

(α = 0). The control action, u, is determined by

u = (1 − α)uH2 + αuH∞ . (3.3)

Remark 3.1. In the case of a large rule base, some techniques can be employed to significantly
reduce the number of rules activated at each sampled time by using the system position in
the state space. Indeed, it is demonstrated that using a strict triangular partitioning allows
guaranteeing that, at each sampling time, each input variable is described with two linguistic
terms at the most [6]. Thus, the output generated by the fuzzy system with n inputs is then
reduced to that produced by the subsystem composed of the 2n fired rules.
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4. Stability Analysis

The theorem of Essounbouli et al. [7] is used to prove the global stability of the system
governed by the control law (3.3). Similar to [7], using H2 and H∞ controls, this theorem
is rewritten as follows.

Theorem 4.1. Consider a combined fuzzy logic control system as described in this work. If

(1) there exists a positive definite, continuously differentiable, and radially unbounded scalar
function V for each subsystem;

(2) every fuzzy subsystem gives a negative definite V̇ in its active region;

(3) the weighted sum defuzzification method is used, such that for any output u

min(uH2 , uH∞) ≤ u ≤ max(uH2 , uH∞). (4.1)

Then the resulting control u, given by (3.3), guarantees the global stability of the closed loop
system.

Proof. Satisfying the two first conditions guarantees the existence of a Lyapunov function in
the active region which is a sufficient condition for ensuring the asymptotic stability of the
system during the transition from the H2 control to the H∞ one. Consider the Lyapunov
function V2 = ξTP2ξ where P2 = P is a positive definite matrix and the solution of (2.11) and
we have λmin(P2)ξTξ ≤ ξTP2ξ, where λmin(P2) is the minimal eigenvalue of P2. In Lemma 2.1,
it was shown that the synthesized H2 control ensures the decrease of the Lyapunov function
V2. Consider the Lyapunov function V∞ = ξTP∞ξ where P∞ = P is a positive definite matrix
and the solution of (2.13) and we have ξTP∞ξ ≤ λmax(P∞)ξTξ, where λmax(P∞) is the maximal
eigenvalue of P∞. In Lemma 2.2, it was shown that the synthesized H∞ control ensures the
decrease of the Lyapunov function V∞.

To satisfy the second condition of the theorem, it is enough to choose P2, P∞ such that

λmax(P∞) ≤ λmin(P2). (4.2)

This condition guarantees that in the neighborhood of the steady state (H∞ control), the value
of the Lyapunov function V2 is greater than that of V∞. To guarantee the third condition, the
balancing term α takes its values in the interval [0 1]. Consequently, the three conditions of
the above theorem are satisfied and the global stability of the system is guaranteed. So, The
Problem formulation (switching H2/H∞ control) will be as:

minimize J2 (2.11) −→ K2

subject to :
{

J∞ < 0 (2.13) −→ K∞
λmax(P∞) ≤ λmin(P2) (4.2)

(4.3)

P2 and P∞, which influence the stability and relation (4.2) are dependent on β. Genetic
algorithm is used to find optimal β that solve the above problem.

Remark 4.2. It should be noted that the proof of stability in this case is similar to those used
for switching system theory [7, 11]. Indeed, the energy of the system corresponding to the
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H∞ controller is less than that for H2, guaranteeing the stability of the closed loop system
during the transition from H2 toH∞. In the event of large external disturbance, which forces
the system back to a transient phase, the proposed controller adjusts the weighting factor in
a way that the system remains stable in the new configuration until returning to the steady
state, which implies a new variation of the control signal.

5. Design Procedure

In order to minimize the online computing time of the proposed method and to simplify its
real time implementation, the design procedure implies an offline processing step and an
online step during control execution. In the offline step, the gains and β are defined in order
to satisfy (4.3). The supervisor design is essentially based on the available information of the
process under study. Indeed, when a sufficient amount of information is available, it becomes
possible to reduce the number of inputs and the fuzzy rules.

To construct the fuzzy supervisor, firstly, the fuzzy sets are defined for each input (the
error and its derivatives) and output; then, the rule base is elaborated. For the online step, the
error vector is computed and then is injected in the supervisor to determine the value of α to
apply the global control signal.

Example 5.1. To demonstrate the solvability of the various LMIs, simplicity and low conserv-
atives of the proposed method, a third-order, two-output, one-input example is considered
and a switching output feedback controllers is sought

A =

⎡

⎢

⎢

⎣

0.9813 0.342 1.3986

0.0052 0.984 −0.1656
0 0 0.5488

⎤

⎥

⎥

⎦

, D =

⎡

⎢

⎢

⎣

0 0 0

0 0 0

0 0 0.4

⎤

⎥

⎥

⎦

,

B1 =

⎡

⎢

⎢

⎣

0.0198 0.0034 0.0156

0.0001 0.0198 −0.0018
0 0 0.015

⎤

⎥

⎥

⎦

, D12 =

⎡

⎢

⎢

⎣

0

0

1

⎤

⎥

⎥

⎦

, D21 = 0,

B2 =

⎡

⎢

⎢

⎣

−1.47
−0.0604
0.4512

⎤

⎥

⎥

⎦

, C2 =

[

1 0 0

0 1 0

]

, C1 =

⎡

⎢

⎢

⎣

1 0 0

0 1 0

0 0 1

⎤

⎥

⎥

⎦

, G = 0.

(5.1)

Based on the proposed control scheme, the following results are obtained:
applying the genetic algorithm and solving (4.3) a minimum H2-norm bound of

δ = 0.0449 and a minimum value of γ = 0.8916 is obtained for β = 2.4. The corresponding
controllers are K2 =

[

0.3469 0.6216
]

and K∞ =
[

0.3567 1.2622
]

.

Consider multiobjective

minimize J2
subject to : J∞ < 0 for γ = 0.8916

(5.2)
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Table 1: The simulation result.

Method H2 norm H∞ norm
Conventional method [2] 0.0528 0.8916
Proposed switching method 0.0449 0.8916
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Figure 2: The output response of Example 5.1.

Solving (5.2) based on the Lyapunov-shaping paradigm that is given in [2] yields δ = 0.0528
as the best constrainedH2 performance, which is 17.69% higher than the optimal value 0.0449
due to the use of one controller for each objective and different Lyapunov functions. We can
summarize the results in Table 1.

According to Table 1, we can see that by a similar constraint on H∞ norm of closed
loop system, by using our proposed method H2 norm of closed loop system will be 17.69%
lower than the conventional Multiobjective method [2], that it is satisfactory.

The output response of Example 5.1 by using both conventional and our proposed
switchingmethod has been depicted in Figure 2. The solid line graph is our proposedmethod
response, and the dash line graph is output response of conventional optimal method. As
we see, it is clear that output regulation of our proposed method is much better than the
conventional method, that it is satisfactory.

The fuzzy supervisor is constructed by using three fuzzy sets zero, medium, and large
for the tracking error and its time derivative. The corresponding membership functions are
triangular, as shown in Figure 3. For the output, five singletons are selected: very large (VL),
large (L), medium (M), small (S), and zero (Z), corresponding to 1, 0.75, 0.5, 0.25, and 0,



Mathematical Problems in Engineering 11

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

|error|

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

0

0.5

1

|derror/dt|

(a)

Z M L

Z VL L M

M S S Z

L Z Z Z

|derror/dt|

|er
ro
r|

(b)

0 0.25 0.5 0.75 1
0

1 Z S M L VL

α ɛ [0 1]

(c)

Figure 3: The structure of the proposed fuzzy supervisor.

respectively. The fuzzy rule base is depicted in Figure 2. Rules are defined by a table; for
example, a rule in the table can be stated as follows: “if the norm of the error is medium and
the norm of the error derivative is large, then α is zero.”

Results show that H2 and the combined controller provide a fast dynamic response
compared to H∞ and that H∞ and the combined controller provide a smooth variation of
the control signal. Hence, the proposed control set-up benefits from the advantages of both
H∞ and H2, in terms of tracking performance and the robustness to external perturbations,
which is ensured byH∞ control in the steady state (The fuzzy supervisor favorsH∞ to reach
the steady state with a fast dynamic). As it is shown, the conservatism introduced by means
of the proposed methodology is significantly decreased in comparison with the Lyapunov-
shaping methods which oblige the designer to employ a common Lyapunov matrix for
all the performance criteria and design one controller that satisfy all the objectives. The
applied control signal forces the system to remain stable and attain the desired trajectory.
Thus, an intermediate dynamics whose advantage is to have a compromise between the
settling time and the actuator solicitations is obtained. Comparing the results shows that
the proposed controller ensures a good convergence towards the desired trajectory. The
conditions of Theorem 4.1. are satisfied, and the system global stability is guaranteed despite
the configuration changing.

6. Conclusions

A convex programming method is presented which provides an efficient design of switching
robust static output-feedback controllers for linear systems with state multiplicative noise.
Sufficient conditions are derived for the existence of switching controller that stabilizes
the system and achieves a prescribed bound on its performance. The stochastic H2/H∞
performance criterion is considered.

In this work, a hybrid robust controller is developed. The main idea is the use of a
fuzzy supervisor to manage efficiently the action of two controllers based onH2 andH∞, in a
way that the system remains stable with good performance and low conservatives despite the
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plant switching from one mode to a new one. Furthermore, this structure allows us to take
the advantage of both controllers and to efficiently eliminate their drawbacks. Simulation
results showed the efficiency and the design simplicity of the proposed approach. Indeed,
the H2 provides good performances in the transient state (a fast dynamic response, enlarged
stability limits of the system), while the H∞ control acts mainly in the steady state (reduces
chattering and the effect of the external disturbances). This work can be generalized to
multiple controllers, more than two, managed by the same fuzzy supervisor. Indeed, the
structure of the fuzzy supervisor allows partitioning the state into different substates. An
adequate controller can be defined for each substate to ensure the desired performances.
The rule base of the fuzzy supervisor will be reconstructed so that the premise part defines
the subspace and the conclusion part defines the corresponding control law and the applied
control signal will be a weighted sum of all the controllers used.
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