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An Oldroyd-B fluid suddenly disturbed by relatively moving half-planes is theoretically studied
in this paper. This new problem, extended from the traditional Stokes’ problem, recently
attracts a great deal of attention due to its potential applications in engineering. Using integral
transformations and dividing the original system into two subsystems, the exact solution is
derived and shown in a series form. In addition to the general understanding of velocity
developments, the effects of the relaxation time and the retardation time on the velocity profiles
are examined in a series of figures. It is found that above two rheological parameters influence the
induced flow in an opposite way. Other interesting characteristics are also elucidated from present
results.

1. Introduction

The most classical problem in fluid mechanics might be a viscous flow driven by an impulsive
or oscillatory plate below. This problem usually bears Stokes’ name [1] due to his great
contributions and profound influences on related studies. Today solutions of the Stokes’
problems have been applied to many fields, which include the industry manufacturing,
chemical engineering, geophysical flows, and even the heat conduction problems. For a
Newtonian fluid, exact solutions to velocity profiles can be obtained using integral transforms
(e.g., Panton [2] and Erdogan [3]) and the solution to wall stress in terms of Fresnel integrals
was recently given by C. M. Liu and I. C. Liu [4].

For the rapidly growing applications either in academic studies or engineering fields,
the studies on the Stokes’ problems traditionally for a Newtonian fluid were extended to
cases of non-Newtonian fluids. Since the rheological properties vary within a quite wide
range, how to choose a suitable model to accurately describe fluid properties always becomes
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an important issue in related studies. To this end, the Maxwell model which is one of the
simplest models for viscoelastic fluids was studied to understand basic fluid characteristics.
Fetecau and Fetecau [5] solved the first Stokes” problem of a Maxwell fluid by applying
the Fourier transform. Later, Jordan et al. [6] revisited the same problem by applying both
Laplace and Fourier transform methods. In addition to Maxwell fluids, another common
fluid, the second-grade fluid, was frequently investigated as well. Erdogan [7] and Tan and
Masuoka [8] solved the first problem of a second-grade fluid. The second problem was later
studied by Fetecau and Fetecau [9]. More recently, a series of papers concerning the first
problem of Burger’ fluids were also presented [10, 11].

The Oldroyd-B fluid model [12], which includes the Newtonian fluid, the Maxwell
fluid and the second-grade fluid as special cases, was also widely studied in the past decades.
Solution to the Stokes’ first problem of an Oldroyd-B fluid was given by Fetecau and Fetecau
[13], and also by Tan and Masuoka [14] with the consideration of a porous boundary. Aksel
et al. [15] later provided an analysis of the second problem and other unidirectional flows. Qi
and Xu [16] considered a generalized Oldroyd-B model by applying the fractional calculus
approach in the constitutive relationship. Their solution to the first problem was shown in a
series form. Other specific flows were also well investigated by Rajagopal and Bhatnagar [17]
and Hayat et al. [18].

In addition to studies contributing to various fluids based on various models, more
boundary conditions were involved to meet the practical requirements. The most common
modified boundary condition might be a porous plate which allows the mass injection and
suction through the plate. The corresponding solutions have been obtained for different
fluids [8, 14, 19, 20]. Pressure gradient [9] and heated boundary were also studied [8]. For
practical applications in predicting flows induced by either earthquakes or fracture of ice
sheets, Zeng and Weinbaum [21] analyzed the extended Stokes’ problems for a Newtonian
fluid by imposing relatively moving half-planes as a boundary condition. They provided
the exact solution for the first problem and the steady-state solution for the second problem
which is accurate enough for long-term phenomena. For capturing the characteristics of flows
at earlier stage, the transient solution to the second problem, however, is still lacking. To this
end, C. M. Liu [22] derived the exact solution by using integral transforms and the concept
of antisymmetry. His exact solution can calculate the flow not only at larger times, but also at
smaller times. The finite-depth cases as well as the infinite-depth cases were investigated to
calculate the velocity distributions.

In this paper, the flow of an Oldroyd-B fluid driven by relatively moving half-planes
with constant speed is analyzed. This problem is named as the extended Stokes’ first problem.
The organization of present paper is as follows. The constitutive equations for the present
problem are firstly derived in Section 2. The detailed derivation and mathematical methods
used are shown in Section 3. In addition to integral transforms, the main mathematical
techniques include the division of the original fluid system into two subsystems and the
expansion of the specific functions into series forms. Results are discussed in Section 4, and
concluding remarks are made in Section 5.

2. Constitutive Equations

The flow field considered is depicted as Figure 1. An Oldroyd-B fluid rather than a
Newtonian fluid [22] is considered to occupy all the space above the plate. The fluid and
the plate are initially at rest everywhere. For ¢t > 0, the positive half-plate (z > 0) located at
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Figure 1: Diagram of an Oldroyd-B fluid driven by relatively moving half-planes.

y = 0 is suddenly moving at a constant speed ug along the x coordinate and the negative
half-plate (z < 0) remains still. This is the so-called extended Stokes’ first problem. Firstly, the
constitutive equations for an incompressible Oldroyd-B fluid [23] are introduced

= —pl+S, (2.1)

T
S+)L<S—LS—SLT> :y<A+A,<A—LA—ALT>>, 2.2)

where T denotes the Cauchy stress tensor, S the extra-stress tensor, p the pressure, I the
isotropic unit tensor, L = VV where V is the velocity and V is the gradient operator, and
A is defined to be A = L + LT. The fluid constants p, A, and A, are the dynamic viscosity, the
relaxation time, and the retardation times, respectively. The superposed dot represents the
material time derivative. This model includes several fluid models as special cases. They are
the Maxwell fluid (A, = 0) and the Newtonian fluid (A = A, = 0). Since the fluid is assumed
to be incompressible, it leads to

divV =0. (2.3)

As the flow only moves along the x direction, we assume

V=u(y,zt)i, (2.4)

where i represents a unit vector along the x direction. Substituting (2.4) into the linear
momentum equation and neglecting the body forces, it reads

ap OSxx asxy E)sz _ ou
ox  ox oy Tz TPar 25)

where p denotes the density of the fluid. For the present flow, it is noted that all physical
variables are independent of x implying the first two terms of (2.5) are zero. From (2.1),
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relations between Sy, Syy, Szz, Sxy (= Syx), Syz(= Sz), and S,z (= S.x) are

0Sx ou ou ou\>  /ou\>
Sex + A( 5 25wy, —2st$) = —2;%[(@) + <$> ] (2.6)
OSxy ou ou ou o*u
Sxy+)‘<7_syy@_syzg> —‘I/l@ +‘l/l)tray—a, (27)
0S. ou ou ou *u
sz+./\< ot —Syz@—szz$> —/45 +‘I/L/\r@, (28)
0Syy
Syy + )L_at =0, (2.9)
3S,-
Syz + A== =0, (2.10)
5. +195= g, (2.11)
ot

By considering the initial condition S(t = 0) = 0, solutions to (2.8) to (2.10) can be solved

Syy = Sy= = S2. = 0. (2.12)

By using (2.12), (2.7) and (2.8) can be simplified to be

0S,
Sxy A —2 y(l +Ar2>a—u

ot ot) oy’

2.13)
3Sy: 3\ ou
sz+.)t ot —I/l(].‘*‘.kra)E

Now we combine (2.5), (2.6), and (2.13) together to obtain the final constitutive equation

0\ ou o\ /[ u u
<1+Aa>g—V(l+.}Lra><a—yz+@>, (214)

where v = p/p denotes the kinematic viscosity. In comparison with the traditional Stokes’
problems of an Oldroyd-B fluid, the additional terms of 0*u/dz* appear. The detailed
transform methods as well as other mathematical techniques for solving (2.14) and the
associated conditions will be demonstrated in the following section.
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3. Transform Methods and Solutions

For the flow system shown in Figure 1, the governing equation, the associated boundary
conditions, and initial conditions are shown below

u(y=0,2>0,t) = u,
u(y=0,z<0,t) =0,
u(y — ,z,t) =0, (3.1)
u(y,z — +oo,t) is finite,

u(y,z,t=0)= %(y,z,tzO) =0,

where ug is the constant plate speed. To solve this flow system, the original problem is
decomposed into two subproblems

U=1u+1up, (3.2)
where u; and uy, respectively, satisfy
<1+A%)% =v<1+xr%>§—;‘;, (3.3)
<1+A%>%=v<1+kr%><§—:j+%>, (3.4)
and are respectively constrained by
m(y=01) ==, (3.5)
u1(y — oo,t) =0, (3.6)
wi(y,t=0) = M (y,1=0) =0, (3.7)
and
ur(y =0,2>0,t) = % (3.8)
ur(y =0,2<0,t) = —%, (3.9)
ur(y — o0, z,t) =0, (3.10)
uy(y, z — oo, t) is finite, (3.11)

uz(y, z,t= O) = % (y,t = 0) =0. (3.12)
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The solution to u;, which is for the traditional Stokes” first problem, is first introduced.
Applying the Laplace transform

ity,s) = [ el e, (3.13)

to (3.3), (3.5) and (3.6) with the help of (3.7) results in

%1 s(1+1s) o
oy2  v(1+A,s) v

~ 3.14
By =0,)= 5, G149

1 (y — o0,5) =0.

Thus, the solution to #; is

~ [s(1+4
i (y,s) = % exp [—y ﬁ] . (3.15)

In order to obtain an analytical solution and avoid the tedious calculations of residues and
contour integrals, (3.15) is rewritten in a series form

Kk
_ 1 & & YV ) )T )T
i (y,s) = ? s IPIPI < k?m!n!

(3.16)

T((k/2) + M) (=(k/2) + m) (k/2)-m-n-1
T(k/2)T(-k/2) '

where ! denotes the factorial and I' the Gamma function. By applying the inverse Laplace
transform to (3.16), it yields

k
©w o o UAY, -/\/V)Lr (_l)im(_)tr)in
u1(y/t)=% 1+ZZZ< k?m!n!

k=1 m=0 n=0

(3.17)

I'((k/2) +n)['(-(k/2) +m) ~(k/2)+m+n
T T(k/2)T(-k/2) TCk/2) smintl)
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To rewrite (3.17) in a dimensionless form, substituting the following dimensionless parame-
ters

Zt 2.)L Z)L
- T W e (3.18)

U v v v v

into (3.17) results in
k -m -n
o=l $5 (~yVAZL) ()=
u 7 == +
Y 2 k=1 m=0 n=0 kim!n!
(3.19)
I'((k/2)+n)['(-(k/2) +m) ' ~(k/2)+m+n
T'(k/2)T(~k/2) T(—(k/2)+m+n+1) |

where all asterisks are dropped for convenience. As for the second subsystem of u,, since the
positive- and negative-z plates move with the same speed but in the opposite directions, the
induced flow which is antisymmetrical with respect to z = 0 satisfies

u(y, +z,t) = ~ua(y, -z, t), (3.20)
which requires

u(y,z=0,t) =0. (3.21)

Above results imply that the velocity u, in the whole domain can be calculated by only
solving the flow in the positive-z domain. For flows in the positive-z domain, the boundary
conditions of (3.9) and (3.11) can be replaced by

u(y,z=0,t>0) =0,
(3.22)
uy(y, z — oo, t) is finite.

Since the velocity u, varies with the time t and the space coordinates i and z, in addition to
the Laplace transform, it is noted that an additional integral transform in space coordinate
is needed to obtain the solvable boundary-value problem. Firstly, applying the Laplace
transform to (3.4), (3.8), (3.10), and (3.22) with the help of (3.12) yields

Uy Py s(l+4s)
+ = Uy,
oy?  0z2  v(l+4s)

—~ Uu
(y=0,z5) = 2—2

(Y — o0,2,5) =0,
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(y,z=0,s) =0,

(Y, z — oo, 5) is finite.

(3.23)
Now one further applies the Fourier sine transform
i(w,z,s) = J. (Y, z,s) sin(wy)dy, (3.24)
0
to (3.23); it yields
0%l 2, 2\~ Uow
o~ (@)= -5
Uy (w,z=0,5) =0, (3.25)
Uy (w, z — o0, 5) is finite,
where
5 s(1+.4s)
= .2
* v(1+A,8) (3:26)
By solving (3.25), i, is readily obtained
~ _ | Uw P
Uy(w, z,8) = (@ 1 ) <1 e > (3.27)
Above equation can be further rewritten in a series form
. k > oy (k/2)-1
- 1y & (—z) w(w? + a?)
= - — .2
2 s g k! (3.28)
After applying the inverse Fourier sine transforms to (3.28), the result is
k
w0 Kosask) (ay)
_ _ZN () /D) 2
G 25\/— ( > (2ay) KT(1-k/2)’ (3.29)

where K is the modified Bessel function of second kind. After applying the calculation shown
in the appendix, the dimensionless form for #i, can be obtained by using the dimensionless
parameters defined in (3.18) as well as a new parameter z* = upz/v

oo Z/y)Zn—l n
2 Jrz (2n DIT(3/2-n)

1’l

22m-n+lyy| p! q' I'(-m) I'(m)

nl o o ()M (p 1)l / )\ V(=) T (-m+p)T(m+q)
{ $ 5 ) (E)H()( YL +0) iy
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©w o 2m+2n n+m ¢ \\pP (_ aT(- _
+(_1)n+12222 ( ) (V)P ()T (-m-n+p)

o o e 2er”m'(m +n)! pt q I'(-m—n)

s(1+ As)
(1+4rs)

I'(m+n+q)
X——

y 1 1
T(m+ 1) +1n > 2(,o(m+1 (p(m+n+1)

. gmin-p=q-1, [1 In

138 & 3 (- Z)Zny—m n+koyn- m(m+n)|( 1) (1/2)(n+k— m)( )L)P( )q
_EZZZZZ Cn)m!(n-m)T(1-n) k! <A) pl g
I'(-(1/2)(n+k-m)+p) T((1/2)(n+k—-m) +q)
T T(-(A/2)(n+k-m))  T((A/2)(n+k-m))

0.5(n+k-m)-p—q-1
. S ;

(3.30)

where all asterisks for dimensionless variables are dropped. The final step of the derivation is
to apply the Laplace inverse transform to (3.30). To this end, terms containing the transform
variable s in (3.30) are classified into two kinds. For terms only involving powers of s, it
requires the following rules of inverse Laplace transform to calculate the inversion

tAbs(n)—l
—_—  f =-1,-2,-3,...
- Abs(y—1)1 orm="L=273
S =
dn
dtné(t) forn=0,1,2,...,

(3.31)
4Abs(m) (Abs(n))! §~(1/2)+Abs(n)

() - V7 (2Abs(n))!
J‘ () n- (1/2)] <2\/t’_> t forn=0,1,2,...,

forn=-1,-2,-3,...

\/_ @

where 6(t) represents the Dirac delta function, J(t) indicates the Bessel function of the first
kind and Abs(n) the absolute value. As for terms containing the product of powers and the
logarithm of s, the inversion will be calculated in a convolution form with the help of

—exp(-t/a)

L' [In(1 +as)] = ;

(3.32)

Finally, by combing the solutions of #; and u,, the velocity distribution either in the positive-
or the negative-z domain can be analytically calculated.

In this section, the total solution consisting of 1; and u, will be calculated and plotted
in dimensionless forms. The focus of the analysis is how the rheological parameters influence
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Figure 3: Velocity profiles for z = 0.01 (solid), z = 0 (broad-solid), and z = -0.01 (dashed) at ¢ = 0.1,0.5,
and 1.0. The rheological parameters are = A, = 1.
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Figure 4: Velocity developments at z = 0.01 (solid) and z = —0.01 (dashed) for the cases of A = 1,2, and 4
at the level y = 0.1. The fixed retardation time is A, = 1.
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Figure 5: Velocity developments at z = 0.01 (solid) and z = —0.01 (dashed) for the cases of A, = 1,2, and 4
at the level y = 0.1. The fixed relaxation time is A = 1.
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the velocity profiles at various z sections. Firstly, the velocity profiles at various z sections
for the conditions A = 1, A, = 1, and t = 0.1 are plotted in Figure 2. This figure gives
a general understanding of flows driven by relatively moving half-planes. It indicates that
for the positive z-plane, the influence of the still half-plate will decay as z grows. Similarly, at
the far end of the negative z-plane, the effect of the moving plane becomes much weaker. It
is remarked that velocities at z = 0 are calculated by the solution of the traditional Stokes’
problem, and the singularity exists along the line v = z = 0. To elucidate the velocity
developments more clearly, the velocity profiles at z = 0.01,0, and -0.01 at different times
(t =0.1,0.5 and 1.0) for the conditions A = 1 and A, = 1 are plotted in Figure 3. Solid, broad-
solid and dashed curves are drawn for the velocity distributions at z = 0.01,0, and —0.01,
respectively. At the early stage, flows above the moving plane (z > 0) are quite different
from those above the still plane (z < 0) as it has not enough time to fully deliver the
effects of the moving plane and the still plane to flows above each other. It is also found
that velocity profiles either at z = 0.01 or at z = -0.01 will move with that at z = 0 as time
goes by.

4. Results and Discussion

In addition to a general understanding given by Figures 2 and 3, the effects of two important
rheological parameters for an Oldroyd-B fluid, the relaxation time and the retardation time,
on the velocity developments are investigated by plotting the velocity diagrams at y = 0.1
level. Figure 4 shows the velocity developments for different relaxation times (A = 1,2,
and 4) with a fixed retardation time A, = 1. Solid and dashed curves denote the results
at z = 0.01 and z = -0.01, respectively. It is clearly seen that a larger value of A will
result in a faster development of the velocity profile. Moreover, flows above the negative-
z plane are much weaker than those above the positive-z plane which can be also seen in
Figure 2. On the other hand, the effects of changing the retardation time (A, = 1,2 and
4) on the velocity field are depicted in Figure 5. It is of interest that, in comparison with
the relaxation time, the retardation time plays an opposite role in the flow development.
Namely, a larger value of A, will yield a slower growth of velocity profiles at both sides of z
half-planes.

5. Concluding Remarks

The extended Stokes’ first problem of an Oldroyd-B fluid driven by relatively moving half-
planes is theoretically studied in this paper. Using integral transformations and dividing
the original problem into two subsystems, the total solution is derived and shown in a
series form. Velocity profiles and their developments influenced by the relaxation time and
the retardation time are examined. From the present results, the following conclusions are
summarized: (1) the velocity profiles above both half-planes will move with that at the central
plane (z = 0), (2) a larger value of the relaxation time will result in a faster development of
the velocity profile, and (3) the effects of the magnitude of the retardation time on the velocity
field are opposite to those of the relaxation time.
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Appendix

In this appendix, the derivation of displaying (3.29) in a series form is presented. The key
technique to acquire the inversion of (3.29) is to expand the Bessel function in a series form.
First the corresponding identities of Bessel functions are introduced below [24]

IESEG) (z/z)z" "(n k=D e (22"
Ku(2) = 5 Z )" Z 1 1
24 k! 4 k!(n+k)! (A1)
z 1
X [ln<§> - E(p(k +1) - E(p(n +k+1) forn=1,2,3,...,
n—(1/2) -k
T 2z) " (n+k-1/2)! 135
Ku(z) = e e kzzo K-k —1/2)] forn = 555 (A.2)
where ¢ is the digamma function defined as
o(1) =-
n-1
p(n) =-y+ Zk‘l, n>2,
k=1
(A.3)

(p(%) =-y-2In2,

<p<n+%> :—y—21n2+2<1+%+~-+2n1_1>, n>2,

where n is integer and y is the Euler constant (y = 0.5772...). Since there exist two kinds
of expansion depending on the index n, Bessel functions in (3.29) will be classified and
expanded in two different types. With the help of (A.1), terms of odd k in (3.29) are collected
and rewritten as

U odd = —

U G (_z)k(Zay)(l/z)(“k)
257 S\ y) KT(A-k/2)

(1/2)(k-1) m
. D" [A/2)k-1) - m] (1/2)(k+3)
{ mz=o 2 ut(ay/2) P ED2m +(=1) (A4)

e (CXy/Z)(l/z)(k+1)+2m ay 1 ) .
* 2 (1/2) (k< 1)+l (%) - Soom 1) - So k34 m
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and can be also shown as

0 < <—\/§z/y> i
sV2r nzz,z%m (n-1)T(B-n)/2)

(1/2)(n-2) o\ M
4 [(1/2)(n-2) —m]! m n
| { Z <_Z> 2(1-(1/2)) 41! <£X2> - (-2) /2

m=0

U odd = —

© (y/z)n+2m(a2)(n/2)+m 1 y
x> m\((1/2)n +m)! '[Eln< > +In3 - “P("”l)— §<P< n+m+1>

(A5)

m=0

To perform the inverse transform from s-domain to t-domain, terms of a®> which contain the
variable s have to be expanded in a series form as well

2\" _ oo()L)p()L)”("”q)r("”P)
)" - Gr) pzo 2 g T o o (A0
where I' denotes the Gamma function. Applying (A.6) into (A.5) yields
n-1
% —2z/ )
U ( Y
To0dd = == 224]6 DTGy (C GG, (A7)
where
(n/2)-1 © o 2\ ™" m - -
_ v\ [1/2)m-2)-m]t/ A \" (D) (A,) T (m+q)
€= = pZO %{ <_Z> 20-(172) ] (K) p gl I(m)

F( m+p) o pql}
['(-m) '

. ©w o (y/2>n+2m()t/vj\r)(n/2)+m y\/;} 1 1 1
C2=-(-2) /ZZZZ{ m!((1/2)n + m)! In > —E(P(m+1)—§(p<§n+m+l)

()L)P( A)IT((n/2) +m+q) T(-(n/2) —m+p) (n/2)+mpq1}

P! g T((m/2)+m)  T(=(n/2) -m)

(_Z)n/z © o © (y/2>n+2m()t/v)tr)(n/2)+m (=) (=A,)7 1—-((”/2) +m+q)
ZZZ{ m!((1/2)n +m)! p! q' I'((n/2) +m)

'1"(—(11/2) —m+ P) In S(l + )‘S) (n/2)+m p-q-1
I'(-(n/2) —m) 1+ As
(A.8)
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where C; and C, only contain the powers of s and C; has the products of logarithm and
powers of s. Now the terms of even k in (3.29) are expressed as

_ 2 (2ay)" " K12 (ay)
Uz even = - s (A9)
’ 25\/ (2n)! I'(l-n)
and can be further rewritten as
R Cug & & 22y (n+ m)! .
Ugeven = ~5 n§=1 m§=0 ) ) — )1 exp(-ay). (A.10)

Applying (A.6) into (A.10) leads to

R w © N o w ® ( )kzn m( Z)Zn —n-m+k (n+m)! A (1/2)(n+k-m)
Teven = =5 2, 2, 3, 2, 2, T(1-n) k!(2n)!m!(n—m)!<v_)ur>

q
. (_/\)—P (_-)Lr)_q F[(l/Z)(n +k - m) + q] r( (1/2)(71 +k - m) + P) (1/2) n+k-m)-p—q-1
p! q Ii/2)(n+k-m)] I-1/2)(n+k-m)] !

(A.11)

where only the powers of s exist for the inverse calculation. Finally, (3.29) can be rewritten
by using the summation of (A.6) and (A.11) and its dimensionless form is shown as (3.30).
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